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The chaos in a new system with order 3 is studied. We have shown that this chaotic system again will be chaotic when the order
of system is less than 3. Generalized Adams-Bashforth algorithm has been used for investigating in stability of fixed points and
existence of chaos.

1. Introduction

It is well known that the nonlinear equations of dynamical
systems with special condition have chaotic behavior [1].
Subsequently, additional studieswere performedon the chaos
and chaotic systems. Therefore solutions of different systems
display their chaotic behavior such as Chen’s system, Chua’s
dynamical system, the motion of double pendulum, and
Rossler system amongst others. At first, it was thought that
the chaos exists only when the order of system of differential
equation is exactly 3.When the systemof differential equation
is composed of three first order differential equations, the
order of the system is the sum of orders. But later on, a very
interesting thing was realized; that is, it is also possible to
observe chaotic behavior in a fractional order system. The
system is composed of differential equations with fractional
order derivatives [1–28]. For example, Sheu et al. reviewed
the chaotic behavior of the Newton-Leipnik system with
fractional order [10]. The important thing in the study of
fractional-order systems is theminimum effective dimension
of the system for which the system remains chaotic. This
quantity has been numerically calculated for different systems
including fractional order Lorenz system [11], fractional order
Chua’s system [12], and fractional order Rössler system [13].
Recently, the chaos has been studied in fractional ordered Liu
system, where the numerical investigations on the dynamics

of this system have been carried out, and properties of the
system have been analyzed by means of Lyapunov exponent
[14]. In this paper we study the chaotic behavior of a
generalization of the Liu system with fractional order.

The framework of the paper is as follows.
In Section 2, we study the behavior of a new fractional

order system (modification of Liu system), andwe study com-
mensurate and incommensurate ordered systems and find
lowest order at which chaos exists by numerical experiments.
We have investigated the instability of fixed points and used
Lyapunov exponent for the existence of chaos. In Section 3,
we state the main conclusions.

2. The Proposed Modified Liu System

In this section, we review the condition for asymptotic sta-
bility of the commensurate and incommensurate fractional
ordered systems. We suggest the readers to see [15–21] for the
following section .

2.1. Asymptotic Stability of the Commensurate Fractional
Ordered System. Let us consider the commensurate frac-
tional ordered dynamical system equation
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Write the system in the matrix form
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where 𝐽 is Jacobian matrix of the system, and if 𝐽 does not
have purely imaginary eigenvalues, therefore the trajectories
of the nonlinear system in the neighborhood of the equilib-
rium point have the same form as the trajectories of the linear
system [18]. So we arrive at the following linear autonomous
system:

𝐷
𝛼

𝜉 = 𝐽𝜉, 𝜉 (0) = 𝜉
0
, (5)

where 𝐽 is 𝑛 × 𝑛 matrix and 0 < 𝛼 < 1. The system (5) is
asymptotically stable if and only if | arg(𝜆)| > 𝛼𝜋/2 for all
eigenvalues 𝜆 of 𝐽. So for this condition the solutions 𝜉

𝑖
(𝑡) of

(5) tend to 0 as 𝑡 → ∞. Therefore, the equilibrium point 𝑝
of the system is asymptotically stable if | arg(𝜆)| > 𝛼𝜋/2, for
all eigenvalues 𝜆 of 𝐽. For example,
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2
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2.2. Asymptotic Stability of the Incommensurate Fractional
Ordered System. Consider the following incommensurate
fractional ordered dynamical system [19, 20]. Now sup-
pose the commensurate fractional ordered dynamical system
equation
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where it can be written as
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where 𝐽 is Jacobianmatrix evaluated at point𝑝.The definition
is

Δ (𝜆) = diag ([𝜆
𝑀𝛼1𝜆
𝑀𝛼2𝜆
𝑀𝛼3]) − 𝐽, (10)

that is, if all the roots of equation Δ(𝜆) = 0 satisfy the
condition | arg(𝜆)| > 𝜋/2𝑀 [21], the solution of linear system
is asymptotically stable as follows:

𝜋

2𝑀
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󵄨󵄨󵄨󵄨arg (𝜆𝑖)
󵄨󵄨󵄨󵄨 < 0. (11)

The term in the left side of (11) is an instability measure
for equilibrium point in fractional ordered system (IMFOS).
Then, fractional order equation (7) exhibits chaotic attractor
if the condition is [19, 20]

IMFOS ≥ 0. (12)

2.3. Modified Liu System. In this section we introduce the
following system and show that the system is chaotic:

𝑥̇ = − 𝑎𝑥 − 𝑏𝑦
2

,

̇𝑦 = 𝑐𝑦 + 𝑑𝑧𝑥 − 𝑒𝑧
2

,

𝑧̇ = 𝑓𝑧 + 𝑔𝑥𝑦,

(13)

where 𝑎 = 2, 𝑏 = 𝑒 = 1, 𝑐 = −3, 𝑑 = −4, 𝑓 = −7, and 𝑔 =

4 with the initial conditions (0.2, 0, 0.5) lead to the chaotic
trajectories. Meanwhile, we want to show chaotic behavior
of (13) involving fractional order. Also, we will calculate the
minimum effective dimension by which the system remains
chaotic. The corresponding fractional order system is
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where 𝛼
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∈ (0, 1). In (14) if we choose 𝛼
1

= 𝛼
2

= 𝛼
3

=

𝛼, the system is called commensurate, and otherwise it is
incommensurate. Now, we have four real equilibrium points
for (13) which are shown in Table 1. In Table 1, we see the
equilibrium points and the eigenvalues of the corresponding
Jacobian matrix

𝐽 = (

−𝑎 −2𝑏𝑦 0

𝑑𝑧 𝑐 𝑑𝑥 − 2𝑒𝑧

𝑔𝑦𝑥 𝑔𝑥 𝑓

) . (15)

A saddle point 𝑝 is stable, if the Jacobian matrix has at
least one eigenvalue with a negative real part. Otherwise, one
eigenvalue with a nonnegative real part is called unstable.
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Table 1: Equilibrium points and corresponding eigenvalues.

Equilibrium point Eigenvalue Nature
𝐸
0
(0, 0, 0) (−7, 3, −2) Saddle point

𝐸
1
(−24.392, −6.98456, 97.3529) (−64.4116, 63.0432, −4.63163) Saddle point

𝐸
2
(−1.04307, 1.44435, −0.860895) (−6.694, 0.347 ± 5.1057𝑖) Saddle point

𝐸
3
(−1.30636, −1.61639, 1.20662) (−6.82593, 0.412964 ± 4.75973𝑖) Saddle point
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Figure 1: Lyapunov exponent.
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Figure 2: Phase portrait 𝛼 = 0.95.

And saddle points have index one or two if there is exactly
one or two unstable eigenvalues, respectively. It is established
in the literature [22–26] that scrolls are generated only around
the saddle points of an index one or two. Saddle points
of index one are to connect scrolls. Table 1 shows that the
equilibrium points 𝐸

1
and 𝐸

2
are saddle points of index two;

therefor we have two-scroll attractor [22], in the fractional
system given by (14).

2.4. Commensurate Ordered System. Consider the system
equation (14), and let 𝛼

1
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−2.5 −2 −1.5 −1 −0.5

−3

−2

−1

1

2

𝑦

𝑥

Figure 3: Phase portrait x-y 𝛼 = 0.96.
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Figure 4: Phase portrait y-z 𝛼 = 0.96.

commensurate order for this case. In this case a system shows
regular behavior if it satisfies min

𝑖
| arg(𝜆

𝑖
)| > 𝛼𝜋/2, then we

have [15–21]

𝛼 <
2

𝜋
min
𝑖

󵄨󵄨󵄨󵄨arg (𝜆𝑖)
󵄨󵄨󵄨󵄨 ≈ 0.95. (16)

From Figure 1 we can see that the Lyapunov exponent for
the case of commensurate ordered equation (14) is positive
if 𝛼 > 0.95 [27, 28]. Thus we can realize that the system
does not indicate chaotic behavior for the value 𝛼 < 0.95.
This corollary has been figured out by numerical outcome.
Moreover, Figure 2 illustrates the phase portrait in 𝑥𝑦-plane
for the 𝛼 = 0.95. Numerical experiments and Figures 3 and
4 demonstrate that the system has chaotic behavior for 𝛼 =

0.96. In addition, Figures 5 and 6 represent solutions 𝑥(𝑡) and
𝑦(𝑡) for 𝛼 = 0.96, respectively. Adams-Bashforth predictor-
corrector algorithm is used for numerical result with step size
0.1.



4 Advances in Mathematical Physics

20 40 60 80 100

𝑡

−2.5

−2

−1.5

−1

−0.5

𝑥

Figure 5: Solution 𝑥(𝑡) for 𝛼 = 0.96.
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Figure 6: Solution 𝑦(𝑡) for 𝛼 = 0.96.
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2.5. Incommensurate Ordered System. In this section we indi-
cate that the condition for being chaotic system in the case
of commensurate is not sufficient for the incommensurate
case . So let us consider the fractional order system equation
(14). Figures 7 and 8 display that the Lyapunov exponent is
positive for 𝛼

1
≥ 0.89, 𝛼

2
= 𝛼
3

= 1, and for the case
𝛼
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≥ 0.88, 𝛼
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= 1, respectively. Now, let us consider
the following cases for (14).
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1
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2
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3
=

1. Therefore, one can acquire 𝑀 = LCM(25, 1, 1) = 25. Since
we have Δ(𝜆) = diag([𝜆22𝜆25𝜆25]) − 𝐽(𝐸

1
), then

det (Δ (𝜆)) = −1.9 × 10
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− 9.5 × 106

− 3𝜆
22

+ 5.45 × 10
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𝜆
25

+ 4𝜆
47

+ 2𝜆
50

+ 𝜆
72

.

(17)

And the instability measure for equilibrium point in frac-
tional ordered system (IMFOS) will be for the system

𝜋

50
− 0.0 = 0.0628 > 0. (18)

In Figure 9, there is no chaos, whereas IMFOS > 0 [15–21].
This consequence leads to that the IMFOS> 0 is not sufficient
for existence of chaos.

(2) As second case, suppose 𝛼
1
= 89/100, 𝛼

2
= 𝛼
3
= 1, so

that in this case the𝑀 = LCM(100, 1, 1) = 100. Also we have
Δ(𝜆) = diag([𝜆89𝜆100𝜆100]) − 𝐽(𝐸

1
), as well as we obtain
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Therefore, the IMFOS of the system for this state is

𝜋

200
− 0.0 = 0.0157 > 0. (20)

If we look at Figure 10 we conclude the chaotic behavior for
the systemwith thementioned condition.Herewe remark the
lowest dimension of the system which has chaos (Figure 11).

(3) As third case, let 𝛼
3
= 43/50, 𝛼

1
= 𝛼
3
= 1. So with

some manipulation we get𝑀 = LCM(1, 1, 50) = 50,

det (Δ (𝜆)) = −18807.7 + 5430.19𝜆
43

− 9484.56𝜆
50

− 𝜆
93

+ 7𝜆
100

+ 𝜆
143

.

(21)

If we compute the IMFOS for the system, we will arrive at

𝜋

100
− 0.0 = 0.0314 > 0. (22)

Figure 11 and (22) point that the system does not have chaotic
condition.

(4) For the fourth case, we consider 𝛼
3

= 22/25, 𝛼
1

=

𝛼
3
= 1. Therefore, we will obtain𝑀 = LCM(1, 1, 50) = 50,

det (Δ (𝜆)) = −1.9 × 10
−4

− 9.5 × 106 − 3𝜆
22

+ 5.45 × 10
−3

𝜆
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+ 4𝜆
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+ 2𝜆
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+ 𝜆
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.

(23)

IMFOS for the fourth case is
𝜋

100
− 0.0 = 0.0628 > 0. (24)

Numerical results and Figure 12 indicate for the this case that
the system is chaotic.

3. Conclusions

A fractional order of a new system is investigated. Numerical
calculations are performed for different values of fractional
order. Lyapunov exponents and analytical conditions given
in the literature have been used to check the existence of
chaos. A minimum effective dimension is calculated for
commensurate fractional order.Mathematica 7 has been used
for computations in this paper.
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order Rössler equations,” Physica A, vol. 341, no. 1–4, pp. 55–61,
2004.

[14] V. Daftardar-Gejji and S. Bhalekar, “Chaos in fractional ordered
Liu system,” Computers & Mathematics with Applications, vol.
59, no. 3, pp. 1117–1127, 2010.

[15] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives, Gordon and Breach, New York, NY,
USA, 1993.

[17] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector
approach for the numerical solution of fractional differential
equations,”Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.

[18] Z. Vukic, Lj. Kuljaca, D. Donlagic, and S. Tesnjak, Non-linear
Control Systems, Marcel Dekker, New York, NY, USA, 2003.

[19] A. Razminia, V.J. Majd, and D. Baleanu, “Chaotic incom-
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