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A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional
integration is described in the Riemann-Liouville sense. This operational matrix is applied together with generalized Laguerre tau
method for solving general linearmultiterm fractional differential equations (FDEs).Themethod has the advantage of obtaining the
solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational
matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient
for linear multiterm FDEs on a semi-infinite interval.

1. Introduction

The problems of FDEs arise in various areas of science and
engineering. In particular, multiterm fractional differential
equations have been used tomodel various types of viscoelas-
tic damping (see, e.g., [1–13] and the references therein). In
the last few decades both theory and numerical analysis of
FDEs have received an increasing attention (see, e.g., [1–4, 14–
17] and references therein).

Spectral methods are a class of techniques used in applied
mathematics and scientific computing to numerically solve
some differential equations. The main idea is to write the
solution of the differential equation as a sum of certain ortho-
gonal polynomial and then obtain the coefficients in the sum
in order to satisfy the differential equation. Due to high-order
accuracy, spectralmethods have gained increasing popularity
for several decades, particularly in the field of computational
fluid dynamics (see, e.g., [18–24] and the references therein).

The usual spectral methods are only available for
bounded domains for solving FDEs; see [25–28]. However, it
is also interesting to consider spectral methods for FDEs on
the half line. Several authors developed the generalized Lag-
uerre spectral method for the half line for ordinary, partial,
and delay differential equations; see [29–31]. Recently, Saadat-
mandi and Dehghan [25] have proposed an operational Leg-
endre-tau technique for the numerical solution of multiterm
FDEs. The same technique based on operational matrix of
Chebyshev polynomials has been used for the same problem
(see [32]). In [33], Doha et al. derived the Jacobi operational
matrix of fractional derivatives which applied together with
spectral tau method for numerical solution of general linear
multiterm fractional differential equations. Bhrawy et al. [27]
used a quadrature shifted Legendre-tau method for treat-
ing multiterm linear FDEs with variable coefficients. More
recently, Bhrawy and Alofi [34] proposed the operational
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Chebyshev matrix of fractional integration in the Riemann-
Liouville sense which was applied together with spectral tau
method for solving linear FDEs.

The operational matrix of integer integration has been
determined for several types of orthogonal polynomials, such
as Chebyshev polynomials [35], Legendre polynomials [36],
and Laguerre and Hermite [37]. Recently, Singh et al. [38]
derived the Bernstein operational matrix of integration. Till
now, and to the best of our knowledge, most of formulae cor-
responding to those mentioned previously are unknown and
are traceless in the literature for fractional integration for gen-
eralized Laguerre polynomials in the Riemann-Liouville
sense. This partially motivates our interest in operational
matrix of fractional integration for generalized Laguerre
polynomials. Another motivation is concerned with the
direct solution techniques for solving the integrated forms of
FDEs on the half line using generalized Laguerre tau method
based on operational matrix of fractional integration in the
Riemann-Liouville sense. Finally, the accuracy of the pro-
posed algorithm is demonstrated by test problems.

The paper is organized as follows. In the next section,
we introduce some necessary definitions. In Section 3 the
generalized Laguerre operationalmatrix of fractional integra-
tion is derived. In Section 4 we develop the generalized Lag-
uerre operational matrix of fractional integration for solving
linear multiorder FDEs. In Section 5 the proposed method is
applied to two examples.

2. Some Basic Preliminaries

The most used definition of fractional integration is due to
Riemann-Liouville, which is defined as

𝐽
𝜈

𝑓 (𝑥) =
1

Γ (𝜈)
∫

𝑥

0

(𝑥 − 𝑡)
𝜈−1

𝑓 (𝑡) 𝑑𝑡,

𝜈 > 0, 𝑥 > 0, and 𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(1)

The operator 𝐽𝜈 has the property:

𝐽
𝜈

𝑥
𝛽

=
Γ (𝛽 + 1)

Γ (𝛽 + 1 + 𝜈)
𝑥
𝛽+𝜈

. (2)

The next equation defines the Riemann-Liouville frac-
tional derivative of order 𝜈:

𝐷
𝜈

𝑓 (𝑥) =
𝑑
𝑚

𝑑𝑥𝑚
(𝐽
𝑚−𝜈

𝑓 (𝑥)) , (3)

where 𝑚 − 1 < 𝜈 ≤ 𝑚, 𝑚 ∈ 𝑁, and 𝑚 is the smallest integer
greater than 𝜈.

If𝑚 − 1 < 𝜈 ≤ 𝑚,𝑚 ∈ 𝑁, then

𝐷
𝜈

𝐽
𝜈

𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝜈

𝐷
𝜈

𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑖=0

𝑓
(𝑖)

(0
+

)
𝑥
𝑖

𝑖!
, 𝑥 > 0.

(4)

Now, let Λ = (0,∞) and 𝑤
(𝛼)

(𝑥) = 𝑥
𝛼

𝑒
−𝑥 be a weight

function on Λ in the usual sense. Define the following:

𝐿
2

𝑤
(𝛼) (Λ) = {V |V is measurable on Λ and

‖V‖
𝑤
(𝛼) < ∞} ,

(5)

equipped with the following inner product and norm:

(𝑢, V)
𝑤
(𝛼) = ∫

Λ

𝑢 (𝑥) V (𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼) = (𝑢, V)

1/2

𝑤
(𝛼) .

(6)

Next, let 𝐿(𝛼)
𝑖
(𝑥) be the generalized Laguerre polynomials

of degree 𝑖. We know from [39] that, for 𝛼 > −1,

𝐿
(𝛼)

𝑖+1
(𝑥) =

1

𝑖 + 1
[(2𝑖 + 𝛼 + 1 − 𝑥) 𝐿

(𝛼)

𝑖
(𝑥) − (𝑖 + 𝛼) 𝐿

(𝛼)

𝑖−1
(𝑥)] ,

𝑖 = 1, 2, . . . ,

(7)

where 𝐿
(𝛼)

0
(𝑥) = 1 and 𝐿

(𝛼)

1
(𝑥) = 1 + 𝛼 − 𝑥. The set of

generalized Laguerre polynomials is the 𝐿2
𝑤
(𝛼)(Λ)-orthogonal

system, namely,

∫

∞

0

𝐿
(𝛼)

𝑗
(𝑥) 𝐿
(𝛼)

𝑘
(𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥 = ℎ
𝑘
𝛿
𝑗𝑘
, (8)

where 𝛿
𝑗𝑘
is the Kronecher function and ℎ

𝑘
= (Γ(𝑖+𝛼+1))/𝑖!.

The generalized Laguerre polynomials of degree 𝑖, on the
interval Λ, are given by

𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘=0

(−1)
𝑘

Γ (𝑖 + 𝛼 + 1)

Γ (𝑘 + 𝛼 + 1) (𝑖 − 𝑘)!𝑘!
𝑥
𝑘

,

𝑖 = 0, 1, . . . .

(9)

The special value

𝐷
𝑞

𝐿
(𝛼)

𝑖
(0) = (−1)

𝑞

𝑖−𝑞

∑

𝑗=0

(𝑖 − 𝑗 − 1)!

(𝑞 − 1)! (𝑖 − 𝑗 − 𝑞)!
𝐿
(𝛼)

𝑗
(0) , 𝑖 ≥ 𝑞,

(10)

where 𝐿(𝛼)
𝑗
(0) = (Γ(𝑗+𝛼+1))/(Γ(𝛼+1)𝑗!), will be of important

use later.
A function 𝑢(𝑥) ∈ 𝐿

2

𝑤
(𝛼)(Λ)may be expressed in terms of

generalized Laguerre polynomials as

𝑢 (𝑥) =

∞

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) ,

𝑎
𝑗
=

1

ℎ
𝑘

∫

∞

0

𝑢 (𝑥) 𝐿
(𝛼)

𝑗
(𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥, 𝑗 = 0, 1, 2, . . . .

(11)

In practice, only the first (𝑁 + 1) terms of generalized
Laguerre polynomials are considered. Then we have

𝑢
𝑁
(𝑥) =

𝑁

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) , (12)
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where the generalized Laguerre coefficient vector 𝐶 and the
generalized Laguerre vector 𝜙(𝑥) are given by

𝐶
𝑇

= [𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑁
] ,

𝜙 (𝑥) = [𝐿
(𝛼)

0
(𝑥) , 𝐿

(𝛼)

1
(𝑥) , . . . , 𝐿

(𝛼)

𝑁
(𝑥)]
𝑇

.

(13)

If we define the 𝑞 times repeated integration of general-
ized Laguerre vector 𝜙(𝑥) by 𝐽𝑞𝜙(𝑥), then (cf. Paraskevopou-
los [36])

𝐽
𝑞

𝜙 (𝑥) ≃ 𝑃
(𝑞)

𝜙 (𝑥) , (14)

where 𝑞 is an integer value and P(𝑞) is the operational matrix
of integration of 𝜙(𝑥). For more details see [36].

3. Generalized Laguerre Operational Matrix of
Fractional Integration

The main objective of this section is to derive an operational
matrix of fractional integration for generalized Laguerre vec-
tor.

Theorem 1. Let 𝜙(𝑥) be the generalized Laguerre vector and
𝜈 > 0, then

𝐽
𝜈

𝜙 (𝑥) ≃ P(𝜈)𝜙 (𝑥) , (15)

where P(𝜈) is the (𝑁 + 1) × (𝑁 + 1) operational matrix of
fractional integration of order 𝜈 in the Riemann-Liouville sense
and is defined as follows:

P(𝜈)

=
(
(
(

(

Θ
𝜈
(0, 0) Ω

𝜈
(0, 1) Θ

𝜈
(0, 2) ⋅ ⋅ ⋅ Θ

𝜈
(0,𝑁)

Θ
𝜈
(1, 0) Θ

𝜈
(1, 1) Θ

𝜈
(1, 2) ⋅ ⋅ ⋅ Θ

𝜈
(1,𝑁)

...
...

... ⋅ ⋅ ⋅
...

Θ
𝜈
(𝑖, 0) Θ

𝜈
(𝑖, 1) Θ

𝜈
(𝑖, 2) ⋅ ⋅ ⋅ Θ

𝜈
(𝑖, 𝑁)

...
...

... ⋅ ⋅ ⋅
...

Θ
𝜈
(𝑁, 0) Θ

𝜈
(𝑁, 1) Θ

𝜈
(𝑁, 2) ⋅ ⋅ ⋅ Θ

𝜈
(𝑁,𝑁)

)
)
)

)

,

(16)

where
Θ
𝜈
(𝑖, 𝑗)

=

𝑖

∑

𝑘=0

𝑗

∑

𝑟=0

(−1)
𝑘+𝑟

𝑗!Γ(𝑖+𝛼+1) Γ(𝑘+𝜈+𝛼+𝑟+1)

(𝑖 −𝑘)! (𝑗−𝑟)!𝑟!Γ(𝑘+ 𝜈+1) Γ(𝑘+𝛼+1) Γ(𝛼+𝑟+1)
.

(17)

Proof. Using the analytic form of the generalized Laguerre
polynomials 𝐿(𝛼)

𝑖
(𝑥) of degree 𝑖 (9) and (2), then

𝐽
𝜈

𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘=0

(−1)
𝑘

Γ(𝑖+𝛼+1)

(𝑖 −𝑘)!𝑘!Γ(𝑘+𝛼 +1)
𝐽
𝜈

𝑥
𝑘

=

𝑖

∑

𝑘=0

(−1)
𝑘

Γ(𝑖+𝛼 +1)

(𝑖−𝑘)!Γ(𝑘+𝜈 +1)Γ(𝑘+𝛼 +1)

×𝑥
𝑘+𝜈

, 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑁.

(18)

Now, approximate 𝑥
𝑘+𝜈 by 𝑁 + 1 terms of generalized

Laguerre series, we have

𝑥
𝑘+𝜈

=

𝑁

∑

𝑗=0

𝑐
𝑗
𝐿
(𝛼)

𝑗
(𝑥) , (19)

where 𝑐
𝑗
is given from (11) with 𝑢(𝑥) = 𝑥

𝑘+𝜈; that is,

𝑐
𝑗
=

𝑗

∑

𝑟=0

(−1)
𝑟
𝑗!Γ (𝑘 + 𝜈 + 𝛼 + 𝑟 + 1)

(𝑗 − 𝑟)!𝑟!Γ (𝑟 + 𝛼 + 1)
, 𝑗 = 1, 2, . . . , 𝑁.

(20)

In virtue of (18) and (19), we get

𝐽
𝜈

𝐿
(𝛼)

𝑖
(𝑥) =

𝑁

∑

𝑗=0

Θ
𝜈
(𝑖, 𝑗) 𝐿

(𝛼)

𝑗
(𝑥) , 𝑖 = 0, 1, . . . , 𝑁, (21)

where

Θ
𝜈
(𝑖, 𝑗)

=

𝑖

∑

𝑘=0

𝑗

∑

𝑟=0

(−1)
𝑘+𝑟

𝑗!Γ(𝑖+𝛼 +1) Γ(𝑘+𝜈+𝛼 +𝑟+1)

(𝑖−𝑘)! (𝑗−𝑟)!𝑟!Γ(𝑘+𝜈+1) Γ(𝑘+𝛼 +1) Γ(𝛼+𝑟 +1)

𝑗 = 1, 2, . . . 𝑁.

(22)

Accordingly, (21) can be written in a vector form as
follows:

𝐽
𝜈

𝐿
𝑖
(𝑥) ≃ [Θ

𝜈
(𝑖, 0) , Θ

𝜈
(𝑖, 1) , Θ

𝜈
(𝑖, 2) , ⋅ ⋅ ⋅ ,

Θ
𝜈
(𝑖, 𝑁)] 𝜙 (𝑥) , 𝑖 = 0, 1, . . . , 𝑁.

(23)

Equation (23) leads to the desired result.

4. Generalized Laguerre Tau Method Based on
Operational Matrix

In this section, the generalized Laguerre tau method based
on operationalmatrix is proposed to numerically solve FDEs.
In order to show the fundamental importance of generalized
Laguerre operational matrix of fractional integration, we
adopt it for solving the following multiorder FDE:

𝐷
𝜈

𝑢 (𝑥) =

𝑘

∑

𝑖=1

𝛾
𝑗
𝐷
𝛽𝑖𝑢 (𝑥) + 𝛾

𝑘+1
𝑢 (𝑥) + 𝑓 (𝑥) ,

in Λ = (0,∞) ,

(24)

with initial conditions

𝑢
(𝑖)

(0) = 𝑑
𝑖
, 𝑖 = 0, . . . , 𝑚 − 1, (25)

where 𝛾
𝑖
(𝑖 = 1, . . . , 𝑘+1) are real constant coefficients,𝑚−1 <

𝜈 ≤ 𝑚, 0 < 𝛽
1
< 𝛽
2
< . . . < 𝛽

𝑘
< 𝜈, and 𝑔(𝑥) is a given source

function.
The proposed technique, based on the FDE (24), is con-

verted to a fully integrated form via fractional integration
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in the Riemann-Liouville sense. Subsequently, the integrated
form equations are approximated by representing themas lin-
ear combinations of generalized Laguerre polynomials. Fin-
ally, the integrated form equation is converted to an algebraic
equation by introducing the operational matrix of fractional
integration of the generalized Laguerre polynomials.

If we apply the Riemann-Liouville integral of order 𝜈 on
(24), after making use of (4), we get the integrated form of
(24), namely,

𝑢 (𝑥) −

𝑚−1

∑

𝑗=0

𝑢
(𝑗)

(0
+

)
𝑥
𝑗

𝑗!

=

𝑘

∑

𝑖=1

𝛾
𝑖
𝐽
𝜈−𝛽𝑖 [

[

𝑢 (𝑥) −

𝑚𝑖−1

∑

𝑗=0

𝑢
(𝑗)

(0
+

)
𝑥
𝑗

𝑗!
]

]

+ 𝛾
𝑘+1

𝐽
𝜈

𝑢 (𝑥) + 𝐽
𝜈

𝑓 (𝑥) ,

𝑢
(𝑖)

(0) = 𝑑
𝑖
, 𝑖 = 0, . . . , 𝑚 − 1,

(26)

where𝑚
𝑖
− 1 < 𝛽

𝑖
≤ 𝑚
𝑖
,𝑚
𝑖
∈ 𝑁, implies that

𝑢 (𝑥) =

𝑘

∑

𝑖=1

𝛾
𝑖
𝐽
𝜈−𝛽𝑖𝑢 (𝑥) + 𝛾

𝑘+1
𝐽
𝜈

𝑢 (𝑥) + 𝑔 (𝑥) ,

𝑢
(𝑖)

(0) = 𝑑
𝑖
, 𝑖 = 0, . . . , 𝑚 − 1,

(27)

where

𝑔 (𝑥) = 𝐽
𝜈

𝑓 (𝑥) +

𝑚−1

∑

𝑗=0

𝑑
𝑗

𝑥
𝑗

𝑗!
+

𝑘

∑

𝑖=1

𝛾
𝑖
𝐽
𝜈−𝛽𝑖 (

𝑚𝑖−1

∑

𝑗=0

𝑑
𝑗

𝑥
𝑗

𝑗!
) . (28)

In order to use the tau method with Laquerre operational
matrix for solving the fully integrated problem (27) with
initial conditions (25), we approximate 𝑢(𝑥) and 𝑔(𝑥) by the
Laguerre polynomials:

𝑢
𝑁
(𝑥) ≃

𝑁

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) , (29)

𝑔 (𝑥) ≃

𝑁

∑

𝑖=0

𝑔
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐺

𝑇

𝜙 (𝑥) , (30)

where the vector 𝐺 = [𝑔
0
, . . . , 𝑔

𝑁
]
𝑇 is given but 𝐶 = [𝑐

0
, . . . ,

𝑐
𝑁
]
𝑇 is an unknown vector.
After making use of Theorem 1 (relation (15)) the

Riemann-Liouville integral of orders 𝜈 and (𝜈 − 𝛽
𝑗
) of the

approximate solution (29) can be written as

𝐽
𝜈

𝑢
𝑁
(𝑥) ≃ 𝐶

𝑇

𝐽
𝜈

𝜙 (𝑥) ≃ 𝐶
𝑇P(𝜈)𝜙 (𝑥) , (31)

𝐽
𝜈−𝛽𝑗𝑢
𝑁
(𝑥) ≃ 𝐶

𝑇

𝐽
𝜈−𝛽𝑗𝜙 (𝑥) ≃ 𝐶

𝑇P(𝜈−𝛽𝑗)𝜙 (𝑥) ,

𝑗 = 1, . . . , 𝑘,

(32)

respectively, where P(𝜈) is the (𝑁 + 1) × (𝑁 + 1) operational
matrix of fractional integration of order 𝜈. Employing (29)-
(32) the residual 𝑅

𝑁
(𝑥) for (27) can be written as

𝑅
𝑁
(𝑥) = (𝐶

𝑇

− 𝐶
𝑇

𝑘

∑

𝑗=1

𝛾
𝑗
P(𝜈−𝛽𝑗) − 𝛾

𝑘+1
𝐶
𝑇P(𝜈) − 𝐺

𝑇

)𝜙 (𝑥) .

(33)
As in a typical tau method, we generate𝑁 − 𝑚 + 1 linear

algebraic equations by applying

⟨𝑅
𝑁
(𝑥) , 𝐿

(𝛼)

𝑗
(𝑥)⟩ = ∫

∞

0

𝑅
𝑁
(𝑥) 𝑤
(𝛼)

(𝑥) 𝐿
(𝛼)

𝑗
(𝑥) 𝑑𝑥 = 0,

𝑗 = 0, 1, . . . , 𝑁 − 𝑚.

(34)
Also by substituting Eqs. (11) and (29) in Eq (25), we get

𝑢
(𝑖)

(0) = 𝐶
𝑇D(𝑖)𝜙 (0) = 𝑑

𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1. (35)

Equations (34) and (35) generate𝑁−𝑚+1 and𝑚 set of linear
equations, respectively.

These linear equations can be solved for unknown coef-
ficients of the vector 𝐶. Consequently, 𝑢

𝑁
(𝑥) given in (29)

can be calculated, which leads to the solution of (24) with the
initial conditions (25).

5. Illustrative Examples

To illustrate the effectiveness of the proposed method in
the present paper, two test examples are carried out in this
section. The results obtained by the present methods reveal
that the present method is very effective and convenient for
linear FDEs on the half line.

Example 2. Consider the FDE

𝐷
2

𝑢 (𝑥) + 𝐷
1/2

𝑢 (𝑥) + 𝑢 (𝑥)

= 𝑥
2

+ 2 +
2.6666666667

Γ (0.5)
𝑥
1.5

,

𝑢 (0) = 0, 𝑢


(0) = 0, 𝑥 ∈ Λ,

(36)

whose exact solution is given by 𝑢(𝑥) = 𝑥
2.

If we apply the technique described in Section 4 with𝑁 =

2, then the approximate solution can be written as

𝑢
𝑁
(𝑥) =

2

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) ,

𝑃
(2)

= (

Θ
2
(0, 0) Θ

2
(0, 1) Θ

2
(0, 2)

Θ
2
(1, 0) Θ

2
(1, 1) Θ

2
(1, 2)

Θ
2
(2, 0) Θ

2
(2, 1) Θ

2
(2, 2)

) ,

𝑃
(3/2)

= (

Θ
3/2

(0, 0) Θ
3/2

(0, 1) Θ
3/2

(0, 2)

Θ
3/2

(1, 0) Θ
3/2

(1, 1) Θ
3/2

(1, 2)

Θ
3/2

(2, 0) Θ
3/2

(2, 1) Θ
3/2

(2, 2)

) ,

𝐺 = (

𝑔
0

𝑔
1

𝑔
2

) .

(37)
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Table 1: 𝑐
0
, 𝑐
1,
and 𝑐
2,
for different values of 𝛼 for Example 2.

𝛼 𝑐
0

𝑐
1

𝑐
2

−0.5 0.75 −3 2

0 2 −4 2

0.5 3.75 −5 2

1 6 −6 2

2 12 −8 2

3 20 −10 2

Using (34) we obtain

(Θ
3/2

(0, 2) + Θ
2
(0, 2)) 𝑐

0
+ (Θ
3/2

(1, 2) + Θ
2
(1, 2)) 𝑐

1

+ (1 + Θ
3/2

(2, 2) + Θ
2
(2, 2)) 𝑐

2
+ 𝑔
2
= 0.

(38)

Now, by applying (35), we have

𝑐
0
+ (𝛼 + 1) 𝑐

1
+
(𝛼 + 1) (𝛼 + 2)

2
𝑐
2
= 0. (39)

−𝑐
1
− (𝛼 + 2) 𝑐

2
= 0. (40)

Finally by solving (38)–(40), we have the 3 unknown
coefficients with various choices of 𝛼 given in Table 1. Then,
we get

𝑐
0
= 𝛼
2

+ 3𝛼 + 2, 𝑐
1
= −2𝛼 − 4, 𝑐

2
= 2. (41)

Thus we can write

𝑢 (𝑥) = (𝑐
0
, 𝑐
1
, 𝑐
2
)(

𝐿
(𝛼)

0
(𝑥)

𝐿
(𝛼)

1
(𝑥)

𝐿
(𝛼)

2
(𝑥)

) = 𝑥
2

, (42)

which is the exact solution.

Example 3. As the first example, we consider the following
fractional initial value problem:

𝐷
3/2

𝑢 (𝑥) + 3𝑢 (𝑥) = 3𝑥
3

+
8

Γ (0.5)
𝑥
1.5

,

𝑢 (0) = 0, 𝑢


(0) = 0, 𝑥 ∈ Λ,

(43)

whose exact solution is given by 𝑢(𝑥) = 𝑥
3.

If we apply the technique described in Section 4 with𝑁 =

3, then the approximate solution can be written as

𝑢
𝑁
(𝑥) =

3

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) ,

𝑃
(3/2)

= (

Θ
3/2

(0, 0) Θ
3/2

(0, 1) Θ
3/2

(0, 2) Θ
3/2

(0, 3)

Θ
3/2

(1, 0) Θ
3/2

(1, 1) Θ
3/2

(1, 2) Θ
3/2

(1, 3)

Θ
3/2

(2, 0) Θ
3/2

(2, 1) Θ
3/2

(2, 2) Θ
3/2

(2, 3)

Θ
3/2

(3, 0) Θ
3/2

(3, 1) Θ
3/2

(3, 2) Θ
3/2

(3, 3)

) ,

𝐺 = (

𝑔
0

𝑔
1

𝑔
2

𝑔
3

).

(44)

Table 2: 𝑐
0
, 𝑐
1
, 𝑐
2,
and 𝑐
3
for different values of 𝛼 for Example 3.

𝛼 𝑐
0

𝑐
1

𝑐
2

𝑐
3

−0.5 15/8 −45/4 15 −6

0 6 −18 18 −6

0.5 105/8 −105/4 21 −6

1 24 −36 24 −6

2 60 −60 30 −6

3 120 −90 36 −6

Using (34) we obtain

3Θ
3/2

(0, 2) 𝑐
0
+ 3Θ
3/2

(1, 2) 𝑐
1

+ (1 + 3Θ
3/2

(2, 2)) 𝑐
2
+ 3Θ
3/2

(3, 2) 𝑐
3
+ 𝑔
2
= 0,

3Θ
3/2

(0, 3) 𝑐
0
+ 3Θ
3/2

(1, 3) 𝑐
1

+ 3Θ
3/2

(2, 3) 𝑐
2
+ (1 + 3Θ

3/2
(3, 3)) 𝑐

3
+ 𝑔
3
= 0.

(45)

Now, applying (35) we get

𝐶
𝑇

𝜙 (0) = 𝑐
0
+ (𝛼 + 1) 𝑐

1

+
(𝛼 + 1) (𝛼 + 2)

2
𝑐
2
+
(𝛼 + 1) (𝛼 + 2) (𝛼 + 3)

6
𝑐
3
= 0,

𝐶
𝑇

𝐷
(1)

𝜙 (0)

= −𝑐
1
− (𝛼 + 2) 𝑐

2
−
(𝛼 + 3) (𝛼 + 2)

2
𝑐
3
= 0.

(46)

By solving the linear system (45)–(49) we have the 4
unknown coefficientswith various choices of𝛼 in Table 2, and
we get

𝑐
0
= 𝛼
3

+ 6𝛼 + 11𝛼 + 6,

𝑐
1
= −3𝛼

2

− 15𝛼 − 18,

𝑐
2
= 6𝛼 + 18,

𝑐
3
= −6.

(47)

Thereby we can write

𝑢
𝑁
(𝑥) =

3

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝑥

3

. (48)

Numerical results will not be presented since the exact
solution is obtained.

Example 4. Consider the following equation:

𝐷
2

𝑢 (𝑥) − 2𝐷𝑢 (𝑥) + 𝐷
1/2

𝑢 (𝑥) + 𝑢 (𝑥)

= 𝑥
7

+
2048

429√𝜋
𝑥
6.5

− 14𝑥
6

+ 42𝑥
5

− 𝑥
2

−
8

3√𝜋
𝑥
1.5

+ 4𝑥 − 2,

𝑢 (0) = 0, 𝑢


(0) = 0, 𝑥 ∈ Λ,

(49)

whose exact solution is given by 𝑢(𝑥) = 𝑥
7

− 𝑥
2.
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Now, we can apply the technique described in Examples
2 and 3, with 𝛼 = 0 and𝑁 = 7, then we have

𝑐
0
= 5038, 𝑐

1
= −35276,

𝑐
2
= 105838, 𝑐

3
= −176400,

𝑐
4
= 176400, 𝑐

5
= −105840,

𝑐
6
= 35280, 𝑐

7
= −5040.

(50)

Thus we can write

𝑢
𝑁
(𝑥) =

7

∑

𝑖=0

𝑐
𝑖
𝐿
𝑖
(𝑥) = 𝑥

7

− 𝑥
2

, (51)

which is the exact solution.

6. Conclusions

In this paper, we have presented the operational matrix of
fractional integration of the generalized Laguerre polynomi-
als, and, as an important application, we describe how to use
the operational tau technique to numerically solve the FDEs.
The basic idea of this technique is as follows.

(i) The FDE is converted to a fully integrated form via
multiple integration in the Riemann-Liouville sense.

(ii) Subsequently, the various signals involved in the inte-
grated form equation are approximated by represen-
ting them as linear combinations of generalized Lag-
uerre polynomials.

(iii) Finally, the integrated form equation is converted into
an algebraic equation by introducing the operational
matrix of fractional integration of the generalized
Laguerre polynomials.

To the best of our knowledge, the presented theoretical
formula for generalized Laguerre is completely new, and we
do believe that this formula may be used to solve some other
kinds of fractional-order initial value problems on a semi-
infinite interval.
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[16] D. Băleanu, O. G. Mustafa, and R. P. Agarwal, “An existence
result for a superlinear fractional differential equation,” Applied
Mathematics Letters, vol. 23, no. 9, pp. 1129–1132, 2010.
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