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1 Introduction

Over the last decade, numerous explanations of fractional derivative have been recommended because of the rewards
provided by this concept for modelling real world problems. We recall that the fractional partial derivatives are
difficult to handle analytically, especially those describing real world processes, and the researchers sometimes
have to rely on the numerical methods to solve these equations. One of the well-known fractional derivatives is the
Riemann-Liouville fractional order derivative, which is not always appropriate for modelling real world problems.
The second one is the so-called Caputo derivative; this one is opposite with relation to displaying physical field
complications and has been intensively used for this purpose. However, new derivatives should be proposed in order
to deal better with the dynamics of the complex systems [2–9]. We have noticed that recently a new derivative has
been suggested in [1, 17, 21, 22] and it seems to satisfy all the requirements of the standard derivative. However, there
is no discretization of this version in the literature. This paper will, therefore, be devoted to the discussion supporting
the detailed investigation of the properties and useful theorems related to this derivative and its applications in real
world problem [11–17]. The new derivative under investigation here is given in Definition.

2 Theorems, properties and definitions

Definition 2.1. We denote a function f W Œ0;1/ ! R. The conformable derivative of the function f with order ˛
is defined by [1]

T˛.f /.t/ D lim
"!0

f .t C "t1�˛/ � f .t/

"
(1)

for all t > 0, ˛ 2 .0; 1/ [1, 16]:
We shall present some properties of this new derivative.
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Properties ([1]).
1. T˛.af C bg/ D aT˛.f /C bT˛.g/ for all real constant a, b,
2. T˛.fg/ D f T˛.g/C gT˛.f /;
3. T˛.tp/ D ptp�˛ for all p,
4. T˛.fg / D

gT˛.f /�f T˛.g/

g2
;

5. T˛.c/ D 0 with c is a constant.

Remark 2.2. The new derivative is the generalized q-derivative or a fractal derivative

Proof. By definition we have that

T˛.f /.t/ D lim
"!0

f .t C "t1�˛/ � f .t/

"
:

From the above definition, let us put
q D 1C "t�˛;

such that when "! 0; q ! 1, then equation .1/ can be converted to

T˛.f /.t/ D lim
q!1

f .qt/ � f .t/

qt˛ � t˛
:

Theorem 2.3. Assuming that the function f is infinitly deferentiable at the point a, then the Taylor series of f with
respect to the conformable derivative is given as [18–21]

F T .f .x// D

1X
nD0

an�n˛.x � a/n
f .n/.a/

nŠ
; (2)

where nŠ denotes the factorial of n and f n.a/ is the nth derivative of f evaluated at the point a.

Proof. Assuming that f is infinitely differentiable at the point a, then by definition we have:

T˛.f .a// D lim
"!0

f .aC "a1�˛/ � f .a/

"
(3)

However, if we put k D "a1�˛ , then we shall have the following

T˛.f .a// D a
1�˛ lim

k!0

f .aC k/ � f .a/

k
D a1�˛f

0

.a/: (4)

Henceforth, assume by induction, that for all m � 1, we have the following

Tm˛.f .a// D a
m�m˛ f

.m/.a/

mŠ
: (5)

We shall prove that this relation holds for the next step, which is at m+1. However by definition, we have the
following formula

T.mC1/˛.f .a// D T˛ .Tm˛.f .a///

which by induction formula equation (5) can be converted to the following

T.mC1/˛.f .a// D T˛ .Tm˛.f .a// D T˛

 
am�m˛

f .m/.a/

mŠ

!
D a.1�˛/.mC1/

f .mC1/.a/

.mC 1/Š
(6)

The property is also verified at mC 1, and then, the relation is true for all n.

Theorem 2.4. Let f and g be two function differentiable, such that g is differentiable at any t , and f is differentiable
at any g.t/, and then the conformable derivative obeys the Chain rule, meaning

T˛..fog/.x// D x
1�˛g.x/1�˛g0.x/T˛.f .t// jtDg.x/ : (7)
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Proof. Assuming that g is differentiable function at any given t , and f is differentiable at any g.t/ then by definition
we have the following

T˛..fog/.x// D lim
"!0

.fog/ .x C "x1�˛/ � .fog/ .x/

"
(8)

Now if we put k D "x1�˛ , we obtain

T˛..fog/.x// D x
1�˛ lim

k!0

.fog/ .x C k/ � .fog/ .x/

k
(9)

with

lim
k!0

.fog/ .x C k/ � .fog/ .x/

k

as the derivative of composite function, so if we apply the chain rule for the ordinary derivative, we obtain

lim
k!0

.fog/ .x C k/ � .fog/ .x/

k
D lim
k!0

f .g.x/C k/ � f .g.x//

k
: (10)

Now we put
k D "g.x/1�˛:

Then the above equation (10) can be transform into

lim
k!0

.fog/ .x C k/ � .fog/ .x/

k
D g.x/˛�1 lim

"!0

f .g.x/C "g.x/1�˛/ � f .g.x//

"
(11)

Now replacing (11) in (9) we obtain the following

T˛..fog/.x// D x
1�˛g.x/˛�1 lim

"!0

f .g.x/C "g.x/1�˛/ � f .g.x//

"
(12)

with of course

T˛.f .t// jtDg.x/D lim
"!0

f .g.x/C "g.x/1�˛/ � f .g.x//

"
:

This completes the proof.

Theorem 2.5. Let ˛; ˇ be positive constants such, that 0 < ˛; ˇ < 1, and f be a function (non-constant) 2 times
differentiable on a open real interval .a; b/, then the conformable derivative obeys to the following

T˛Cˇ.f .x// ¤ T˛
�
Tˇ.f .x//

�
: (13)

Proof. Under the condition that the function f is differentiable, we have the following

T˛
�
Tˇf .x/

�
D T˛

 
lim
"!0

f .x C "x1�ˇ/ � f .x/

"

!
:

However, by changing the variable "x1�˛ D h, we obtain the following relation

T˛
�
Tˇf .x/

�
D T˛

�
x1�ˇ lim

h!0

f .x C h/ � f .x/

h

�
D T˛

�
x1�ˇf 0f .x/

�
: (14)

Now, making use of the second property we arrive at

T˛
�
Tˇ.x/

�
D T˛

�
x1�ˇ

�
f 0.x/C x1�ˇT˛

�
f 0.x/

�
D x1�ˇ�˛

�
.1 � ˇ/f 0.x/C xf 00.x/

�
: (15)

On the other hand,

T˛Cˇ.f .x// D lim
"!0

f 0.x C "x2�˛�ˇ/ � f
0

.x/

"
(16)

Again making the change of variable l D "x2�˛�ˇ and using the fact that the function is 2-times differentiable, we
have

T˛Cˇ.f .x// D x
2�˛�ˇ lim

l!0

f 0.x C l/ � f
0

.x/

l
D x2�˛�ˇf 00.x/;

and we have that T˛Cˇ.f .x// ¤ T˛
�
Tˇ.f .x//

�
, and then the proof is completed.
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Corollary 2.6. Let ˛, ˇ be positive constants, such that 0 < ˛ < 1; ˇ D 1, and f be a function 2 times differentiable
on a open real interval .a; b/, then the conformable derivative obeys to the following

T˛Cˇ.f .x// D T˛
�
Tˇ.f .x//

�
:

The proof follows directly from the one of Theorem 2.5, by letting ˇ D 1.

Theorem 2.7. Let ˛, ˇ be positive constants, such that 0 < ˛; ˇ < 1, and f be a function (non-constant) 2 times
differentiable on a open real interval .a; b/, then the conformable derivative obeys to the following

T˛
�
Tˇf .x/

�
/ ¤ Tˇ .T˛.f .x/// : (17)

Proof. By using the definition, we have the following relation

T˛
�
Tˇf .x/

�
/ D T˛.x

1�ˇ/f
0

.x/C x1�ˇT˛.f
0

.x// D x1�ˇ�˛Œ.1 � ˇ/f
0

.x/C xf
00

.x/�; (18)

Tˇ .T˛f .x/// D Tˇ.x
1�˛/f

0

.x/C x1�˛Tˇ.f
0

.x// D x1�ˇ�˛Œ.1 � ˛/f
0

.x/C xf
00

.x/�:

Therefore, the proof is completed.

Theorem 2.8. Allow f to be a functionm-time .m � 2/ differentiable on an open real interval .a; b/ and 0 < ˛ � 1,
then the conformable derivative obeys the following relation

T˛.T˛.: : : : : : : : : .T˛.f .x///// ¤ Tm˛.f .x//: (19)

Proof. We can verify the above by choosing m D 2. The proof can be achieved using the routine used in
Theorem 2.7. It is important to mention that many physical problems are described with partial differential equation,
in order to fit the new derivative in this folder; we shall propose the following definition for the case of a function
with many variables.

Definition 2.9. Let f be a function with m variables x1;. . . . . . . . .xm, and the conformable partial derivative of f
of order 0 < ˛ � 1 in xi is defined as follows

@˛

@x˛
i

f .x1; : : : ; xm/ D lim
"!0

f .x1; : : : xi�1; xi C "x
1�˛
i

; : : : ; xm/ � f .x1; : : : ; xm/

"
: (20)

Before we continue with our investigation we shall first verify the Clairaut’s theorem for partial derivatives of
conformable fractional orders.

Theorem 2.10. Assume that f .x; y/ is function for which @˛x
h
@
ˇ
y .f .x; y//

i
and @ˇy

�
@˛x.f .x; y//

�
exist and are

continous over the domain D � R2 then

@˛x

h
@ˇy .f .x; y//

i
D @ˇy

�
@˛x.f .x; y//

�
: (21)

Proof. By definition as in equation (2.21) we have that

@˛x

h
@ˇy .f .x; y//

i
D @˛x

"
lim
"!0

f .x; y C "y1�ˇ/ � f .x; y/

"

#
(22)

Making the change of variable "y1�ˇ D k we obtain

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇ@˛x

�
lim
k!0

f .x; y C k/ � f .x; y/

k

�
:

Since f is differentiable in y direction we have that,

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇ@˛x Œ

@f

@y
.x; y/� (23)
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Again by definition we have the following

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇ lim

"!0

@f
@y
.x C "x1�˛; y/ � @f

@y
.x; y/

"
: (24)

After making a change of variable, we obtain

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇx1�˛ lim

l!0

@f
@y
.x C l; y/ � @f

@y
.x; y/

l
: (25)

Since the function f is differentiable in x�direction, we have that

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇx1�˛

@2f .x; y/

@x@y
: (26)

Since f is continuous, by using the Clairaut’s theorem for partial derivatives, we have that,

@2f .x; y/

@x@y
D
@2f .x; y/

@y@x
; (27)

then the equation (26) becomes

@˛x

h
@ˇy .f .x; y//

i
D y1�ˇx1�˛

@2f .x; y/

@x@y
D x1�˛y1�ˇ lim

l!0

@f
@x
.x; y C l/ � @f

@x
.x; y/

l
(28)

By making a change of variable meaning " D ly1�ˇ and later ' D hx1�˛ we arrive at

@˛x

h
@ˇy .f .x; y//

i
D @ˇy

"
lim
l!0

@f
@x
.x; y C l/ � @f

@x
.x; y/

l

#
D @ˇy

�
@˛x.f .x; y//

�
;

and this completes the proof.

In this case f has a partial conformable derivative with respect to each variable, y. At the point a, these partial
conformable derivatives define the conformable vector

r˛f .a/ D
�
@˛x.f .a//; @

ˇ
y .f .a//

�
; (29)

We shall present the next definition as

Definition 2.11. Consider the scalar field f .x/ and the vector field F .x/ that are assumed to possess partial
conformable derivative of order ˛ with respect to all the Cartesian coordinates xi ; i D 1; 2; 3. We define the
conformable gradient of order ˛ as being the vector field

r
˛
x f D

3X
iD1

.@˛xif /ei ; (30)

with, of course, ei the unit vector in the “i” direction.

The conformable of order ˛ as the scalar field is defined as

r
˛
x :f D

3X
iD1

.@˛xiFi /; (31)

and the conformable curl of order ˛ as the vector field is hence defined as follows

r
˛
x � f D

3X
iD1

24 3X
jD1

3X
kD1

eijk@
˛
xi
Fk

35 (32)

where of course eijk is the Levi-Civita symbol.
Having these definitions in hand we can present the following properties. Assuming that the different operations

for the scalar and vector fields exist, we have
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1. r˛x .af C bg/ D ar
˛
x .f /C br

˛
x .g/;

2. r˛x :.aF C bG/ D ar
˛
x :.F /C br

˛
x :.G/

3. r˛x � .aF C bG/ D ar
˛
x � .F /C br

˛
x � .G/;

4. r˛x :Œr
˛
x � F � D 0

5. r˛x � Œr
˛
x :F � D 0:

We shall present the proof for the above properties, but the first three properties are a direct effect of the linear
representative of the different operations and are fairly trivial to obtain. Nonetheless, the last two relations rely on
Clairaut’s result established in Theorem 2.10. We shall present the proof for the relation 4, which from the definition
of the conformable divergence and conformable curl of order U.3b1/ is

r
˛
x :Œr

˛
x � F � D

3X
iD1

3X
jD1

3X
kD1

eijk@
˛
xi
r
˛
xj
Fk : (33)

However, the Levi-Civita symbol equals to zero whenever two or more indexes take the same value, that is

eijk D

8̂<̂
:
1 if .i; j; k/ is .1; 2; 3/, .3; 1; 2/ or .2; 3; 1/;
�1if .i; j; k/ is .1; 3; 2/, .3; 1; 2/ or .2; 1; 3/;

0 if i D j or j D k or i D k;
(34)

and the triple sum in the relation is reduced to

3X
iD1

3X
jD1

3X
kD1

eijk@
˛
xi
r
˛
xj
Fk D

3X
iD1

.eijk@
˛
xi
Œ@˛xjFk � @

˛
xk
Fj �/; i ¤ j ¤ k; (35)

or the above can be converted to

r
˛
x :Œr

˛
x � F � D @

˛
xi
Œ@˛xjFk � @

˛
xk
Fj �C @

˛
xj
Œ@˛xkFi � @

˛
xi
Fk �C @

˛
xk
Œ@˛xiFj � @

˛
xj
Fi � D 0; (36)

by direct application of the conformable Clairaut’s theorem. The last property is established using similar arguments
as for property 4.

2.1 The conformable divergence theorem

For remembrance, let the vector field V have a continuous derivative on an open region space [8–10] D containing
the volume V and surface S of V positively outward orientatedZ Z Z

r:F dV D

Z Z
F :ndS: (37)

Therefore within the framework of the conformable fractional derivatives, this theorem can be rephrased; we shall
present the following definition.

Definition 2.12. Let the vector field F have the partial conformable derivatives of order ˇ with respect to all
variables x=.x1; : : : ; xm/T on D. Then we denote by Hˇx F the vector

Hˇx F D

mX
iD1

n
eTxi

h
r
ˇ
x .F /

T
i
:exi

o
exi D

mX
iD1

@ˇxiFxi exi : (38)

We shall then propose the following theorem.

Theorem 2.13. Let the vector field F have the continuous partial conformable derivatives of order ˛ on an open
region of the space D containing the volume V and S is the boundary surface of V positively outward oriented.
Then we have the following relationZ Z Z

V

nabla˛xFdV
alpha

D

Z Z
S

H˛�1x F :ndS˛; (39)
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with
dV ˛ D x˛�1y˛�1z˛�1dxdydz and dS˛ D x˛�1y˛�1dxdy;

which is in accordance with the conformable derivative as anti-derivative of conformable derivative.

Proof. To achieve this we must first remark thatZ Z Z
V

r
˛
x :F dV

˛
D

Z Z
S

H˛�1x F :ndS˛

and this completes the proof.

In an analogous way, the distinguished theorem of Green and Stokes of the vector calculus can perhaps be
appropriately modified to acclimatise straightforwardly the perception of conformable derivative; we therefore have
the following theorems.

Theorem 2.14 (The conformable Green’s theorem). Let C be a simple positively oriented, piecewise smooth and
closed curve in R2, say for instance the x � y plane, furthermore assume D is the interior of C . If f .x; y/ and
g.x; y/ are two functions having continuous partial conformable fractional derivative on D thenZ Z

D

.@˛xg � @
˛
yf /dS

˛
D

Z
C

@˛�1y fdx˛ C @˛�1x gdy˛: (40)

Proof. This is clearly a direct application of the classical version of Green’s theorem. Now, sinceZ Z
D

.@˛xg � @
˛
yf /dS

˛
D

Z Z
D

@x.@
˛�1
x g/ � @y.@

˛�1
y f /dS˛; (41)

then, by applying the Green function theorem, we haveZ Z
D

.@˛xg � @
˛
yf /dS

˛
D

Z
C

@˛�1y fdx˛ C @˛�1x gdy˛: (42)

It should be reminded that for supplementary determinations this relation into the plane can be articulated in terms
of the conformable fractional of the vector field F D .f; g; h/, h being an arbitrary function in D.

Theorem 2.15 (Conformable Stockes’s theorem). Let S be a regular surface of class C 2 described by the paramet-
ric equations

P .u; v/ D .x.u; v/; y.u; v/; z.u; v//; u; v 2 S; (43)

where x; y; z are the Cartesian coordinates. Consider a simple positively oriented, piecewise smooth, closed curve
Ck in the plane u � v, assume K to be the interior of Ck . S and C are images of the domain K and its boundary
Ck in the Cartesian space, and F is a vector field having continuous partial derivatives of conformable order ˛ on
S , then Z Z

S

Œr˛x � F C .@x ŒK
˛�1
x �:Fyey/ex C .@y ŒK

˛�1
x �:Fzez/ey C .@z ŒK

˛�1
x �:Fxex/ez �:ndS

˛

D

Z
C

@˛�1z Fxdx
˛
C @˛�1x Fydy

˛
C @˛�1y Fzdz

˛;

with
ŒK˛�1x � D �r˛x D .@

˛
y � @

˛
z /ex C .@

˛
z � @

˛
x/ey C .@

˛
x � @

˛
y /ez ;

where n is the unit positive outside normal to S .
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Proof. To prove this theorem we shall firstly spit the line of the integralZ
C

@˛�1z Fxdx
˛
C @˛�1x Fydy

˛
C @˛�1y Fzdz

˛;

into the three following components:Z
C

@˛�1z Fxdx
˛;

Z
C

@˛�1x Fydy
˛ and

Z
C

@˛�1y Fzdz
˛:

Therefore, without the loss of generality, we shall consider the first component. In the meantime, we shall presume
that the boundary Ck can be explained by the mean of one single parametric relation Ck W .u.t/; v.t//; t 2 Œa; b�.
Then the corresponding curve C in the Cartesian space of coordinates is given by

P .t/ D .x.u.t/; v.t//; y.u.t/; v.t//; z.u.t/; v.t///: (44)

Consequently:
g1 D @

˛�1
z Fxx

˛�1: (45)

Thus, we shall have the followingZ
C

g1dx D

bZ
a

g1 .u.t/; v.t//
dx.u.t/; v.t//

dt
dt (46)

D

bZ
a

g1 .u.t/; v.t// @ux
du

dt
dt C g1 .u.t/; v.t// @vx

du

dt
dt D

Z
Ck

g1 .u; v/ @uxduC g1 .u; v/ @vxdv:

Henceforward, employing the Green’s theorem in its conventional form to this last outcome contributes toZ
C

g1dx D

Z Z
S

@u.g1 .u; v/ @vx/C @u.g1 .u; v/ @ux/dudv;

D

Z Z
S

Œ@xg1@ux C @yg1@yy C @zg1@uz� @vx � Œ@xg1@ux C @yg1@yy C @zg1@uz� @uxdudv

D

Z Z
S

�
@zg1

ˇ̌̌̌
@.z; x/

@.u; v/

ˇ̌̌̌
� @zg1

ˇ̌̌̌
@.x; y/

@.u; v/

ˇ̌̌̌�
dudv D

Z Z
S

Œ@zg1ny � @zg1nz � dudv:

(47)

Note that, n_y and n_z are referred as the components of the normal to S, that is

n D .nx ; ny ; nz/ D
@ux � @vx

j@ux � @vxj
: (48)

Now, repeating the same for two other integral components and adding those three relations, the rearrangement of
the terms with respect to the components of the normal vector yieldsZ

C

@˛�1z Fxdx
˛
C @˛�1x Fydy

˛
C @˛�1y Fzdz

˛

D

Z Z
S

Œ@zf1ny � @zf1ny �C Œ@yf1nx � @xf1ny �C Œ@zf1nz � @xf1ny �dudv:

(49)

This, in other terms, gives Z
C

@˛�1z Fxdx
˛
C @˛�1x Fydy

˛
C @˛�1y Fzdz

˛ (50)

Z Z
S

Œr˛x � F C .@x ŒK
˛�1
x �:Fyey/ex C .@y ŒK

˛�1
x �:Fzez/ey C .@z ŒK

˛�1
x �:Fxex/ez �:ndS

˛:

This completes the proof.
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We shall conclude this paper by proposing the following Jacobian matrices.
Let f and g be two functions of two variables, such that their respective partial derivatives exist and are

continuous, then the conformable fractional Jacobian matrix associate is given as: 
@˛f
@x˛

@˛f
@y˛

@˛g
@x˛

@˛g
@y˛

!
D

 
x1�˛ @f

@x
y1�˛ @f

@y

x1�˛ @g
@x

y1�˛ @g
@y

!
(51)

This can be generalized in higher dimension.

3 Conclusion

The concept of derivative with fractional parameter has recently captured the minds of scholars. For instance,
Riemann-Liouville proposed the idea of fractional order derivative. Caputo and others later modified this fractional
derivative. These fractional derivatives have been employed to model many real world problems with success due
to their physical properties. A derivative based upon the classical derivative with fractional parameter has been
proposed recently. The derivative has very interesting properties and, therefore, in this work we have undertaken an
investigation regarding more details around this new derivative. We have first remarked that, there is a relationship
between this derivative, the well-known q-derivative and fractal derivatives. Furthermore, we presented novel
theorems, properties and remarks in connection with the classical derivatives. As a result, the new derivative obeys
several properties followed by the classical derivative.
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