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We investigate the existence of solutions for the following multipoint boundary value problem of a fractional order differential
inclusion 𝐷

𝛼

0
+𝑢(𝑡) + 𝐹(𝑡, 𝑢(𝑡), 𝑢



(𝑡)) ∋ 0, 0 < 𝑡 < +∞, 𝑢(0) = 𝑢


(0) = 0,𝐷
𝛼−1

𝑢(+∞) − ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑢(𝜉
𝑖
) = 0, where 𝐷𝛼

0
+ is the standard

Riemann-Liouville fractional derivative, 2 < 𝛼 < 3, 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< +∞, satisfies 0 < ∑

𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖
< Γ(𝛼), and 𝐹 :

[0, +∞) × R ×R → P(R) is a set-valued map. Several results are obtained by using suitable fixed point theorems when the right
hand side has convex or nonconvex values.

1. Introduction

In this paper, we will consider the existence of solutions
for the following multipoint boundary value problem of a
fractional order differential inclusion

𝐷
𝛼

0
+𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢



(𝑡)) ∋ 0, 0 < 𝑡 < +∞,

𝑢 (0) = 𝑢


(0) = 0, 𝐷
𝛼−1

𝑢 (+∞) −

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑢 (𝜉
𝑖
) = 0,

(1)

where 𝐷
𝛼

0
+ is the standard Riemann-Liouville fractional

derivative, 2 < 𝛼 < 3, 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< +∞,

satisfies 0 < ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖
< Γ(𝛼), and 𝐹 : [0, +∞) ×R ×R →

P(R) is a set-valued map.
The present paper is motivated by a recent paper of Liang

and Zhang [1], where it is considered problem (1) with 𝐹

single valued, and several existence results are provided.
Fractional differential equations have been of great inter-

est recently.This is because of both the intensive development

of the theory of fractional calculus itself and the applications
of such constructions in various scientific fields such as
physics, mechanics, chemistry, and engineering. For details,
see [2–4] and the references therein.

The existence of solutions of initial value problems for
fractional order differential equations has been studied in
the literature [5–17] and the references therein. The study
of fractional differential inclusions was initiated by El-Sayed
and Ibrahim [18]. Also, recently, several qualitative results for
fractional differential inclusionswere obtained in [19–23] and
the references therein.

The aim here is to establish existence results for problem
(1) when the right hand side is convex as well as nonconvex
valued. In the first result (Theorem 21), we consider the case
when the right hand side has convex values and prove an
existence result via nonlinear alternative for Kakutani maps.
In the second result (Theorem 25), we will use the fixed
point theorem for contraction multivalued maps according
to Covitz and Nadler. The paper is organized as follows.
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In Section 2we recall some preliminary facts that we need
in the sequel, and in Section 3 we prove our main results.
Finally, in Section 4, an example is given to demonstrate the
application of one of our main results.

2. Preliminaries

In this section, we present some notations and preliminary
lemmas that will be used in the proof of the main result.

Let (𝑋, 𝑑) be ametric space with the corresponding norm
‖ ⋅ ‖ and let 𝐼 = [0, +∞). We denote by L(𝐼) the 𝜎-algebra
of all Lebesgue measurable subsets of 𝐼, by B(𝑋) the family
of all nonempty subsets of 𝑋, and by P(𝑋) the family of all
Borel subsets of𝑋. If 𝐴 ⊂ 𝐼 then 𝜒

𝐴
: 𝐼 → {0, 1} denotes the

characteristic function of𝐴. For any subset𝐴 ⊂ 𝑋, we denote
by 𝐴 the closure of 𝐴.

Recall that the Pompeiu-Hausdorff distance of the closed
subsets 𝐴, 𝐵 ⊂ 𝑋 is defined by the following:

𝑑
𝐻
(𝐴, 𝐵) = max {𝑑∗ (𝐴, 𝐵) , 𝑑∗ (𝐵, 𝐴)} ,

𝑑
∗

(𝐴, 𝐵) = sup {𝑑 (𝑎, 𝐵) , 𝑎 ∈ 𝐴} ,

(2)

where 𝑑(𝑥, 𝐵) = inf
𝑦∈𝐵

𝑑(𝑥, 𝑦). Define

P (𝑋) = {𝑌 ⊂ 𝑋 : 𝑌 ̸= 0} ,

P
𝑏
(𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 bounded} ,

P
𝑐𝑙
(𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 closed} ,

P
𝑐𝑝
(𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 compact} ,

P
𝑐V (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 convex} .

(3)

Also, we denote by 𝐶(𝐼, 𝑋) the Banach space of all con-
tinuous functions 𝑥 : [0, +∞) → 𝑋 endowed with the norm
|𝑥|
𝑐
= sup

𝑡∈[0,+∞)
|𝑥(𝑡)| and by 𝐿

1

([0, +∞),𝑋) the Banach
space of all (Bochner) integrable functions 𝑥 : [0, +∞) → 𝑋

endowed with the norm |𝑥|
1
= ∫
[0,+∞)

|𝑥(𝑡)|𝑑𝑡.
Let (𝑋, 𝑑

1
) and (𝑌, 𝑑

2
) be two metric spaces. If 𝑇 : 𝑋 →

P(𝑋) is a set-valued map, then a point 𝑥 ∈ 𝑋 is called a
fixed point for 𝑇 if 𝑥 ∈ 𝑇(𝑥). 𝑇 is said to be bounded on
bounded sets if 𝑇(𝐵) := ∪

𝑥∈𝐵
𝑇(𝑥) is a bounded subset of

𝑋 for all bounded sets 𝐵 in 𝑋. 𝑇 is said to be compact if
𝑇(𝐵) is relatively compact for any bounded sets 𝐵 in 𝑋. 𝑇
is said to be totally compact if 𝑇(𝑋) is a compact subset of
𝑋. 𝑇 is said to be upper semicontinuous if for any open set
𝐷 ⊂ 𝑋, the set {𝑥 ∈ 𝑋 : 𝑇(𝑥) ⊂ 𝐷} is open in 𝑋. 𝑇 is called
completely continuous if it is upper semicontinuous and, for
every bounded subset𝐴 ⊂ 𝑋, 𝑇(𝐴) is relatively compact. It is
well known that a compact set-valued map 𝑇 with nonempty
compact values is upper semicontinuous if and only if 𝑇 has
a closed graph.

We define the graph of 𝑇 to be the set Gr(𝑇) = {(𝑥, 𝑦) ∈

𝑋 × 𝑌, 𝑦 = 𝑇(𝑥)} and recall a useful result regarding
connection between closed graphs and upper semicontinuity.

Lemma 1 (see [24, Proposition 1.2]). If 𝑇 : 𝑋 → P
𝑐𝑙
(𝑌) is

upper semicontinuous, then Gr(𝑇) is a closed subset of 𝑋 × 𝑌,

that is, for every sequence {𝑥
𝑛
}
𝑛∈N ⊂ 𝑋 and {𝑦

𝑛
}
𝑛∈N ⊂ 𝑌, if

when 𝑛 → ∞, 𝑥
𝑛
→ 𝑥
∗
, 𝑦
𝑛
→ 𝑦
∗
, and 𝑦

𝑛
∈ 𝑇(𝑥

𝑛
), then

𝑦
∗
∈ 𝑇(𝑥

∗
). Conversely, if 𝑇 is completely continuous and has

a closed graph, then it is upper semicontinuous.

For the convenience of the reader, we present here the
following nonlinear alternative of the Leray-Schauder type
and its consequences.

Theorem 2 (nonlinear alternative for Kakutani maps [25]).
Let 𝑋 be a Banach space, 𝐶 a closed convex subset of 𝑋,
𝑈 an open subset of 𝐶, and 0 ∈ 𝑈. Suppose that 𝑇 :

𝑈 → P
𝑐𝑙,𝑐V(𝐶) is an upper semicontinuous compact map;

hereP
𝑐𝑙,𝑐V(𝐶) denotes the family of nonempty, compact convex

subsets of 𝐶. Then, either

(i) 𝑇 has a fixed point in 𝑈 or

(ii) there is a 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 ∈ 𝜆𝑇(𝑢).

Definition 3. The multifunction 𝑇 : 𝑋 → P(𝑋) is said to
be lower semicontinuous if for any closed subset 𝐶 ⊂ 𝑋, the
subset {𝑠 ∈ 𝑋 : 𝑇(𝑠) ⊂ 𝐶} is closed.

If 𝐹 : [0, +∞)×R×R → P(R) is a set-valued map with
compact values and 𝑥 ∈ 𝐶([0, +∞),R), we define

𝑆
𝐹
(𝑥) := {𝑓 ∈ 𝐿

1

([0, +∞) ,R) : 𝑓 (𝑡)

∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) a.e. [0, +∞)} .

(4)

Then, 𝐹 is of a lower semicontinuous type if 𝑆
𝐹
(⋅) is a lower

semicontinuous with closed and decomposable values.

Theorem 4 (see [26]). Let 𝑆 be a separable metric space and
𝐺 : 𝑆 → P(𝐿

1

([0, +∞),R)) be a lower semicontinuous set-
valued map with closed decomposable values. Then 𝐺 has a
continuous selection (i.e., there exists a continuous mapping
𝑔 : 𝑆 → 𝐿

1

([0, +∞),R) such that 𝑔(𝑠) ∈ 𝐺(𝑠) for all 𝑠 ∈ 𝑆).

Definition 5. Consider the following.

(i) A set-valued map 𝐺 : [0, +∞) → P(R) with
nonempty compact convex values is said to be mea-
surable if for any 𝑥 ∈ R the function 𝑡 → 𝑑(𝑥, 𝐺(𝑡))

is measurable.

(ii) A set-valued map 𝐹 : [0, +∞) × R × R → P(R)

is said to be Carathéodory if 𝑡 → 𝐹(𝑡, 𝑥, 𝑦) is
measurable for all 𝑥, 𝑦 ∈ R and (𝑥, 𝑦) → 𝐹(𝑡, 𝑥, 𝑦) is
upper semicontinuous for almost all 𝑡 ∈ [0, +∞).

(iii) 𝐹 is said to be 𝐿1-Carathéodory if for any 𝑙 > 0 there
exists ℎ

𝑙
∈ 𝐿
1

([0, +∞),R) such that sup{|V| : V ∈

𝐹(𝑡, 𝑥, 𝑦)} ≤ ℎ
𝑙
(𝑡) a.e. [0, +∞); ∀𝑥, 𝑦 ∈ R.

Finally, the following results are easily deduced from the
theoretical limit set properties.
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Lemma 6 (see [27, Lemma 1.1.9]). Let {𝐾
𝑛
}
𝑛∈N ⊂ 𝐾 ⊂ 𝑋 be a

sequence of subsets where 𝐾 is a compact subset of a separable
Banach space𝑋. Then,

co(lim sup
𝑛→∞

𝐾
𝑛
) = ⋂

𝑁>0

co(⋃

𝑛≥𝑁

𝐾
𝑛
) , (5)

where co(𝐴) refers to the closure of the convex hull of 𝐴.

Lemma 7 (see [27, Lemma 1.4.13]). Let 𝑋 and 𝑌 be two
metric spaces. If𝐺 : 𝑋 → P

𝑐𝑝
(𝑌) is an upper semicontinuous,

then, for each 𝑥
0
∈ 𝑋,

lim sup
𝑥→𝑥

0

𝐺 (𝑥) = 𝐺 (𝑥
0
) . (6)

Definition 8. Let𝑋 be a Banach space. A sequence {𝑥
𝑛
}
𝑛∈N ⊂

𝐿
1

([𝑎, 𝑏], 𝑋) is said to be semicompact if

(a) it is integrably bounded; that is, there exists 𝑞 ∈

𝐿
1

([𝑎, 𝑏],R+) such that
𝑥𝑛 (𝑡)

𝐸
≤ 𝑞 (𝑡) , for a.e. 𝑡 ∈ [𝑎, 𝑏] and every 𝑛 ∈ N, (7)

(b) the image sequence {𝑥
𝑛
(𝑡)}
𝑛∈N is relatively compact in

𝐸 for a.e. 𝑡 ∈ [𝑎, 𝑏].

The following important result follows from theDunford-
Pettis theorem (see [28, Proposition 4.2.1]).

Lemma 9. Every semicompact sequence 𝐿
1

([𝑎, 𝑏], 𝑋) is
weakly compact in 𝐿1([𝑎, 𝑏], 𝑋).

When the nonlinearity takes convex values, Mazur’s
Lemma, 1933, may be useful.

Lemma 10 (see [29,Theorem 21.4]). Let 𝐸 be a normed space
and {𝑥

𝑘
}
𝑘∈N ⊂ 𝐸 a sequence weakly converging to a limit 𝑥 ∈

𝐸. Then, there exists a sequence of convex combinations 𝑦
𝑚
=

∑
𝑚

𝑘=1
𝛼
𝑚𝑘
𝑥
𝑘
with 𝛼

𝑚𝑘
> 0 for 𝑘 = 1, 2, . . . , 𝑚 and∑𝑚

𝑘=1
𝛼
𝑚𝑘

= 1

which converges strongly to 𝑥.

Lemma 11 (see [30]). Let 𝑋 be defined as before and𝑀 ⊂ 𝑋.
Then 𝑀 is relatively compact in 𝑋 if the following conditions
hold:

(a) 𝑀 is uniformly bounded in𝑋;
(b) the functions from 𝑀 are equicontinuous on any

compact interval of [0, +∞);
(c) the functions from 𝑀 are equiconvergent; that is, for

any given 𝜖 > 0, there exists a 𝑇 = 𝑇(𝜖) > 0 such that
|𝑓(𝑡) − 𝑓(+∞)| < 𝜖, for any 𝑡 > 𝑇, 𝑓 ∈ 𝑀.

Definition 12 (see [6]). The Riemann-Liouville fractional
integral operator of order 𝛼 > 0, of function 𝑓 ∈ 𝐿

1

(R+),
is defined as

𝐼
𝛼

0
+𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (8)

where Γ(⋅) is the Euler gamma function.

Definition 13 (see [31]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N is defined
as

𝐷
𝛼

0
+𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠, (9)

where the function𝑓(𝑡) has absolutely continuous derivatives
up to order (𝑛 − 1).

Lemma 14 (see [31]). The equality 𝐷𝛾
0
+
𝐼
𝛾

0
+
𝑓(𝑡) = 𝑓(𝑡), 𝛾 > 0

holds for 𝑓 ∈ 𝐿
1

(0, 1).

Lemma 15 (see [31]). Let 𝛼 > 0 and 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿
1

(0, 1).
Then, the differential equation

𝐷
𝛼

0
+𝑢 (𝑡) = 0 (10)

has a unique solution 𝑢(𝑡) = 𝑐
1
𝑡
𝛼−1

+𝑐
2
𝑡
𝛼−2

+⋅ ⋅ ⋅+𝑐
𝑛
𝑡
𝛼−𝑛, 𝑐
𝑖
∈ R,

𝑖 = 1, . . . , 𝑛, where 𝑛 − 1 < 𝛼 < 𝑛.

Lemma 16 (see [31]). Let 𝛼 > 0. Then, the following equality
holds for 𝑢 ∈ 𝐿

1

(0, 1),𝐷𝛼
0
+𝑢 ∈ 𝐿

1

(0, 1):

𝐼
𝛼

0
+𝐷
𝛼

0
+𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

, (11)

𝑐
𝑖
∈ R, 𝑖 = 1, . . . , 𝑛, where 𝑛 − 1 < 𝛼 ≤ 𝑛.

By 𝐴𝐶1([0, +∞),R) we denote the space of continuous
real-valued functions whose first derivative exists and it is
absolutely continuous on [0, +∞). In this paper, we will use
the following space 𝐸 to the study (1) which is denoted by

𝐸 = {𝑢 ∈ 𝐴𝐶
1

([0, +∞) ,R) : sup
0≤𝑡<+∞

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
,

sup
0≤𝑡<+∞


𝑢


(𝑡)


1 + 𝑡𝛼−1
< +∞} .

(12)

From [32], we know that 𝐸 is a Banach space equipped
with the norm

‖𝑢‖ = max{ sup
0≤𝑡<+∞

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
, sup
0≤𝑡<+∞


𝑢


(𝑡)


1 + 𝑡𝛼−1
} . (13)

In what follows, 𝐼 = [0, +∞), 𝛼 ∈ (2, 3), and Δ =

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖
. Next, we need the following technical result

proved in [1].

Lemma 17 (see [1]). For any ℎ ∈ 𝐿
1

([0, +∞),R), the problem

𝐷
𝛼

0
+𝑢 (𝑡) + ℎ (𝑡) = 0, 0 < 𝑡 < ∞, 2 < 𝛼 < 3,

𝑢 (0) = 𝑢


(0) = 0, 𝐷
𝛼−1

𝑢 (+∞) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑢 (𝜉
𝑖
) ,

(14)

has a unique solution 𝑢(𝑡) that

𝑢 (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (15)
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where

𝐺 (𝑡, 𝑠) = 𝐺
1
(𝑡, 𝑠) + 𝐺

2
(𝑡, 𝑠) , (16)

𝐺
1
(𝑡, 𝑠) =

1

Γ (𝛼)
{
𝑡
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 < +∞,

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 < +∞,
(17)

𝐺
2
(𝑡, 𝑠) =

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑡
𝛼−1

Γ (𝛼) − Δ
𝐺
1
(𝜉
𝑖
, 𝑠) . (18)

Note that 𝐺(𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ [0, +∞), (e.g., Lemma 3.2 in
[1]) and from the definition of 𝐺

1
(𝑡, 𝑠), we have the following

(e.g., Remark 3.1 in [1]):

𝐺
1
(𝑡, 𝑠)

1 + 𝑡𝛼−1
≤

1

Γ (𝛼)
,

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
≤ 𝐿
1

for (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,

(19)

where

𝐿
1
=

1

Γ (𝛼)
(1 +

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑚−2

(Γ (𝛼) − Δ)
) . (20)

Also, one can get

𝜕𝐺 (𝑡, 𝑠) /𝜕𝑡

1 + 𝑡𝛼−1
≤ 𝐿
2

for (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) , (21)

where

𝐿
2
=
2 (𝛼 − 1)

Γ (𝛼)
(1 +

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑚−2

(Γ (𝛼) − Δ)
) . (22)

Lemma 18. The function 𝐺(𝑡, 𝑠) defined by (16) satisfies

lim
𝑡→+∞

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
=

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖

Γ (𝛼) (Γ (𝛼) − Δ)
. (23)

By calculation, it is easy to prove that Lemma 18 holds. So,
we omit its proof here.

3. Main Results

Now we are able to present the existence results for problem
(1).

3.1. The Upper Semicontinuous Case. To obtain the complete
continuity of existence solutions operator, the following
lemma is still needed.

Lemma 19 (see [32]). Let 𝑉 = {𝑢 ∈ 𝐸 | ‖𝑢‖ < 𝑙}(𝑙 >

0), 𝑉
1
= {𝑢(𝑡)/(1 + 𝑡

𝛼−1

) : 𝑢 ∈ 𝑉}. If 𝑉
1
is equicontinuous on

any compact interval of [0, +∞) and equiconvergent at infinity,
then 𝑉 is relatively compact on 𝐸.

Definition 20. 𝑉
1
is called equiconvergent at infinity if and

only if for all 𝜖 > 0, there exists V(𝜖) > 0 such that for all
𝑢 ∈ 𝑉
1
, 𝑡
1
, 𝑡
2
≥ V, it holds



𝑢 (𝑡
1
)

1 + 𝑡
𝛼−1

1

−
𝑢 (𝑡
2
)

1 + 𝑡
𝛼−1

2



< 𝜖. (24)

Theorem 21. The Carathéodory multivalued map 𝐹 : 𝐼 ×

R × R → P(R) has nonempty, compact, convex values and
satisfies the following.

(H1) There exists a continuous nondecreasing function 𝜓 :

[0, +∞) → (0, +∞) and 𝜑 ∈ 𝐿
1

([0, +∞), R+)
such that ‖𝐹(𝑡, 𝑥, 𝑦)‖P := sup{|V(𝑡)/(1 + 𝑡

𝛼−1

)| :

V ∈ 𝐹(𝑡, 𝑥, 𝑦)} ≤ 𝜑(𝑡)𝜓(‖𝑥‖), for a.e. 𝑡 ∈

𝐼 and each 𝑥, 𝑦 ∈ R.
(H2) There exists a constant𝑀 > 0 such that

𝑀

max {𝐿
1
, 𝐿
2
} 𝜓 (𝑀) ∫

+∞

0

𝜑 (𝑠) 𝑑𝑠

> 1. (25)

Then, problem (1) has at least one solution.

Proof. Let𝑋 = 𝐸 and consider𝑀 > 0 as in (25). It is obvious
that the existence of solutions to problem (1) is reduced to the
existence of the solutions of the integral inclusion

𝑢 (𝑡) ∈ ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼, (26)

where 𝐺(𝑡, 𝑠) is defined by (16) and (17). Consider the set-
valued map, 𝑇 : 𝐸 → P(𝑋) is defined by

𝑇 (𝑢) := {V ∈ 𝑋; V (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ 𝑆
𝐹
(𝑢)} .

(27)

We show that 𝑇 satisfies the hypotheses of Theorem 2.
Claim 1. We show that 𝑇(𝑢) ⊂ 𝑋 is convex for any 𝑢 ∈ 𝑋. If
V
1
, V
2
∈ 𝑇(𝑢), then, there exist𝑓

1
, 𝑓
2
∈ 𝑆
𝐹
(𝑢) such that for any

𝑡 ∈ 𝐼 one has

V
𝑖
(𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠) 𝑑𝑠, 𝑖 = 1, 2. (28)

Let 0 ≤ 𝜆 ≤ 1. Then, for any 𝑡 ∈ 𝐼, we have

(𝜆V
1
+ (1 − 𝜆) V

2
) (𝑡)

= ∫

+∞

0

𝐺 (𝑡, 𝑠) [𝜆𝑓
1
(𝑠) + (1 − 𝜆) 𝑓

2
(𝑠)] 𝑑𝑠.

(29)

The values of 𝐹 are convex; thus, 𝑆
𝐹
(𝑢) is a convex set and

hence 𝜆V
1
+ (1 − 𝜆)V

2
∈ 𝑇(𝑢).

Claim 2. We show that 𝑇 is bounded on bounded sets of 𝑋.
Let 𝐵 be any bounded subset of 𝑋. Then, there exists 𝑚 > 0

such that ‖𝑢‖ ≤ 𝑚 for all 𝑢 ∈ 𝐵. If V ∈ 𝑇(𝑢), then there exists
𝑓 ∈ 𝑆
𝐹
(𝑢) such that V(𝑡) = ∫

+∞

0

𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠. One may write
the following for any 𝑡 ∈ 𝐼:



V (𝑡)

1 + 𝑡𝛼−1



≤ ∫

+∞

0



𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1



𝑓 (𝑠)
 𝑑𝑠

≤ 𝐿
1
∫

+∞

0

𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠 ≤ 𝐿
1

𝜑
1
𝜓 (𝑚) .

(30)
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On the other hand,



V


(𝑡)

1 + 𝑡𝛼−1



≤ ∫

+∞

0

𝜕𝐺 (𝑡, 𝑠) /𝜕𝑡

1 + 𝑡𝛼−1
𝑓 (𝑠) 𝑑𝑠

≤ 𝐿
2
∫

+∞

0

𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠

≤ 𝐿
2

𝜑
1
𝜓 (𝑚) ,

(31)

and therefore

‖V‖ = max
𝑡∈𝐼

{



V (𝑡)

1 + 𝑡𝛼−1



,



V


(𝑡)

1 + 𝑡𝛼−1



}

≤ max {𝐿
1
, 𝐿
2
}
𝜑
1
𝜓 (𝑚) ,

(32)

for all V ∈ 𝑇(𝑢); that is, 𝑇(𝐵) is bounded.
Claim 3. We show that 𝑇 maps bounded the sets into equi-
continuous sets. Let 𝐵 be any bounded subset of 𝑋 as before
and V ∈ 𝑇(𝑢) for some 𝑢 ∈ 𝐵. Then, there exists 𝑓 ∈ 𝑆

𝐹
(𝑢)

such that V(𝑡) = ∫
+∞

0

𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠. So, for any 𝑇
0
∈ (0, +∞)

and 𝑡
1
, 𝑡
2
∈ [0, 𝑇

0
], without loss of generality, we may assume

that 𝑡
2
> 𝑡
1
and one can get the following:



V (𝑡
1
)

1 + 𝑡
𝛼−1

1

−
V (𝑡
2
)

1 + 𝑡
𝛼−1

2



≤ ∫

+∞

0



𝐺
1
(𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2



𝑓 (𝑠) 𝑑𝑠

+
∑
𝑚−2

𝑖=1
𝛽
𝑖

Γ (𝛼) − Δ



𝑡
𝛼−1

1

1 + 𝑡
𝛼−1

1

−
𝑡
𝛼−1

2

1 + 𝑡
𝛼−1

2



× ∫

+∞

0

𝐺
1
(𝜉
𝑖
, 𝑠) 𝑓 (𝑠) 𝑑𝑠

≤ ∫

+∞

0



𝐺
1
(𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

1



𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠

+ ∫

+∞

0



𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2



𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠

+
∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑚−2

Γ (Γ (𝛼) − Δ



𝑡
𝛼−1

1

1 + 𝑡
𝛼−1

1

−
𝑡
𝛼−1

2

1 + 𝑡
𝛼−1

2



× ∫

+∞

0

𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠.

(33)

On the other hand, we get

∫

+∞

0



𝐺
1
(𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

1



𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠

≤ (∫

𝑡
1

0

+∫

𝑡
2

𝑡
1

+∫

+∞

𝑡
2

)



𝐺
1
(𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

1



× 𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠

≤ 𝜓 (𝑚)∫

𝑡
1

0

(𝑡
𝛼−1

2
− 𝑡
𝛼−1

1
) + ((𝑡

2
− 𝑠)
𝛼−1

− (𝑡
1
− 𝑠)
𝛼−1

)

1 + 𝑡
𝛼−1

1

× 𝜑 (𝑠) 𝑑𝑠

+ 𝜓 (𝑚)∫

𝑡
2

𝑡
1

(𝑡
𝛼−1

2
− 𝑡
𝛼−1

1
) + (𝑡
2
− 𝑠)
𝛼−1

1 + 𝑡
𝛼−1

1

𝜑 (𝑠) 𝑑𝑠

+ 𝜓 (𝑚)∫

+∞

𝑡
2

(𝑡
𝛼−1

2
− 𝑡
𝛼−1

1
)

1 + 𝑡
𝛼−1

1

𝜑 (𝑠) 𝑑𝑠

→ 0 uniformly as 𝑡
1
→ 𝑡
2
.

(34)

Similar to (34), we have

∫

+∞

0



𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺
1
(𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2



𝜑 (𝑠) 𝜓 (‖𝑢‖) 𝑑𝑠 → 0

uniformly as 𝑡
1
→ 𝑡
2
.

(35)

From (34) and (35), we have


V (𝑡
1
)

1 + 𝑡
𝛼−1

1

−
V (𝑡
2
)

1 + 𝑡
𝛼−1

2



→ 0 uniformly as 𝑡
1
→ 𝑡
2
. (36)

Similar to (36), one can get


V


(𝑡
1
)

1 + 𝑡
𝛼−1

1

−
V


(𝑡
2
)

1 + 𝑡
𝛼−1

2



→ 0 uniformly as 𝑡
1
→ 𝑡
2
. (37)

Therefore, 𝑇(𝐵) is an equicontinuous set in𝑋.
Claim 4.We show that𝑇 is equiconvergent at∞. Let V ∈ 𝑇(𝑢)

for some 𝑢 ∈ 𝐵. Then, there exists 𝑓 ∈ 𝑆
𝐹
(𝑢) such that V(𝑡) =

∫
+∞

0

𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠. So, we have the following:

∫

+∞

0

𝑓 (𝑠) 𝑑𝑠 ≤ 𝜓 (𝑚)∫

+∞

0

𝜑 (𝑠) 𝑑𝑠 < +∞,

lim
𝑡→+∞



V (𝑡)

1 + 𝑡𝛼−1



= lim
𝑡→+∞

1

1 + 𝑡𝛼−1
∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠

=
∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖

Γ (𝛼) (Γ (𝛼) − Δ)
∫

+∞

0

𝑓 (𝑠) 𝑑𝑠

−
∑
𝑚−2

𝑖=1
𝛽
𝑖

Γ (𝛼) (Γ (𝛼) − Δ)

× ∫

𝜉
𝑖

0

(𝜉
𝑖
− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 < ∞,

(38)
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and, similarly, one has

lim
𝑡→+∞



V


(𝑡)

1 + 𝑡𝛼−1



< ∞. (39)

Therefore, 𝑇(𝐵) is equiconvergent at infinity.
Therefore, with Lemma 11, Lemma 19 and Claims 2–4, we

conclude that 𝑇 is completely continuous.
Claim 5.𝑇 is upper semicontinuous. To this end, it is sufficient
to show that 𝑇 has a closed graph. Let V

𝑛
∈ 𝑇(𝑢

𝑛
) such that

V
𝑛
→ V and 𝑢

𝑛
→ 𝑢, as 𝑛 → +∞. Then, there exists𝑚 > 0

such that ‖𝑢
𝑛
‖ ≤ 𝑚. We will prove that V ∈ 𝑇(𝑢) means that

there exists 𝑓
𝑛
∈ 𝑆
𝐹
(𝑢
𝑛
) such that, for a.e. 𝑡 ∈ 𝐼, we have

V
𝑛
(𝑡) = ∫

+∞

0

𝐺(𝑡, 𝑠)𝑓
𝑛
(𝑠)𝑑𝑠. Then, we need to show that V ∈

𝑇(𝑢).
Condition (H1) implies that 𝑓

𝑛
(𝑡) ∈ 𝜑(𝑡)𝜓(𝑚)𝐵

1
(0).

Then, {𝑓
𝑛
}
𝑛∈N is integrably bounded in 𝐿

1

(𝐼,R). Since 𝐹

has compact values, we deduce that {𝑓
𝑛
}
𝑛
is semicompact.

By Lemma 9, there exists a subsequence, still denoted as
{𝑓
𝑛
}
𝑛∈N, which converges weakly to some limit 𝑓 ∈ 𝐿

1

(𝐼,R).
Moreover, the mapping Γ : 𝐿1(𝐼,R) → 𝑋 = 𝐸 defined by

Γ (𝑔) (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠 (40)

is a continuous linear operator.Then, it remains continuous if
these spaces are endowed with their weak topologies [29, 33].
Moreover, for a.e. 𝑡 ∈ 𝐼, 𝑢

𝑛
(𝑡) converges to 𝑢(𝑡).Then, we have

V (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠. (41)

It remains to prove that𝑓 ∈ 𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡)), a.e. 𝑡 ∈ 𝐼.Mazur’s
Lemma (see Lemma 10) yields the existence of 𝛼𝑛

𝑖
≥ 0, 𝑖 =

𝑛, . . . , 𝑘(𝑛) such that∑𝑘(𝑛)
𝑖=1

𝛼
𝑛

𝑖
= 1 and the sequence of convex

combinations 𝑔
𝑛
(⋅) = ∑

𝑘(𝑛)

𝑖=1
𝛼
𝑛

𝑖
𝑓
𝑖
(⋅) converges strongly to 𝑓 in

𝐿
1. Using Lemma 6, we obtain that

V (𝑡) ∈ ⋂

𝑛≥1

{𝑔
𝑛
(𝑡)}, a.e. 𝑡 ∈ 𝐼

⊂ ⋂

𝑛≥1

co {𝑓
𝑘
(𝑡) , 𝑘 ≥ 𝑛}

⊂ ⋂

𝑛≥1

co{⋃
𝑛≥1

𝐹 (𝑡, 𝑢
𝑘
(𝑡) , 𝑢


𝑘
(𝑡))}

= co(lim sup
𝑘→+∞

𝐹 (𝑡, 𝑢
𝑘
(𝑡) , 𝑢


𝑘
(𝑡))) .

(42)

However, the fact that the multivalued 𝑥 → 𝐹(⋅, 𝑥, 𝑥


) is
upper semicontinuous and has compact values, together with
Lemma 7, implies that

lim sup
𝑛→+∞

𝐹 (𝑡, 𝑢
𝑛
(𝑡) , 𝑢


𝑛
(𝑡)) = 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢



(𝑡)) , a.e. 𝑡 ∈ 𝐼.

(43)

This along with (42) yields that 𝑓(𝑡) ∈ co𝐹(𝑡, 𝑢(𝑡), 𝑢(𝑡)).
Finally, 𝐹(⋅, ⋅, ⋅) has closed, convex values; hence, 𝑓(𝑡) ∈

𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡)), a.e. 𝑡 ∈ 𝐼.Thus, V ∈ 𝑇(𝑢), proving that𝑇 has a
closed graph. Finally, with Lemma 1 and the compactness of
𝑇, we conclude that 𝑇 is upper semicontinuous.
Claim 6. A priori bounds on solutions. Let 𝑢 be a solution
of (1). Then, there exists 𝑓 ∈ 𝐿

1

([0, +∞),R) with 𝑓 ∈ 𝑆
𝐹
(𝑢)

such that 𝑢(𝑡) = ∫
+∞

0

𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠. In view of (H1), and using
the computations in Claim 2 above, for each 𝑡 ∈ [0, +∞), we
obtain

{



𝑢 (𝑡)

1 + 𝑡𝛼−1



,



𝑢


(𝑡)

1 + 𝑡𝛼−1



} ≤ max {𝐿
1
, 𝐿
2
} ∫

+∞

0

𝑓 (𝑠) 𝑑𝑠

≤ max {𝐿
1
, 𝐿
2
} 𝜓 (‖𝑢‖)

× ∫

+∞

0

𝜑 (𝑠) 𝑑𝑠.

(44)

Consequently,

‖𝑢‖

max {𝐿
1
, 𝐿
2
} 𝜓 (‖𝑢‖) ∫

+∞

0

𝜑 (𝑠) 𝑑𝑠

≤ 1. (45)

In view of (H2), there exists𝑀 such that ‖𝑢‖ ̸=𝑀. Let us
consider the following:

𝑈 := {𝑢 ∈ 𝐴𝐶
1

([0, +∞) ,R) : ‖𝑢‖ < 𝑀} . (46)

Note that the operator 𝑇 : 𝑈 → P(𝐴𝐶
1

([0, +∞)) is
upper semicontinuous and completely continuous. From the
choice of 𝑈, there is no 𝑢 ∈ 𝜕𝑈 such that 𝑢 = 𝜆𝑇(𝑢) for
some 𝜆 ∈ (0, 1). Consequently, by the nonlinear alternative
of the Leray-Schauder type (Theorem 2), we deduce that 𝑇
has a fixed point 𝑢 ∈ 𝑈which is a solution of the problem (1).
This completes the proof.

3.2. The Lipschitz Case. Now we prove the existence of
solutions for the problem (1) with a nonconvex-valued right
hand side by applying a fixed point theorem for multivalued
maps according to Covitz and Nadler [34].

Definition 22. A multivalued operator 𝑁 : 𝑋 → P
𝑐𝑙
(𝑋) is

called the following:

(a) 𝛾-Lipschitz if and only if there exists 𝛾 > 0 such that
𝑑
𝐻
(𝑁(𝑥),𝑁(𝑦)) ≤ 𝛾𝑑(𝑥, 𝑦) for each 𝑥, 𝑦 ∈ 𝑋;

(b) a contraction if and only if it is 𝛾-Lipschitz with 𝛾 < 1.

Lemma 23 (Covitz-Nadler, [34]). Let (𝑋, 𝑑) be a complete
metric space. If 𝑁 : 𝑋 → P

𝑐𝑙
(𝑋) is a contraction, then

𝐹𝑖𝑥𝑁 ̸= 0.

Definition 24. A measurable multivalued function 𝐹 :

[0, +∞) → P(𝑋) is said to be integrably bounded if there
exists a function𝑓 ∈ 𝐿

1

([0, +∞),𝑋) such that for all V ∈ 𝐹(𝑡),
‖V‖ ≤ 𝑓(𝑡) for a.e. 𝑡 ∈ [0, +∞).

Theorem 25. Assume that the following condition holds:

(H4) 𝐹 : 𝐼 × R × R → P
𝑐𝑝
(R) such that 𝐹(⋅, 𝑥, 𝑦) :

[0, +∞) → P
𝑐𝑝
(R) is measurable for each 𝑥, 𝑦 ∈ R;
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(H5) There exist 𝑙
1
, 𝑙
2
: [0, +∞) → [0, +∞) which are not

identical zero on any closed subinterval of [0, +∞),
and

∫

+∞

0

(1 + 𝑠
𝛼−1

) 𝑙
𝑖
(𝑠) 𝑑𝑠 < +∞, 𝑖 = 1, 2, (47)

such that for almost all 𝑡 ∈ [0, +∞),

𝑑
𝐻
(𝐹 (𝑡, 𝑥

1
, 𝑦
1
) , 𝐹 (𝑡, 𝑥

2
, 𝑦
2
)) ≤ 𝑙
1
(𝑡)

𝑥1 − 𝑥
2



+ 𝑙
2
(𝑡)

𝑦1 − 𝑦
2



(48)

for all 𝑥
1
, 𝑥
2
, 𝑦
1
, and 𝑦

2
∈ R with 𝑑(0, 𝐹(𝑡, 0, 0)) ≤ 𝑙

1
(𝑡) + 𝑙
2
(𝑡)

for almost all 𝑡 ∈ [0, +∞).
Then, the boundary value problem (1) has at least one

solution on 𝐼 = [0, +∞) if

max {𝐿
1
, 𝐿
2
} (∫

+∞

0

(1 + 𝑠
𝛼−1

) (𝑙
1
(𝑠) + 𝑙

2
(𝑠)) 𝑑𝑠) < 1. (49)

Proof. We transform problem (1) into a fixed point prob-
lem. Consider the set-valued map 𝑇 : 𝐴𝐶

1

[0, +∞) →

P(𝐴𝐶
1

[0, +∞)) defined at the beginning of the proof of
Theorem 21. It is clear that the fixed point of 𝑇 are solutions
of the problem (1).

Note that since the set-valuedmap𝐹(⋅, 𝑢(⋅)) is measurable
with the measurable selection theorem (e.g., Theorem III. 6
in [35]) it admits a measurable selection 𝑓 : 𝐼 → R.
Moreover, since𝐹 is integrably bounded,𝑓 ∈ 𝐿

1

([0, +∞),R).
Therefore, 𝑆

𝐹
(𝑢) ̸= 0.

We will prove that 𝑇 fulfills the assumptions of Covitz-
Nadler contraction principle (Lemma 23).

First, we note that since 𝑆
𝐹
(𝑢) ̸= 0, 𝑇(𝑢) ̸= 0 for any 𝑢 ∈

𝐴𝐶
1

([0, +∞),R).
Second, we prove that 𝑇(𝑢) is closed for any 𝑢 ∈

𝐴𝐶
1

([0, +∞),R). Let {𝑢
𝑛
}
𝑛≥0

∈ 𝑇(𝑢) such that 𝑢
𝑛

→ 𝑢
0

in 𝐴𝐶
1

([0, +∞),R). Then 𝑢
0
∈ 𝐴𝐶

1

([0, +∞),R) and there
exists 𝑓

𝑛
∈ 𝑆
𝐹
(𝑢) such that

𝑢
𝑛
(𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓
𝑛
(𝑠) 𝑑𝑠. (50)

Since 𝐹 has compact values, we may pass onto a subse-
quence (if necessary) to obtain that 𝑓

𝑛
converges to 𝑓 ∈

𝐿
1

(([0, +∞),R)) in 𝐿
1

(([0, +∞),R)). In particular, 𝑓 ∈

𝑆
𝐹
(𝑢), and for any 𝑡 ∈ [0, +∞) we have

𝑢
𝑛
(𝑡) → 𝑢

0
(𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠, (51)

that is, 𝑢
0
∈ 𝑇(𝑢) and 𝑇(𝑢) is closed.

Next we show that𝑇 is a contraction on𝐴𝐶1([0, +∞),R).
Let𝑢
1
, 𝑢
2
∈ 𝐴𝐶
1

([0, +∞),R) and V
1
∈ 𝑇(𝑢

1
).Then there exist

𝑓
1
∈ 𝑆
𝐹
(𝑢
1
) such that

V
1
(𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, +∞) . (52)

Consider the set-valued map

𝐻(𝑡) := 𝐹 (𝑡, 𝑢
2
(𝑡) , 𝑢


2
(𝑡))

∩ {𝑢 ∈ R;
𝑓1 (𝑡) − 𝑢

 ≤ 𝑙
1
(𝑡)

𝑥1 − 𝑥
2



+𝑙
2
(𝑡)


𝑥


1
− 𝑥


2


} , 𝑡 ∈ [0, +∞) .

(53)

By (H5), we have

𝑑
𝐻
(𝐹 (𝑡, 𝑥

1
, 𝑥


1
) , 𝐹 (𝑡, 𝑥

2
, 𝑥


2
)) ≤ 𝑙

1
(𝑡)

𝑥1 − 𝑥
2



+ 𝑙
2
(𝑡)


𝑥


1
− 𝑥


2


,

(54)

hence 𝐻 has nonempty closed values. Moreover, since 𝐻 is
measurable (e.g., Proposition III. 4 in [35]), there exists 𝑓

2

which is a measurable selection of 𝐻. It follows that 𝑓
2
∈

𝑆
𝐹
(𝑢
2
) and for any 𝑡 ∈ [0, +∞),

𝑓1 (𝑡) − 𝑓
2
(𝑡)
 ≤ 𝑙
1
(𝑡)

𝑥1 − 𝑥
2

 + 𝑙
2
(𝑡)


𝑥


1
− 𝑥


2


. (55)

Define

V
2
(𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑓
2
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, +∞) , (56)

and one can get


V
1
(𝑡)

1 + 𝑡𝛼−1
−

V
2
(𝑡)

1 + 𝑡𝛼−1



≤ ∫

+∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1

𝑓1 (𝑠) − 𝑓
1
(𝑠)

 𝑑𝑠

≤𝐿
1
∫

+∞

0

[𝑙
1
(𝑠)

𝑥1 (𝑠)−𝑥2 (𝑠)
+𝑙2 (𝑠)


𝑥


1
(𝑠)−𝑥



2
(𝑠)


] 𝑑𝑠

≤ 𝐿
1
∫

+∞

0

(1 + 𝑠
𝛼−1

) [𝑙
1
(𝑠)



𝑥
1
(𝑠) − 𝑥

2
(𝑠)

1 + 𝑠𝛼−1



+ 𝑙
2
(𝑠)



𝑥


1
(𝑠) − 𝑥



2
(𝑠)

1 + 𝑠𝛼−1



] 𝑑𝑠

≤ max {𝐿
1
, 𝐿
2
}
𝑥1 − 𝑥

2

 ∫

+∞

0

(1+𝑠
𝛼−1

) (𝑙
1
(𝑠)+𝑙
2
(𝑠)) 𝑑𝑠.

(57)

Similarly, we have


V


1
(𝑡)

1 + 𝑡𝛼−1
−

V


2
(𝑡)

1 + 𝑡𝛼−1



≤ max {𝐿
1
, 𝐿
2
}
𝑥1 − 𝑥

2



× ∫

+∞

0

(1 + 𝑠
𝛼−1

) (𝑙
1
(𝑠) + 𝑙

2
(𝑠)) 𝑑𝑠.

(58)

Therefore,
V1 − V

2

 ≤ max {𝐿
1
, 𝐿
2
}
𝑥1 − 𝑥

2



× ∫

+∞

0

(1 + 𝑠
𝛼−1

) (𝑙
1
(𝑠) + 𝑙

2
(𝑠)) 𝑑𝑠.

(59)
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From an analogous reasoning by interchanging the roles of 𝑢
1

and 𝑢
2
, it follows that

𝑑
𝐻
(𝑇 (𝑢
1
) , 𝑇 (𝑢

2
)) ≤ max {𝐿

1
, 𝐿
2
}
𝑥1 − 𝑥

2



× ∫

+∞

0

(1 + 𝑠
𝛼−1

) (𝑙
1
(𝑠) + 𝑙

2
(𝑠)) 𝑑𝑠.

(60)

Since 𝑇 is a contraction, it follows by the Lemma 23 that 𝑇
admits a fixed point which is a solution to problem (1).

4. Application

Consider the fractional boundary value problem,

𝐷
5/2

0
+ 𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢



(𝑡)) ∋ 0, 0 < 𝑡 < +∞,

𝑢 (0) = 𝑢


(0) = 0, 𝐷
3/2

𝑢 (+∞) −
1

8
𝑢 (

1

8
) −

1

4
𝑢 (1) = 0.

(61)

Here 𝑚 = 4, 𝛼 = 5/2, 𝛽
1
= 1/8, 𝛽

2
= 1/4, 𝜉

1
= 1/8, and

𝜉
2
= 1, and 𝐹 : 𝐼 × R × R → P(R) is a multivalued map

given by

𝐹 (𝑡, 𝑥, 𝑦) = [𝑒
−𝑡

(1 + 𝑡
3/2

)(

𝑥 + 𝑦


5

𝑥 + 𝑦


5

+ 5

+ 9) ,

2𝑒
−𝑡

(1 + 𝑡
3/2

)(

𝑥 + 𝑦


3

𝑥 + 𝑦


3

+ 3

+ 1)] .

(62)

For V ∈ 𝐹, we have



V (𝑡)

1 + 𝑡3/2



≤ max(𝑒−𝑡(
𝑥 + 𝑦



5

𝑥 + 𝑦


5

+ 5

+ 9) ,

2𝑒
−𝑡

(

𝑥 + 𝑦


3

𝑥 + 𝑦


3

+ 3

+ 1))

≤ 10𝑒
−𝑡

, 𝑥, 𝑦 ∈ R.

(63)

Thus,

𝐹(𝑡, 𝑥, 𝑦)
P

:= sup{


V (𝑡)

1 + 𝑡3/2



: V ∈ 𝐹 (𝑡, 𝑥, 𝑦)}

≤ 10𝑒
−𝑡

= 𝜑 (𝑡) 𝜓 (‖𝑥‖) , 𝑥, 𝑦 ∈ R,

(64)

with 𝜑(𝑡) = 𝑒
−𝑡, 𝜓(‖𝑥‖) = 10.

Also, by direct calculation, we can obtain that 𝐿
1

=

1.01529 and 𝐿
2
= 3.045869. Further, by using the following

condition:
𝑀

max {𝐿
1
, 𝐿
2
} 𝜓 (𝑀) ∫

+∞

0

𝜑 (𝑠) 𝑑𝑠

> 1, (65)

we find that 𝑀 > 30.45869. Clearly, all the conditions of
Theorem 21 are satisfied. So, there exists at least one solution
of problem (1) on 𝐼.
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