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Abstract

We present a clarification of a recent inverse scattering algorithm developed for the
Camassa-Holm equation.

1 Introduction

The nonlinear partial differential equation

qt + uqx + 2qux = 0, t > 0, x ∈ R, (1.1)

where q = u − uxx + ω = m + ω and ω > 0, has been derived as a model for the
unidirectional propagation of two-dimensional waves in the shallow water approximation,
see [4, 20, 19, 12]. The above is called the Camassa-Holm equation (CH) and it has
attracted a lot of interest due to its complete integrability as an infinite dimensional
Hamiltonian system and to the fact that it admits classical solutions that exist for all
times and also solutions that develop singularities in finite time [5, 24]. If a singularity
develops, the solution remains bounded but its slope becomes unbounded — a feature
characterizing breaking waves cf. the discussion in [7]. The CH equation is also a re-
expression of the geodesic flow on the Bott-Virasoro group, see [13]. It has been recently
suggested that (1.1) might play a rôle in the modeling of tsunamis [22, 9].

The integration of equation (1.1) by means of the scattering problem approach has been
undertaken in [6] based on earlier results [5] about global existence or wave-breaking of its
solutions. Several difficulties with respect to the classical scattering approach developed
for the Korteweg-de Vries (KdV) equation — see [1, 2, 18] — are presented in [15, 14,
6, 10, 11, 21, 23]. As detailed in these references, the inverse scattering transform (IST)
problem of the Camassa-Holm equation is a complicated issue. An algorithm has been
proposed by Constantin and Lenells in [10] and slightly modificated in [11] to solve the
inverse scattering problem for the CH equation. While other approaches were subsequently
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introduced [8], this method turns out to be quite effective in giving a closed form to the
CH solitary waves. We recall that, in contrast to the KdV equation [18], it is very difficult
to find explicit expressions for the solitary waves of equation (1.1). It is also important to
recall that the solitary waves of the CH equation are stable solitons, cf. [16, 21].

Our intention in this Letter is to clarify a certain fundamental aspect of the Constantin-
Lenells algorithm: it is impossible to reduce the IST computations to solving a linear
integral equation with an integral given only over one semi-axis — see the equation of the
auxiliary function w in [10, p. 434] and the equation of the Jost function f in [11, p.
254, Remark]. Based on a simple analytical argument developed in Section 2, we give a
rigorous proof of the Constantin-Lenells algorithm.

2 Global existence of solutions to a linear ODE

Our aim in this Section is to provide certain sufficient conditions regarding the continuous
function f : R → R such that, given γ > 0, the ordinary differential equation (ODE) below

d2x

dt2
− [γ + f(t)]x = 0, t ∈ R, (2.1)

has a positive solution x(t) defined throughout the entire real line and satisfying the
restriction

∫

R

dt

x2(t)
< +∞. (2.2)

Such conditions, in various formulations, are known for the simpler case of non-principal
solutions, namely solutions x(t) of (2.1) which verify the restriction

∫ +∞
t0

dt
x2(t) < +∞ for

some t0 large enough, see [17]. Unfortunately the techniques there cannot be extended
to deal with the problem (2.1), (2.2) although they are perfectly capable of dealing with
solutions that verify the ”mirror” condition

∫ −t0
−∞

dt
x2(t)

< +∞ for some t0 large enough –

via the obvious change of variable y(t) = x(−t) for all t ≤ −t0. The latter solutions shall
be referred to in the sequel also as non-principal solutions.

To simplify the computations, notice that the substitutions s =
√
γt, X(s) = x(t),

F (s) = f(t)
γ

transform equation (2.1) into d2X
ds2 − [1 + F (s)]X = 0, s ∈ R. We remark also

that
∫

R
|F (s)|ds = 1√

γ

∫

R
|f(t)|dt. This is the reason for focusing here only on the case

γ = 1 of the ODE (2.1).

Theorem 1. Assume that γ = 1 and ||f ||L1(R) <
1
4 . Fix the numbers c, d > 0 such that

c > 2

∫ +∞

0
|f(s)|ds, d > 2

∫ 0

−∞
|f(s)|ds, c+ d <

1

2
. (2.3)

Then, the equation (2.1) has a solution x(t) which verifies (2.2). Furthermore, we have
the estimates:

(i) x(t) ∼
1
2 [c+ x+(t)]et, with |x+(t)| ≤

∫ +∞
0 |f(s)|ds, when t→ +∞;

(ii) x(t) ∼
1
2 [d+ x−(t)]e−t, with |x−(t)| ≤

∫ 0
−∞ |f(s)|ds when t→ −∞;

(iii) x(t) ≥ x⋆ cosh t for all t ∈ R, where x⋆ = min{c⋆, d⋆}, where

c⋆ = c− 2

∫ +∞

0
|f(s)|ds, d⋆ = d− 2

∫ 0

−∞
|f(s)|ds.
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Before proving the theorem, let us remark that the L1–norm of f cannot be as large as
desired. In fact, consider the function

f(t) =































0, t ≤ a− b,

−1+ε
b

(t+ b− a), t ∈ [a− b, a],

−(1 + ε), t ∈
[

a, a+ 2π√
ε

]

,

1+ε
b

(t− a− b− 2π√
ε
), t ∈

[

a+ 2π√
ε
, a+ 2π√

ε
+ b

]

, ,

0, t ≥ a+ 2π√
ε

+ b,

where b, ε > 0 and a are fixed. The unique (global) solution x of equation (2.1) with the
Cauchy data

x(a) = cos(a
√
ε), x′(a) = −

√
ε sin(a

√
ε)

verifies the identity

x(t) = cos(t
√
ε), t ∈ I =

[

a, a+
2π√
ε

]

.

Notice that the preceding formula for x(t) is valid only in I! It is obvious that the function
x has at least two zeros in I. According to Sturm’s comparison theorem, all the solutions
of equation (2.1) will have at least one zero in I – meaning that (2.2) is out of the question
although some of the solutions are non-principal. We have ||f ||L1(R) = (1+ε) 2π√

ε
+(1+ε)b >

4π. Though it is possible to improve the upper bound of the L1–norm of f from Theorem
1, we have opted for 1

4 because of the simplicity of our analytical argument.

Proof. Consider the complete metric space M = (X, d) given by the set X = {x ∈
C(R,R) : |x(t)| ≤ cosh t, t ∈ R} and the distance d(x1, x2) = sup

s∈R

|x(s)|
cosh s

. Notice the simple

inequality et ≥ cosh t for all t ≥ 0. This helps establish that, given x ∈ X, one has the
estimates |x(t)|e−t ≤ 1 for all t ≥ 0 and |x(t)|et ≤ 1 for all t ≤ 0.

Introduce the operator T : X → C(R,R) with the formula

T (x)(t) =
1

2

[

c−
∫ +∞

t

f(s)x(s)e−sds

]

et +
1

2

[

d−
∫ t

−∞
f(s)x(s)esds

]

e−t

for t ∈ R and x ∈ X.

Several estimates are needed to ensure that T (X) ⊆ X. Notice that

∣

∣

∣

∣

∫ t

−∞
f(s)x(s)esds

∣

∣

∣

∣

≤
∫ 0

−∞
|f(s)|ds+

∫ t

0
|f(s)|e2sds

≤
∫ 0

−∞
|f(s)|ds+

1 + sgn t

2
e2t ·

∫ +∞

0
|f(s)|ds

and
∣

∣

∣

∣

∫ +∞

t

f(s)x(s)e−sds

∣

∣

∣

∣

≤
∫ +∞

0
|f(s)|ds +

1 + sgn (−t)
2

e−2t ·
∫ 0

−∞
|f(s)|ds
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and, based upon these two,

|T (x)(t)| ≤
[

c+ d+ 2

∫

R

|f(s)|ds
]

· cosh t

≤ 2(c + d) cosh t.

The operator T has the set X as an invariant set.
Similarly, we deduce that d(T (x1), T (x2)) ≤ η · d(x1, x2) for all x1, x2 ∈ X, where

η = 2
∫

R
|f(s)|ds < 1

2 .
The operator T is a contraction, so it has a fixed point x = x(t) in X. This is the

solution of the problem (2.1), (2.2) which we are looking for. To prove that (2.2) holds
true, notice that it is a simple consequence of the conclusions (i) – (iii). These conclusions,
on the other hand, can be established easily by manipulating the previous computations.

We have the estimate

x(t) = T (x)(t)

≥ 1

2

[

c−
∫ +∞

0
|f(s)|ds− e−2t

∫ 0

−∞
|f(s)|ds

]

et

+
1

2

[

d−
∫ 0

−∞
|f(s)|ds− e2t

∫ +∞

0
|f(s)|ds

]

e−t

=
c⋆

2
· et +

d⋆

2
· e−t ≥ x⋆ cosh t

and so
∫

R

dt
x2(t)

≤ 1
x2

⋆

∫

R

dt
cosh2 t

= 2
x2

⋆

. The proof is complete. �

3 The IST algorithm

Using the notations from [6, p. 967], we are concerned here with the nonlinear ODE
(ω > 0)

d2C

dy2
=

(

Q(y) +
1

4ω

)

C − 1

4C3
, y ∈ R, (3.1)

where the (given) continuous function Q : R → R is restricted by the Faddeev condition
∫

R
(1 + |y|)|Q(y)|dy < +∞, and we look for a solution C⋆ such that lim

|y|→+∞
C⋆(y) = 4

√
ω.

The interest in solving (3.1) comes from the next representation, see [10, p. 433], of

the potential Q, namely Q(y) = 1
4q(y) + q′′(y)

4q(y) −
3q′

2
(y)

16q2(y)
− 1

4ω
throughout the entire real line,

where q(y) = 4
√

C⋆(y).
Besides this demanding asymptotic behavior imposed on a solution of (3.1), a further

intricacy is provided by the change of variables






y =
√
ωx+

∫ x

−∞[
√

m(ξ) + ω −√
ω]dξ,

x = y√
ω

+
∫ y

−∞

[

1√
q(ξ)

− 1√
ω

]

dξ,

where C⋆ =
∫

R
[
√

m(ξ) + ω − √
ω]dξ =

√
ω ·

∫

R

[

1√
ω
− 1√

q(ξ)

]

dξ is a constant of motion

(to avoid complications, we refrain from introducing the time notation in our discussion).
The change of variables is used for recovering the momentum m(x) = q(y(x)) + ω, x ∈ R.
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The algorithm devised by Constantin and Lenells [10] attacks both issues with success.
The first step consists of giving a computable representation to the solutions of (3.1).
This is a particular case of the Bohl-type representation problem, see [3, 25]: if ψ1(y),

ψ2(y) are linearly independent solutions of the linear ODE

[r(y)ψ′]′ + p(y)ψ = 0, y ∈ R, (3.2)

with the Wronskian r(y)[ψ′
1(y)ψ2(y) − ψ1(y)ψ

′
2(y)] = W > 0, then the general solution of

(3.2) can be written as

ψ(y) = AC(y) cosh

(√
αW ·

∫ y

y0

ds

r(s)C2(s)
+B

)

,

(or, we can use ”sinh”) where A, B ∈ R are the integration constants,
C(y) =

√

ψ2
1(y) − αψ2

2(y) for a fixed α > 0 and

[r(y)C ′]′ + p(y)C = − αW 2

r(y)C3
, y ∈ R. (3.3)

It is now obvious that the equation (3.3) reads exactly as the equation (3.1) for r(y) = 1,
p(y) = −

(

Q(y) + 1
4ω

)

, α = 1
4W 2 .

One notices also that the argument of ”cosh” in the representation of ψ(y) from equation

(3.2), namely the quantity
√
αW ·

∫ y

y0

ds
r(s)C2(s)

+B, is actually an antiderivative of
√

αW

r(y)C2(y)

and so it can be recast conveniently! In fact, based on this remark, the computable
representation of C(y) is provided by the formulas (recall that

√
αW = 1

2)

V (y) = C(y) cosh

(

x(y)

2

)

, x(y) ∈
∫

1

C2(y)
dy,

where

d2V

dy2
=

(

Q(y) +
1

4ω

)

V, y ∈ R. (3.4)

Obviously, the equation (3.4) plays the rôle of (3.2) and it should have appropriate solutions
for the algorithm to work properly. The first step is completed once we have found various
solutions to (3.4) – this means we shall look for solutions having the asymptotic properties
described by Theorem 1. This will be explained while proceeding with the second step of
the algorithm.

The second step of the Constantin-Lenells approach, which regards the change of vari-
ables y = y(x), relies on the next formal computations, namely

1

V 2(y)
· dy
dx

=
1

V 2(y)
· C2(y) =

1

cosh2
(

x
2

)

and
∫

dy

V 2(y)
=

∫

dx

cosh2
(

x
2

) = 2 tanh
(x

2

)

+ a constant of integration. (3.5)

Its task is to find an antiderivative of V −2 and then to compute its inverse. Unfortu-
nately, the integral equation technique, based on a certain auxiliary function w, that has
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been devised in [10, p. 435] to establish the existence of a solution V (y) to (3.4) for which
such a task can be accomplished is not satisfactory.

The correct formulation of (3.5) is given by

∫ y(x)

−∞

ds

V 2(s)
=

∫ x

−∞

ds

cosh2
(

s
2

) , x ∈ R. (3.6)

It supposes, as one notices immediately, that the solution V is non-principal. Such a
feature of V follows from the inferences of the w-function approach described in [10]:
V (y) ∼ cosh

(

y
2 − C⋆

4

)

when y → −∞. But this is the best outcome of the technique.

The main difficulty one faces with regard to the formula (3.6) is that it does not ensure
that lim

x→+∞
y(x) = +∞! In fact, the formula leads us only to

∫ lim
x→+∞

y(x)

−∞

ds

V 2(s)
=

∫ +∞

−∞

ds

cosh2
(

s
2

) = 4.

To bypass this obstacle, we can employ Theorem 1. In fact, we propose the following
approach: first, compute a solution V0 of the ODE (3.4), where

∫

R
(1 + |y|)|Q(y)|dy <

+∞, which verifies the condition I =
∫

R

ds
V 2
0

(s)
< +∞. Second, normalize the solution:

consider the new solution V given by V = η · V0, with η =
√

I
2 . In this way, we have

∫ +∞
−∞

ds
V 2(s)

=
∫ +∞
−∞

ds

cosh2( s

2)
together with

∫ τ

−∞
ds

V 2(s)
<

∫ +∞
−∞

ds

cosh2( s

2)
for all τ ∈ R. Now,

formula (3.6) yields a function y(x) such that lim
x→+∞

y(x) = +∞ and we can write also

that

y(x) = H−1
(

2 + 2 tanh
(x

2

))

, H(y) =

∫ y

−∞

ds

V 2(s)
.

With this clarification, the Constantin-Lenells algorithm can be implemented to inte-
grate the Camassa-Holm equation (1.1).

A commentary about the modification of the algorithm introduced in [11] must be
made. Here, for the solution V of equation (3.4) it is required that

∫ y

−∞

ds

V 2(s)
< +∞,

∫ +∞

y

ds

V 2(s)
= +∞, y ∈ R.

We encounter again the need to evaluate V throughout the entire real line by an appro-
priately designed variant of Theorem 1.
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