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We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs) on semi-
infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of
the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a
spectral solution of linear multiterm FDEs on semi-infinite interval subject to initial conditions.The generalized Laguerre pseudo-
spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm
FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical
examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate
results, and the exact solutions are achieved for some tested problems.

1. Introduction

Fractional calculus has been used to develop accurate models
of many phenomena of science, engineering, economics, and
applied mathematics. These models are found to be best
described by FDEs [1–4].

One of the best methods, in terms of the accuracy,
for investigating the numerical solution of various kinds of
differential equations is spectral method (see, for instance,
[5–8]). Because all types of spectral methods are global and
numerical computational methods, they are very convenient
for approximating linear and nonlinear FDEs [6, 7, 9]. We
refer also to recent numerical and analytical methods for
solving FEEs [10–16].

In the last few years, theory and numerical solution of
FDEs by using spectral methods have received an increasing
attention. In this direction, Doha et al. [17] proposed an
effective way to approximate solutions of linear and nonlinear
multiterm FDEs with constant and variable coefficients using

Jacobi spectral approximation, in which they generalized the
Chebyshev spectral methods [6] and quadrature Legendre
tau method [9]; moreover, other very important cases can
be obtained for that approach. Maleki et al. [18] proposed
an efficient and accurate spectral collocation method based
on shifted Legendre-Gauss quadrature nodes for solving
fractional boundary value problems in finite interval. The
authors of [19] used the spline functionsmethods for tackling
the linear and nonlinear FDEs. Recently, Bhrawy et al. [20]
investigated the fractional integrals of modified generalized
Laguerre operational matrix to implement a numerical solu-
tion of the integrated form of the linear FDEs on semi-
infinite interval. Furthermore, Yuzbasi [21] proposed a new
collocationmethod based onBessel functions to introduce an
approximate solution of a class of FDEs. We refer also to the
recent papers [22–26] where operational matrices of several
orthogonal polynomials are developed for solving linear and
nonlinear ODEs and FDEs.
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In this paper, the Caputo fractional derivative of gen-
eralized Laguerre operational matrix (GLOM) is stated
and proved. The main aim of this paper is to extend the
application of generalized Laguerre spectral tau method
based on GLOM to develop a direct solution technique
for the numerical solution of linear multi-term FDEs on
a semi-infinite interval. Moreover, we develop the gener-
alized Laguerre pseudo-spectral approximation based on
the GLOM for reducing the nonlinear multi-term FDEs
subject to nonhomogeneous initial conditions to a system
of nonlinear algebraic equations. Finally, the accuracy of the
proposed algorithms is demonstrated by test problems. The
numerical results are given to show that the proposed spectral
algorithms based on generalized Laguerre operational matrix
of Caputo fractional derivatives are very effective for linear
and nonlinear FDEs.

The outline of the paper is as follows. In Section 2, we
present some preliminaries. Section is devoted to drive the
GLOM of Caputo fractional derivative. In Section 4, we
extend the generalized Laguerre spectral tau and pseudo-
spectral approximations based on the GLOM of fractional
derivative for solving multiorder linear and nonlinear FDEs.
Some numerical experiments are presented in Section 5.
Finally, we conclude the paper with some remarks.

2. Some Basic Preliminaries

The two most commonly used definitions are the Riemann-
Liouville operator and the Caputo operator. We give some
definitions and properties of fractional derivatives and gen-
eralized Laguerre polynomials.

Definition 1. The fractional integral operator of Riemann-
Liouville sense is defined as

𝐽
]
𝑓 (𝑥) =

1

Γ (])
∫

𝑥

0

(𝑥 − 𝑡)
]−1
𝑓 (𝑡) 𝑑𝑡, ] > 0, 𝑥 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(1)

Definition 2. The Caputo fractional derivatives is given by

𝐷
]
𝑓 (𝑥)

= 𝐽
𝑚−]
𝐷
𝑚

𝑓 (𝑥)

=
1

Γ (𝑚 − ])
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−]−1 𝑑

𝑚

𝑑𝑡𝑚
𝑓 (𝑡) 𝑑𝑡,

𝑚 − 1 < ] < 𝑚, 𝑥 > 0,

(2)

where𝐷𝑚 is𝑚th order differential operator.

The Caputo fractional derivative operator satisfies
𝐷

]
𝐶 = 0, (𝐶 is a constant) , (3)

𝐷
]
𝑥
𝛽

=

{{

{{

{

0, for 𝛽 ∈ 𝑁
0
, 𝛽 < ⌈]⌉ ,

Γ (𝛽 + 1)

Γ (𝛽 + 1 − ])
𝑥
𝛽−]
,

for 𝛽 ∈ 𝑁
0
, 𝛽 ≥ ⌈]⌉ or

𝛽 ∉ 𝑁, 𝛽 > ⌊]⌋ ,

(4)

where ⌈]⌉ and ⌊]⌋ are the ceiling and floor functions,
respectively, while𝑁 = {1, 2, . . .} and𝑁

0
= {0, 1, 2, . . .}.

The Caputo’s derivative operator is a linear operation:

𝐷
]
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆𝐷

]
𝑓 (𝑥) + 𝜇𝐷

]
𝑔 (𝑥) , (5)

where 𝜆 and 𝜇 are constants.
We recall below some relevant properties of the general-

ized Laguerre polynomials (Szego [27] and Funaro [28]). let
Λ = (0,∞) and let 𝑤(𝛼)(𝑥) = 𝑥𝛼𝑒−𝑥 be a weight function on
Λ in the usual sense. Define

𝐿
2

𝑤
(𝛼) (Λ)

= {V | V is measurable on Λ and ‖V‖
𝑤
(𝛼) < ∞} ,

(6)

with the inner product and norm

(𝑢, V)
𝑤
(𝛼) = ∫

Λ

𝑢 (𝑥) V (𝑥)𝑤(𝛼) (𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼) = (V, V)1/2

𝑤
(𝛼) .

(7)

For 𝛼 > −1, the generalized Laguerre polynomials are given
by

𝐿
(𝛼)

𝑖
(𝑥) =

1

𝑖!
𝑥
−𝛼

𝑒
𝑥

𝜕
𝑖

𝑥
(𝑥
𝑖+𝛼

𝑒
−𝑥

) , 𝑖 = 1, 2, . . . . (8)

According to [29] for 𝛼 > −1, we get

𝜕
𝑥
𝐿
(𝛼)

𝑖
(𝑥) = −𝐿

(𝛼+1)

𝑖−1
(𝑥) ,

𝐿
(𝛼)

𝑖+1
(𝑥)

=
1

𝑖 + 1
[(2𝑖 + 𝛼 + 1 − 𝑥) 𝐿

(𝛼)

𝑖
(𝑥) − (𝑖 + 𝛼) 𝐿

(𝛼)

𝑖−1
(𝑥)] ,

𝑖 = 1, 2, . . . ,

(9)

where 𝐿(𝛼)
0
(𝑥) = 1 and 𝐿(𝛼)

1
(𝑥) = 1 + 𝛼 − 𝑥.

The generalized Laguerre polynomials are the 𝐿2
𝑤
(𝛼)(Λ)-

orthogonal system;

∫

∞

0

𝐿
(𝛼)

𝑗
(𝑥) 𝐿
(𝛼)

𝑘
(𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥 = ℎ
𝑘
𝛿
𝑗𝑘
, (10)

where ℎ
𝑘
= Γ(𝑘 + 𝛼 + 1)/𝑘!.

The generalized Laguerre polynomials on Λ are obtained
from

𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘=0

(−1)
𝑘

Γ (𝑖 + 𝛼 + 1)

Γ (𝑘 + 𝛼 + 1) (𝑖 − 𝑘)!𝑘!
𝑥
𝑘

, 𝑖 = 0, 1, . . . .

(11)

The special value

𝐷
𝑞

𝐿
(𝛼)

𝑖
(0) = (−1)

𝑞

𝑖−𝑞

∑

𝑗=0

(𝑖 − 𝑗 − 1)!

(𝑞 − 1)! (𝑖 − 𝑗 − 𝑞)!
𝐿
(𝛼)

𝑗
(0) , 𝑖 ⩾ 𝑞,

(12)
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where 𝐿(𝛼)
𝑗
(0) = Γ(𝑗 + 𝛼 + 1)/Γ(𝛼 + 1)𝑗!, will be of important

use later, for treating the initial conditions of the given FDEs.
Let 𝑢(𝑥) ∈ 𝐿2

𝑤
(𝛼)(Λ), then 𝑢(𝑥)may be expressed in terms

of generalized Laguerre polynomials as

𝑢 (𝑥) =

∞

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) , (13)

𝑎
𝑗
=
1

ℎ
𝑘

∫

∞

0

𝑢 (𝑥) 𝐿
(𝛼)

𝑗
(𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥, 𝑗 = 0, 1, 2, . . . .

(14)

In particular applications, the generalized Laguerre polyno-
mials up to degree𝑁 + 1 are considered. Then we have

𝑢
𝑁
(𝑥) =

𝑁

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) . (15)

We will present the Laguerre-Gauss quadrature. Let
{𝑥
(𝛼)

𝑗
, 𝜛
(𝛼)

𝑗
} be the set of generalized Laguerre-Gauss quadra-

ture nodes and weights:

∫
Λ

𝜙 (𝑥)𝑤
(𝛼)

(𝑥) 𝑑𝑥 =

𝑁

∑

𝑗=0

𝜙 (𝑥
(𝛼)

𝑗
) 𝜛
(𝛼)

𝑗
. (16)

For the generalized Laguerre-Gauss quadrature, {𝑥(𝛼)
𝑗
} are the

zeros of 𝐿(𝛼)
𝑖+1
(𝑥), and

𝜛
(𝛼)

𝑗
= −

Γ (𝑖 + 𝛼 + 1)

(𝑖 + 1)!𝐿
(𝛼)

𝑖
(𝑥
(𝛼)

𝑗
) 𝜕
𝑥
𝐿
(𝛼)

𝑖+1
(𝑥
(𝛼)

𝑗
)

=
Γ (𝑖 + 𝛼 + 1) 𝑥

(𝛼)

𝑗

(𝑖 + 𝛼 + 1) (𝑖 + 1)![𝐿
(𝛼)

𝑖
(𝑥
(𝛼)

𝑗
)]
2
, 0 ≤ 𝑗 ≤ 𝑖.

(17)

3. GLOM of Fractional Derivatives

Let 𝑢(𝑥) ∈ 𝐿2
𝑤
(𝛼)(Λ), and then 𝑢(𝑥) may be expanded using

generalized Laguerre polynomials as

𝑢 (𝑥) =

∞

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) ,

𝑎
𝑗
=
1

ℎ
𝑘

∫

∞

0

𝑢 (𝑥) 𝐿
(𝛼)

𝑗
(𝑥) 𝑤
(𝛼)

(𝑥) 𝑑𝑥, 𝑗 = 0, 1, 2, . . . .

(18)

In particular applications, the generalized Laguerre poly-
nomials up to degree𝑁 + 1 are considered. Then we have

𝑢
𝑁
(𝑥) =

𝑁

∑

𝑗=0

𝑎
𝑗
𝐿
(𝛼)

𝑗
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) , (19)

where the vector 𝐶 and vector 𝜙(𝑥) are given by

𝐶
𝑇

= [𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑁
] ,

𝜙 (𝑥) = [𝐿
(𝛼)

0
(𝑥) , 𝐿

(𝛼)

1
(𝑥) , . . . , 𝐿

(𝛼)

𝑁
(𝑥)]
𝑇

.

(20)

Then the derivative of the vector 𝜙(𝑥) can be expressed by

𝑑𝜙 (𝑥)

𝑑𝑥
= D(1)𝜙 (𝑥) , (21)

whereD(1) is the (𝑁 + 1) × (𝑁 + 1) operational matrix of the
derivative given by

D(1) = −
(
(
(
(

(

0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

1 0 0 0 0 ⋅ ⋅ ⋅ 0 0

1 1 0 0 0 ⋅ ⋅ ⋅ 0 0

1 1 1 0 0 ⋅ ⋅ ⋅ 0 0

1 1 1 1 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

... ⋅ ⋅ ⋅
...

...
1 1 1 1 1 ⋅ ⋅ ⋅ 1 0

)
)
)
)

)

. (22)

By using (21), it is clear that

𝑑
𝑛

𝜙 (𝑥)

𝑑𝑥𝑛
= (D(1))

𝑛

𝜙 (𝑥) , (23)

where 𝑛 ∈ 𝑁 and the superscript in D(1) denotes matrix
powers. Thus

D(𝑛) = (D(1))
𝑛

, 𝑛 = 1, 2, . . . . (24)

Lemma 3. Let 𝐿(𝛼)
𝑖
(𝑥) be a generalized Laguerre polynomial

Then

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) = 0, 𝑖 = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (25)

In the following theoremwe prove the operational matrix
of Caputo fractional derivative for the generalized Laguerre
vector (20).

Theorem 4. Suppose ] > 0, the fractional derivative of order
] of 𝜙(𝑥) is given by

𝐷
]
𝜙 (𝑥) ≃ D(])𝜙 (𝑥) , (26)

whereD(]) is the (𝑁+1)×(𝑁+1) operational matrix of Caputo
fractional derivative and is given by

D(])

=

(
(
(
(
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0

...
...

... ⋅ ⋅ ⋅
...

0 0 0 ⋅ ⋅ ⋅ 0

𝑆] (⌈]⌉ , 0) 𝑆] (⌈]⌉ , 1) 𝑆] (⌈]⌉ , 2) ⋅ ⋅ ⋅ 𝑆] (⌈]⌉ ,𝑁)
...

...
... ⋅ ⋅ ⋅

...
𝑆] (𝑖, 0) 𝑆] (𝑖, 1) 𝑆] (𝑖, 2) ⋅ ⋅ ⋅ 𝑆] (𝑖, 𝑁)

...
...

... ⋅ ⋅ ⋅
...

𝑆] (𝑁, 0) 𝑆] (𝑁, 1) 𝑆] (𝑁, 2) ⋅ ⋅ ⋅ 𝑆] (𝑁,𝑁)

)
)
)
)
)
)

)

,

(27)
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where
𝑆] (𝑖, 𝑗)

=

𝑖

∑

𝑘=⌈]⌉

𝑗

∑

ℓ=0

((−1)
𝑘+ℓ

𝑗!Γ (𝑖 + 𝛼 + 1)

× Γ (𝑘 − ] + 𝛼 + ℓ + 1) )

× ((𝑖 − 𝑘)! (𝑗 − ℓ)!ℓ!Γ (𝑘 − ] + 1)

× Γ (𝑘 + 𝛼 + 1) Γ (𝛼 + ℓ + 1) )
−1

.

(28)

Proof. Applying (4) to (11) gives

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥)

=

𝑖

∑

𝑘=0

(−1)
𝑘

Γ (𝑖 + 𝛼 + 1)

(𝑖 − 𝑘)!𝑘!Γ (𝑘 + 𝛼 + 1)
𝐷

]
𝑥
𝑘

=

𝑖

∑

𝑘=⌈]⌉

(−1)
𝑘

Γ (𝑖 + 𝛼 + 1)

(𝑖 − 𝑘)!Γ (𝑘 − ] + 1) Γ (𝑘 + 𝛼 + 1)
𝑥
𝑘−]
,

𝑖 = ⌈]⌉ , . . . , 𝑁.

(29)

Now, 𝑥𝑘−] can be approximated by 𝑁 + 1 terms of the
generalized Laguerre polynomials to get

𝑥
𝑘−]

=

𝑁

∑

𝑗=0

𝑏
𝑘𝑗
𝐿
(𝛼)

𝑗
(𝑥) , (30)

where 𝑏
𝑗
is directly obtained from (18), and

𝑏
𝑗
=

𝑗

∑

ℓ=0

(−1)
ℓ
𝑗!Γ (𝑘 − ] + 𝛼 + ℓ + 1)

(𝑗 − ℓ)! (ℓ)!Γ (ℓ + 𝛼 + 1)
. (31)

Employing (29)–(31) yields

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) =

𝑁

∑

𝑗=0

𝑆] (𝑖, 𝑗) 𝐿
(𝛼)

𝑗
(𝑥) , 𝑖 = ⌈]⌉ , . . . , 𝑁, (32)

where

𝑆] (𝑖, 𝑗) =
𝑖

∑
𝑘=⌈]⌉

𝑗

∑
ℓ=0

((−1)
𝑘+ℓ

𝑗!Γ (𝑖 + 𝛼 + 1)

×Γ (𝑘 − ] + 𝛼 + ℓ + 1) )

((𝑖 − 𝑘)! (𝑗 − ℓ)!ℓ!

× Γ (𝑘 − ] + 1) Γ (𝑘 + 𝛼 + 1)

× Γ (𝛼 + ℓ + 1) )
−1

.

(33)

Accordingly, (32) can be written in a vector form as follows:

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥)

≃ [𝑆] (𝑖, 0) , 𝑆] (𝑖, 1) , 𝑆] (𝑖, 2) , . . . , 𝑆] (𝑖, 𝑁)] 𝜙 (𝑥) ,

𝑖 = ⌈]⌉ , . . . , 𝑁.

(34)

Also according to Lemma 3, we can write

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) ≃ [0, 0, 0, . . . , 0] 𝜙 (𝑥) , 𝑖 = 0, 1, . . . , ⌈]⌉ − 1.

(35)

A combination of (34) and (35) leads to the desired result.

Remark 5. In the case of ] = 𝑛 ∈ 𝑁, Theorem 4 gives the
same result as (23).

4. Applications of GLOM for Multiterm FDEs

In this section, we are interested in using GLOM in combi-
nation with two types of spectral methods for solving linear
and nonlinear FDEs.

4.1. Linear Multiorder FDEs. Here, we propose a direct
solution technique to approximate linear multi-term FDEs
with constant coefficients using the generalized Laguerre tau
method in combination with GLOM.

Consider the linear multi-order FDE

𝐷
]
𝑢 (𝑥) =

𝑘

∑

𝑗=1

𝛾
𝑗
𝐷
𝛽𝑗𝑢 (𝑥) + 𝛾

𝑘+1
𝑢 (𝑥) + 𝑔 (𝑥) , in Λ, (36)

with initial conditions

𝑢
(𝑖)

(0) = 𝑑
𝑖
, 𝑖 = 0, . . . , 𝑚 − 1, (37)

where 𝛾
𝑗
(𝑗 = 1, . . . , 𝑘 + 1) are constants and 𝑚 − 1 <

] ≤ 𝑚, 0 < 𝛽
1
< 𝛽
2
< ⋅ ⋅ ⋅ < 𝛽

𝑘
< ]. Also 𝐷]

𝑢(𝑥) ≡

𝑢
(])
(𝑥) is ] order of Caputo fractional derivative for 𝑢(𝑥),

𝑑
𝑖
(𝑖 = 0, . . . , 𝑚−1) are the initial values, and 𝑔(𝑥) is a source

function.
To solve the fractional FDE (36)-(37), we approximate

𝑢(𝑥) and 𝑔(𝑥) by generalized Laguerre polynomials as

𝑢 (𝑥) ≃

𝑁

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) , (38)

𝑔 (𝑥) ≃

𝑁

∑

𝑖=0

𝑔
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐺

𝑇

𝜙 (𝑥) , (39)

where vector 𝐺 = [𝑔
0
, . . . , 𝑔

𝑁
]
𝑇 is known.

By usingTheorem 4 (relation equations (26), and (38)) we
have

𝐷
]
𝑢 (𝑥) ≃ 𝐶

𝑇

𝐷
]
𝜙 (𝑥) = 𝐶

𝑇

𝐷
(])
𝜙 (𝑥) ,

𝐷
𝛽𝑗𝑢 (𝑥) ≃ 𝐶

𝑇

𝐷
𝛽𝑗𝜙 (𝑥) = 𝐶

𝑇

𝐷
(𝛽𝑗)𝜙 (𝑥) , 𝑗 = 1, . . . , 𝑘.

(40)

Making use of (38)–(40), the residual 𝑅
𝑁
(𝑥) for (36) can be

given from

𝑅
𝑁
(𝑥) = (𝐶

𝑇

𝐷
(])
− 𝐶
𝑇

𝑘

∑

𝑗=1

𝛾
𝑗
D(𝛽𝑗) − 𝛾

𝑘+1
𝐶
𝑇

− 𝐺
𝑇

)𝜙 (𝑥) .

(41)



Abstract and Applied Analysis 5

The use of generalized Laguerre tau approximation gen-
erates (𝑁 − 𝑚 + 1) system of linear equations

⟨𝑅
𝑁
(𝑥) , 𝐿

(𝛼)

𝑗
(𝑥)⟩

= ∫

∞

0

𝑤 (𝑥) 𝑅
𝑁
(𝑥) 𝐿
(𝛼)

𝑗
(𝑥) 𝑑𝑥 = 0,

𝑗 = 0, 1, . . . , 𝑁 − 𝑚.

(42)

Substituting (23) and (38) into (37) generates 𝑚 set of linear
equations

𝑢
(𝑖)

(0) = 𝐶
𝑇D(𝑖)𝜙 (0) = 𝑑

𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1. (43)

The combination of (42) and (43) reduces the solution of
(36)-(37) to a linear system of algebraic equations, which can
be solved for unknown coefficients of the vector 𝐶 by any
direct solver technique to find the spectral solution 𝑢(𝑥).

4.2. Nonlinear Multiorder FDEs. In this section, we present
the generalized Laguerre pseudo-spectral approximation in
combination with GLOM of fractional derivative to find the
approximate solution 𝑢

𝑁
(𝑥).

Let us consider the nonlinear multi-term FDE

𝐷
]
𝑢 (𝑥) = 𝐹 (𝑥, 𝑢 (𝑥) , 𝐷

𝛽1𝑢 (𝑥) , . . . , 𝐷
𝛽𝑘𝑢 (𝑥)) , in Λ,

(44)

subject to the nonhomogeneous initial conditions (37), where
𝐹 can be nonlinear in general. In [30], the authors studied the
existence of solutions of a class of nonlinear FDEs.

Now, we will implement the generalized Laguerre oper-
ational matrix for treating this nonlinear problem. To do
this, firstly, we approximate 𝑢(𝑥), 𝐷]

𝑢(𝑥), and 𝐷𝛽𝑗𝑢(𝑥), for
𝑗 = 1, . . . , 𝑘 by using (38), (40), respectively, and then the
operational matrices formulation of (44) can be expressed as

𝐶
𝑇D(])𝜙 (𝑥)

≃ 𝐹 (𝑥, 𝐶
𝑇

𝜙 (𝑥) , 𝐶
𝑇D(𝛽1)𝜙 (𝑥) , . . . , 𝐶𝑇D(𝛽𝑘)𝜙 (𝑥)) .

(45)

Also, making use of (38) and (23) in (44) yields

𝑢
(𝑖)

(0) = 𝐶
𝑇D(𝑖)𝜙 (0) = 𝑑

𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1. (46)

Collocating the operationalmatrix equation (45) at (𝑁−𝑚+1)
nodes of the generalized Laguerre-Gauss quadrature on Λ,

𝐶
𝑇D(])𝜙 (𝑥(𝛼)

𝑗
)

≃ 𝐹 (𝑥, 𝐶
𝑇

𝜙 (𝑥
(𝛼)

𝑗
) , 𝐶
𝑇D(𝛽1)𝜙 (𝑥(𝛼)

𝑗
) ,

. . . , 𝐶
𝑇D(𝛽𝑘)𝜙 (𝑥(𝛼)

𝑗
)) .

(47)

Combining (𝑁 − 𝑚 + 1) algebraic equations (47) with 𝑚
initial conditions (46) generates a system of (𝑁 + 1) non-
linear algebraic equations. This system may be evaluated by
implementing Newton’s iterative method to find the spectral
solution 𝑢(𝑥).

5. Numerical Results

This section considers several numerical examples to demon-
strate the accuracy and applicability of the proposed spectral
algorithms based on operational matrix of fractional deriva-
tives of generalized Laguerre polynomials. A comparison
of the results obtained by adopting different choices of the
generalized Laguerre parameter 𝛼 reveals that the present
algorithms are very convenient for all choices of 𝛼 and
produces accurate solutions to multi-term FDEs on semi-
infinite interval.

Example 1. Consider the linear FDE

𝐷
2

𝑢 (𝑥) + 𝐷
3/2

𝑢 (𝑥) + 𝑢 (𝑥) = 1 + 𝑥,

𝑢 (0) = 1, 𝑢
󸀠

(0) = 1, 𝑥 ∈ Λ,

(48)

where 𝑢(𝑥) = 1 + 𝑥 is the exact solution.

If we apply the operational matrix formulation, the
generalized Laguerre spectral tau method with 𝑁 = 2, we
get

𝑢 (𝑥) = 𝑐
0
𝐿
(𝛼)

0
(𝑥) + 𝑐

1
𝐿
(𝛼)

1
(𝑥) + 𝑐

2
𝐿
(𝛼)

2
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) . (49)

Here, we have

D(1) = −(
0 0 0

1 0 0

1 1 0

) ,

D(2) = (

0 0 0

0 0 0

1 0 0

) ,

D(3/2) = (
0 0 0

0 0 0

𝑆
3/2
(2, 0) 𝑆

3/2
(2, 1) 𝑆

3/2
(2, 2)

) ,

𝐺 = (

𝑔
0

𝑔
1

𝑔
2

) ,

(50)

where 𝑔
𝑗
and 𝑆](𝑖, 𝑗) are defined in (18) and (27).

Applying variational formulation of the tau method of
(48) yields

𝑐
0
+ 𝑐
2
+ 𝑆
3/2
(2, 0) = 𝑔

0
. (51)

The treatment of initial conditions using (43) gives

𝑐
0
+ (𝛼 + 1) 𝑐

1
+
(𝛼 + 1) (𝛼 + 2)

2
𝑐
2
= 1,

−𝑐
1
− (𝛼 + 2) 𝑐

2
− 1 = 0.

(52)

Solving the resulted system of algebraic equations (51)-
(52) provides the unknown coefficients in terms of the
parameter 𝛼:

𝑐
0
= 𝛼 + 2, 𝑐

1
= −1, 𝑐

2
= 0. (53)
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Table 1: 𝑐
0
, 𝑐
1
, and 𝑐

2
for different values of 𝛼 for Example 1.

𝛼 𝑐
0

𝑐
1

𝑐
2

−0.5 1.5 −1 0

0 2 −1 0

0.5 2.5 −1 0

1 3 −1 0

2 4 −1 0

3 5 −1 0

Accordingly, the approximate solution can be written as

𝑢 (𝑥) = (𝑐
0
, 𝑐
1
, 𝑐
2
)(

𝐿
(𝛼)

0
(𝑥)

𝐿
(𝛼)

1
(𝑥)

𝐿
(𝛼)

2
(𝑥)

) = 1 + 𝑥, (54)

which is the exact solution.
Table 1 lists the values of 𝑐

0
, 𝑐
1
, and 𝑐

2
with different

choices of (𝛼). Indeed, we can achieve the exact solution
of this problem with all choices of the generalized Laguerre
parameters 𝛼.

Example 2. Consider linear FED

𝐷
2

𝑢 (𝑥) + 𝐷
1/2

𝑢 (𝑥) + 𝑢 (𝑥)

= 𝑥
2

+ 2 +
2.6666666667

Γ (0.5)
𝑥
1.5

,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 0, 𝑥 ∈ Λ.

(55)

The analytical solution is 𝑢(𝑥) = 𝑥2.

The use of technique described in Section 4.1 with𝑁 = 2

enables one to approximate the solution as

𝑢 (𝑥) = 𝑐
0
𝐿
(𝛼)

0
(𝑥) + 𝑐

1
𝐿
(𝛼)

0
(𝑥) + 𝑐

2
𝐿
(𝛼)

2
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) . (56)

Here, we have

D(2) = (
0 0 0

0 0 0

1 0 0

) ,

D(1/2) = (

0 0 0

𝑆
1/2
(1, 0) 𝑆

1/2
(1, 1) 𝑆

1/2
(1, 2)

𝑆
1/2
(2, 0) 𝑆

1/2
(2, 0) 𝑆

1/2
(2, 0)

) ,

𝐺 = (

𝑔
0

𝑔
1

𝑔
2

) .

(57)

Therefore using (42), we obtain

𝑐
0
+ 𝑆
1/2
(1, 0) 𝑐

1
+ [𝑆
1/2
(2, 0) + 1] 𝑐

2
= 6. (58)

Table 2: 𝑐
0
, 𝑐
1
, and 𝑐

2
for different values of 𝛼 for Example 2.

𝛼 𝑐
0

𝑐
1

𝑐
2

−0.5 0.75 −3 2

0 2 −4 2

0.5 3.75 −5 2

1 6 −6 2

2 12 −8 2

3 20 −10 2

Now, making use of (43) yields

𝑐
0
+ (𝛼 + 1) 𝑐

1
+
(𝛼 + 1) (𝛼 + 2)

2
𝑐
2
= 0.

−𝑐
1
− (𝛼 + 2) 𝑐

2
= 0.

(59)

Finally by solving (58)-(59), then, we get

𝑐
0
= 𝛼
2

+ 3𝛼 + 2, 𝑐
1
= −2𝛼 − 4, 𝑐

2
= 2. (60)

Thus we can write

𝑢 (𝑥) = (𝑐
0
, 𝑐
1
, 𝑐
2
)(

𝐿
(𝛼)

0
(𝑥)

𝐿
(𝛼)

1
(𝑥)

𝐿
(𝛼)

2
(𝑥)

) = 𝑥
2

, (61)

which is the exact solution.
In Table 2, we exhibit the values of 𝑐

0
, 𝑐
1
and 𝑐
2
with

different choices of (𝛼).

Example 3. Consider linear initial value problemof fractional
order (see [31])

𝐷
2

𝑢 (𝑥) − 2𝐷𝑢 (𝑥) + 𝐷
1/2

𝑢 (𝑥) + 𝑢 (𝑥)

= 𝑥
3

− 6𝑥
2

+ 6𝑥 +
16

5√𝜋
𝑥
2.5

,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 0, 𝑥 ∈ Λ,

(62)

whose exact solution is given by 𝑢(𝑥) = 𝑥3.

If we apply the operational matrix formulation, the
generalized Laguerre spectral tau method with 𝑁 = 2, we
get

𝑢 (𝑥) =

3

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝐶

𝑇

𝜙 (𝑥) . (63)
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Also,

D(2) = (

0 0 0 0

0 0 0 0

1 0 0 0

2 1 0 0

) , D(1) = −(

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

) ,

D(1/2) =((

(

0 0 0 0

𝑆
1/2
(1, 0) 𝑆

1/2
(1, 1) 𝑆

1/2
(1, 2) 𝑆

1/2
(1, 3)

𝑆
1/2
(2, 0) 𝑆

1/2
(2, 1) 𝑆

1/2
(2, 2) 𝑆

1/2
(2, 3)

𝑆
1/2
(3, 0) 𝑆

1/2
(3, 1) 𝑆

1/2
(3, 2) 𝑆

1/2
(3, 3)

)
)

)

,

𝐺 = (

𝑔
0

𝑔
1

𝑔
2

𝑔
3

).

(64)

Therefore using (42), we obtain

𝑐
0
+ [2𝑐
1
+ 𝑆
1/2
(1, 0)] 𝑐

1

+ [3 + 𝑆
1/2
(2, 0)] 𝑐

2

+ [4 + 𝑆
1/2
(3, 0)] 𝑐

3
− 𝑔
0
= 0,

[1 + 𝑆
1/2
(1, 1)] 𝑐

1

+ [2 + 𝑆
1/2
(2, 1)] 𝑐

2

+ [3 + 𝑆
1/2
(3, 1)] 𝑐

3
− 𝑔
1
= 0,

𝐶
𝑇

𝜙 (0) = 𝑐
0
+ (𝛼 + 1) 𝑐

1
+
(𝛼 + 1) (𝛼 + 2)

2
𝑐
2

+
(𝛼 + 1) (𝛼 + 2) (𝛼 + 3)

6
𝑐
3
= 0,

𝐶
𝑇D(1)𝜙 (0) = −𝑐

1
− (𝛼 + 2) 𝑐

2
−
(𝛼 + 3) (𝛼 + 2)

2
𝑐
3
= 0.

(65)

Accordingly, we get

𝑐
0
= 𝛼
3

+ 6𝛼 + 11𝛼 + 6,

𝑐
1
= −3𝛼

2

− 15𝛼 − 18,

𝑐
2
= 6𝛼 + 18, 𝑐

3
= −6.

(66)

Thus we can write

𝑢 (𝑥) = (𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
)
(
(
(

(

𝐿
(𝛼)

0
(𝑥)

𝐿
(𝛼)

1
(𝑥)

𝐿
(𝛼)

2
(𝑥)

𝐿
(𝛼)

3
(𝑥)

)
)
)

)

= 𝑥
3

, (67)

which is the exact solution. The 4 unknown coefficients with
various choices of 𝛼 are listed in Table 3.

Table 3: 𝑐
0
, 𝑐
1
, 𝑐
2
, and 𝑐

3
for different values of 𝛼 for Example 3.

𝛼 𝑐
0

𝑐
1

𝑐
2

𝑐
3

−0.5 15/8 −45/4 15 −6

0 6 −18 18 −6

0.5 105/8 −105/4 21 −6

1 24 −36 24 −6

2 60 −60 30 −6

3 120 −90 36 −6

Example 4. Consider the following FDE:

𝐷
5/2

𝑢 (𝑥) + 𝐷
2

𝑢 (𝑥) − 2𝐷
1/2

𝑢 (𝑥) + 4𝑢 (𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 0, 𝑥 ∈ Λ,

(68)

where

𝑔 (𝑥) = 4𝑥
9

+ 72𝑥
7

−
2Γ (10)

Γ (19/2)
𝑥
17/2

+
Γ (10)

Γ (15/2)
𝑥
13/2 (69)

and the exact solution is 𝑢(𝑥) = 𝑥9.

Now, if we use the spectral tau approximation based on
with𝑁 = 9 and 𝑥 ∈ Λ, then we obtain

𝑢 (𝑥) =

9

∑

𝑖=0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) = 𝑥

9

, (70)

which is the exact solution.

Example 5. Consider the nonhomogeneous fractional initial
value problem

𝐷
2

𝑢 (𝑥) + 𝐷
]
𝑢 (𝑥) + 𝑢 (𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 1, 𝑢
󸀠

(0) = 0, 𝑥 ∈ (0, 10) ,

(71)

where

𝑔 (𝑥)

= ]6 (𝑒((1/]
3
)𝑥)

+ sin( 1
]3
𝑥)) + 𝑒

((1/]3)𝑥)
− sin( 1

]3
𝑥)

+
1

Γ (−])
∫

𝑥

0

(𝑥 − 𝑡)
−]−1

(𝑒
((1/]3)𝑥)

− sin( 1
]3
𝑥))𝑑𝑡

(72)

and the exact solution is given by 𝑢(𝑥) = 𝑒
((1/]3)𝑥)

−

sin((1/]3)𝑥).

Table 4 introduces the maximum absolute errors, using
the tau method based on GLOM of fractional derivative, at
] = 1.5 and with different choices of the parameters 𝛼 and
𝑁. The curves of exact solutions and approximate solutions
obtained by the proposed method for 𝛼 = 1,𝑁 = 10, and ] =
1.5, 1.7, 1.9 are shown in Figures 1 and 2. From these figures,
the exact and approximate solutions are completely conciet.
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Table 4: Maximum absolute error for various choices of 𝛼 and 𝑁
for Example 5.

𝑁 ] 𝛼 GLOM 𝛼 GLOM 𝛼 GLOM
5 1.5 0 1.69 ⋅ 10

−2

1 4.41 ⋅ 10
−2

2 1.07 ⋅ 10
−1

10 1.08 ⋅ 10
−3

4.17 ⋅ 10
−4

6.52 ⋅ 10
−4

15 4.99 ⋅ 10
−6

1.46 ⋅ 10
−5

1.33 ⋅ 10
−5

20 3.57 ⋅ 10
−8

1.22 ⋅ 10
−7

2.41 ⋅ 10
−7

25 3.50 ⋅ 10
−10

1.30 ⋅ 10
−9

4.07 ⋅ 10
−9

30 4.03 ⋅ 10
−12

1.55 ⋅ 10
−11

3.47 ⋅ 10
−11

35 5.10 ⋅ 10
−14

2.08 ⋅ 10
−13

6.50 ⋅ 10
−13

40 6.87 ⋅ 10
−16

2.64 ⋅ 10
−15

5.29 ⋅ 10
−15
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Figure 1: Comparing the exact solution and the approximate
solutions at𝑁 = 10, 𝛼 = 1, and ] = 1.5, 1.7, 1.9.

Example 6. Let us consider the nonlinear fractional initial
value problem

𝐷
2

𝑢 (𝑥) + 𝐷
1/2

𝑢 (𝑥) + 𝑢
2

(𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 1, 𝑢
󸀠

(0) = 0, 𝑥 ∈ (0, 20) ,

(73)

where

𝑔 (𝑥) = cos2 (𝛾𝑥) − 𝛾2 cos (𝛾𝑥)

+
1

Γ (−1/2)
∫

𝑥

0

(𝑥 − 𝑡)
−]−1 cos (𝛾𝑡) 𝑑𝑡

(74)

and the exact solution is given by 𝑢(𝑥) = cos(𝛾𝑥).

The solution of this problem is obtained by applying
the generalized Laguerre-Gauss collocationmethod based on
generalized Laguerre operational matrix. The absolute error
between the exact and the approximate solution obtained by
the proposed method 𝛾 = 0.01, 𝛼 = 1 and𝑁 = 30 is given in
Figure 3.
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Figure 2: Comparing the exact solution and the approximate
solutions at𝑁 = 10, 𝛼 = 1, and ] = 1.5, 1.7, 1.9.
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Figure 3: The absolute error for 𝛾 = 1/100, 𝛼 = 1 at𝑁 = 30.

Example 7. We consider the nonlinear fractional initial value
problem

𝐷
𝜉

𝑢 (𝑥) + 𝐷
𝜂

𝑢 (𝑥)𝐷
𝜃

𝑢 (𝑥) + 𝑢
2

(𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 0, 𝑢
󸀠󸀠

(0) = 0, 𝑥 ∈ (0, 1) ,

𝜁 ∈ (2, 3) , 𝜂 ∈ (1, 2) , 𝜃 ∈ (0, 1) ,

(75)

where

𝑔 (𝑥) = 𝑥
6

+
6𝑥
3−𝜉

Γ (4 − 𝜉)
+

36𝑥
6−𝜂−𝜃

Γ (4 − 𝜂) Γ (4 − 𝜃)
(76)

and the exact solution is 𝑢(𝑥) = 𝑥3.

The solution of this problem is obtained by applying
the generalized Laguerre-Gauss collocationmethod based on
generalized Laguerre operational matrix for 𝜉 = 2.001, 𝜂 =
1.001, and 𝜃 = 0.001. The exact solution and approximate
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Figure 4: Comparing the exact solution and the approximate
solutions at𝑁 = 5, 10 and 𝛼 = 1.

solutions obtained by the proposed method for 𝛼 = 1 and
two choices of𝑁 are shown in Figure 4.

6. Conclusion

In this paper, the generalized Laguerre operational matrix of
Caputo fractional derivative was derived. Furthermore, we
have implemented the generalized Laguerre tau approxima-
tion in combination with the GLOM with the generalized
Laguerre family to solve the linear FDEs. In addition, com-
bining the pseudo-spectral approximation and the GLOM
of fractional derivative was applied to develop an accurate
approximate solution of nonlinear FDEs. The generalized
Laguerre-Gauss quadrature points were used as a collocation
nodes. This method reduces the nonlinear FDEs to a system
of algebraic equation in the expansion coefficients which
can be solved by any standard technique. The numerical
results demonstrate that the proposed spectral algorithms are
accurate and efficient.
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