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We first propose the fractal models for the one-phase problems of discontinuous transient heat transfer. The models are taken in
sense of local fractional differential operator and used to describe the (dimensionless)melting of fractal solid semi-infinitematerials
initially at their melt temperatures.

1. Introduction

Weknow that the local fractional calculus is set up on fractals.
Fractal media is complex, and it appears in different fields
of engineering and physics. Fractal physical parameters are
considered as local fractional continuous functions, which is
fractal characteristics of local fractional functional analysis
from fractal geometry point of view. Moreover, the local
fractional calculus is a powerful tool to model Fourier law
of heat conductions in discontinuous heat transfer in fractal
media. Local fractional heat-conduction equations may be
applied to describe the fractal behaviors of discontinuous heat
transfer in fractal media.

As it is known the Goodman’s heat balance integral
method represents an approximate technique for generating
functional solutions to thermal problems that were described
by differential equations [1–3]. Based on theory of fractional
calculus [4, 5], both the Stefan problem and the heat-balance
integral method governed by a fractional diffusion equation
were investigated [6–8]. However, we mention that the above
problems are considered in the smooth condition.

On the other hand the heat transfer with nonsmooth
condition (fractal space) is an interesting topic. The var-
ious phenomena in nanoscale heat (e.g., a charged jet in

electrospinning process) can produce both continuous
nanofibers and discontinuous nanoporous material. For con-
tinuous case, the classical Fourier law is valid. However, for
nanoporous material, the fractal Fourier law should be used.
For examples, the generalized transfer equation in a medium
with fractal geometry was considered in [9], the Fourier’s law
heat conduction in the discontinuous media was investigated
in [10], and the heat transfer from discontinuous media was
discussed in [11, 12].

Maybe, there are one-phase problems of fractal heat
transfer in nanoporous materials. The aim of this paper is
to study the fractal models for one-phase problems. The
organization of the paper is organized as follows. In Section 2,
we introduce the concept of local fractional derivative and
give some results on local fractional chain rule and the fractal
complex transform. Section 3 is devoted to the fractal models
for the one-phase problems of discontinuous transient heat
transfer. Finally, conclusions are given in Section 4.

2. Preliminaries

In this section, we give some basic definitions and properties
of the local fractional differential operator theory which are
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used further in this paper. In order to discuss the fractal
behaviors of materials, we start with the fractal result derived
from the fractal geometry.

Lemma 1 (see [11, 12]). Let 𝐹 be a subset of the real line and
be a fractal. If 𝑓 : (𝐹, 𝑑) → (Ω
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For the convenience of the reader, we represent here the
following results.

Following Lemma 1, we have [11]
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where 𝛼 is fractal dimension of 𝐹.

Definition 2. If
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𝑓(𝑥) is local fractional continuous on the interval (𝑎, 𝑏),
denoted through [11–14]
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where we assume that 𝑓(1)(𝑔(𝑥)) and 𝑔
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Let us suppose that there is a relation as given below [14]
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where 𝑞 and 𝑝 are constants and 0 < 𝛼 ≤ 1, then there exists
an equation transformation pair, namely,
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We stress on the fact that the above method is different from
fractional complex transform method discussed in [15, 16].
The fractional complex transformmethod is proposed in [15,
16], while fractal complex transform method is based on the
local fractional calculus theory [14].

3. Fractal Models for One-Phase Problems

We propose a one-phase fractal problem that describes
the (dimensionless) melting of a fractal solid semi-infinite
material initially at its melt temperature. The corresponding
equations are given by the following expressions:
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𝑢 = 0, 𝑥 = 𝑠 (𝑡) , 𝑡 > 0, (16)

𝑢 = 1, 𝑥 = 0, 𝑡 ≥ 0. (17)

We mention that (13) governs the flow of heat in the
fractal liquid region [11, 12], the fractal Stefan condition (14)
describes the absorption of heat at the melt front where the
fractal Stefan number 𝛽𝛼 [11] (it is also derived from fractal
complex transform [14]). Equations (15) and (16) prescribe
the temperature at the fractal fixed boundary 𝑥 = 0 and on
the moving melt front 𝑥 = 𝑠(𝑡), and (16) gives the initial
temperature of the fractal semi-infinite solution domain. We
notice that (13) is derived from the local fractional one-
dimensional heat conduction equation with fractal media,
which can be written in the form [11]
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where 𝐾
2𝛼 denotes the thermal conductivity of the fractal

material, which is related to fractal dimensions of materials.
It is shown that the fractal dimensions of materials are an
important characteristic value. Here, we consider the fractal
Fourier flow, which is discontinuous; however, it is found that
it is local fractional continuous. Like classical Fourier flow, its
thermal conductivity is an approximate value for fractal one
when 𝛼 = 1 [11].
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The alternative form of the condition (14) can be derived
from the fact that the total local fractional derivative of the
temperature at 𝑥 = 𝑠(𝑡) is zero, that is, 𝐷𝛼𝑢(𝑠(𝑡), 𝑡)/𝐷𝑡

𝛼
= 0,

which leads us to the following expression:
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Then, by using (13) and (19) we conclude that
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As a result, it leads us to the following final equation:
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This result is no sense because fractal flow is local fractional
continuous at 𝑥. If 𝑢 is local fractional continuous, and 𝑢 is
continuous, we deduce that fractal dimension is𝛼 = 1. Hence,
we can obtain the classical results [2, 3].

Another alternative form of the condition (14) is derived
from the fact that the total local fractional derivative of the
temperature at 𝑥 = 𝑠(𝑡) is zero, that is,
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By using (13) and (23), we finally obtain
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which leads us to the final form as given below
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4. Conclusions

In this paper we have proposed alternative fractal models
for the one-phase problems of discontinuous transient heat
transfer in fractal media. By applying the fractal complex
transform and the chain rule within local fractional deriva-
tive, we have derived the one-phase problems of discontinu-
ous transient heat transfer in fractal media, which describe
the (dimensionless) melting of fractal solid semi-infinite
materials initially at their melt temperatures. We consider
the fractal models for the one-phase problems of discon-
tinuous transient heat transfer. The fractal models for one-
phase problems are classical examples when the fractional
dimension is equal to 1. The discontinuous transient heat
transfer in fractal media can serve as a good starting point
for experimental investigations and further discussions.
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