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We study a class of fractional stochastic dynamic control systems of Sobolev type in Hilbert spaces. We use fixed point technique,
fractional calculus, stochastic analysis, and methods adopted directly from deterministic control problems for the main results. A
new set of sufficient conditions for approximate controllability is formulated and proved. An example is also given to provide the
obtained theory.

1. Introduction

We are concerned with the following nonlocal fractional
stochastic system of Sobolev type:

𝐶
𝐷
𝑞

𝑡
[𝐿𝑥 (𝑡)] = 𝑀𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝜎 (𝑡, 𝑥 (𝑡))
𝑑𝑤 (𝑡)

𝑑𝑡
,

𝑥 (0) + 𝑔 (𝑥 (𝑡)) = 𝑥0,

(1)

where 𝐶𝐷𝑞
𝑡
is the Caputo fractional derivative of order 𝑞,

0 < 𝑞 ≤ 1, and 𝑡 ∈ 𝐽 = [0, 𝑏]. Let 𝑋 and 𝑌 be two Hilbert
spaces, and the state 𝑥(⋅) takes its values in𝑋. We assume that
the operators𝐿 and𝑀 are defined on domains contained in𝑋
and ranges contained in 𝑌, the control function 𝑢(⋅) belongs
to the space 𝐿2

Γ
(𝐽, 𝑈), a Hilbert space of admissible control

functions with𝑈 as a Hilbert space, and 𝐵 is a bounded linear
operator from 𝑈 into 𝑌. It is also assumed that 𝑓 : 𝐽 × 𝑋 →
𝑌, 𝑔 : 𝐶(𝐽 : 𝑋) → 𝑌 and 𝜎 : 𝐽 × 𝑋 → 𝐿

0

2
are appropriate

functions; 𝑥
0
is Γ
0
measurable 𝑋-valued random variables

independent of𝑤. Here Γ, Γ
0
, 𝐿0
2
, and𝑤will be specified later.

The field of fractional differential equations and its
applications has gained a lot of importance during the past
three decades, mainly because it has become a powerful
tool in modeling several complex phenomena in numerous
seemingly diverse and widespread fields of science and
engineering [1–8] Recently, there has been a significant
development in the existence and uniqueness of solutions of
initial and boundary value problem for fractional evolution
systems [9].

Controllability is one of the important fundamental con-
cepts in mathematical control theory and plays a vital role in
both deterministic and stochastic control systems. Since the
controllability notion has extensive industrial and biological
applications, in the literature, there aremany different notions
of controllability, both for linear and nonlinear dynamical
systems. Controllability of the deterministic and stochastic
dynamical control systems in infinite dimensional spaces is
well developed using different kinds of approaches. It should
be mentioned that the theory of controllability for nonlinear
fractional dynamical systems is still in the initial stage. There
are fewworks in controllability problems for different kinds of
systems described by fractional differential equations [10, 11].
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The exact controllability for semilinear fractional order
system, when the nonlinear term is independent of the
control function, is proved by many authors [12–15]. In these
papers, the authors have proved the exact controllability by
assuming that the controllability operator has an induced
inverse on a quotient space. However, if the semigroup
associatedwith the system is compact, then the controllability
operator is also compact and hence the induced inverse does
not exist because the state space is infinite dimensional [16].
Thus, the concept of exact controllability is too strong and
has limited applicability, and the approximate controllability
is a weaker concept than complete controllability and it is
completely adequate in applications for these control systems.

In [17, 18] the approximate controllability of first order
delay control systems has been proved when nonlinear term
is a function of both state function and control function by
assuming that the corresponding linear system is approxi-
mately controllable. To prove the approximate controllability
of first order system, with or without delay, a relation between
the reachable set of a semilinear system and that of the
corresponding linear system is proved in [19–23]. There are
several papers devoted to the approximate controllability
for semilinear control systems, when the nonlinear term is
independent of control function [24–27].

Stochastic differential equations have attracted great
interest due to their applications in various fields of science
and engineering. There are many interesting results on the
theory and applications of stochastic differential equations
(see [12, 28–32] and the references therein). To build more
realistic models in economics, social sciences, chemistry,
finance, physics, and other areas, stochastic effects need to
be taken into account. Therefore, many real world problems
can be modeled by stochastic differential equations. The
deterministic models often fluctuate due to noise, so we
must move from deterministic control to stochastic control
problems.

In the present literature there are only a limited number
of papers that deal with the approximate controllability of
fractional stochastic systems [33], as well as with the existence
and controllability results of fractional evolution equations of
Sobolev type [34].

Sakthivel et al. [35] studied the approximate control-
lability of a class of dynamic control systems described
by nonlinear fractional stochastic differential equations in
Hilbert spaces. More recent works can be found in [10, 11].
Debbouche et al. [4] established a class of fractional nonlocal
nonlinear integrodifferential equations of Sobolev type using
new solution operators. Fečkan et al. [36] presented the con-
trollability results corresponding to two admissible control
sets for fractional functional evolution equations of Sobolev
type in Banach spaces with the help of two new characteristic
solution operators and their properties, such as boundedness
and compactness.

It should be mentioned that there is no work yet reported
on the approximate controllability of Sobolev type fractional
deterministic stochastic control systems. Motivated by the
above facts, in this paper we establish the approximate con-
trollability for a class of fractional stochastic dynamic systems
of Sobolev Type with nonlocal conditions in Hilbert spaces.

The paper is organized as follows: in Section 2, we present
some essential facts in fractional calculus, semigroup theory,
stochastic analysis, and control theory that will be used to
obtain our main results. In Section 3, we state and prove
existence and approximate controllability results for Sobolev
type fractional stochastic system (1). The last sections deal
with an illustrative example and a discussion for possible
future work in this direction.

2. Preliminaries

In this section we give some basic definitions, notations,
properties, and lemmas, which will be used throughout the
work. In particular, we state main properties of fractional
calculus [37–40], well-known facts in semigroup theory [41–
43], and elementary principles of stochastic analysis [31, 44].

Definition 1. The fractional integral of order 𝛼 > 0 of a
function 𝑓 ∈ 𝐿1([𝑎, 𝑏],R+) is given by

𝐼
𝛼

𝑎
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠) 𝑑𝑠, (2)

where Γ is the gamma function. If 𝑎 = 0, we canwrite 𝐼𝛼𝑓(𝑡) =
(𝑔
𝛼
∗ 𝑓)(𝑡), where

𝑔
𝛼 (𝑡) :=

{{

{{

{

1

Γ (𝛼)
𝑡
𝛼−1
, 𝑡 > 0,

0, 𝑡 ≤ 0,

(3)

and as usual, ∗ denotes the convolution of functions. More-
over, lim

𝛼→0
𝑔
𝛼
(𝑡) = 𝛿(𝑡), with 𝛿 the delta Dirac function.

Definition 2. The Riemann-Liouville derivative of order 𝑛 −
1 < 𝛼 < 𝑛, 𝑛 ∈ N, for a function 𝑓 ∈ 𝐶([0,∞)) is given by

𝐿
𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠, 𝑡 > 0. (4)

Definition 3. The Caputo derivative of order 𝑛 − 1 < 𝛼 < 𝑛,
𝑛 ∈ N, for a function 𝑓 ∈ 𝐶([0,∞)) is given by

𝐶
𝐷
𝛼
𝑓 (𝑡) =

𝐿
𝐷
𝛼

(𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)
(0)) , 𝑡 > 0. (5)

Remark 4. The following properties hold (see, e.g., [45]).

(i) If 𝑓 ∈ 𝐶𝑛([0,∞)), then

𝐶
𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠 = 𝐼
𝑛−𝛼
𝑓
𝑛
(𝑡) ,

𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N.

(6)

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If 𝑓 is an abstract function with values in𝑋, then the

integrals which appear in Definitions 1–3 are taken in
Bochner’s sense.
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We introduce the following assumptions on the operators
𝐿 and𝑀.

(H
1
) 𝐿 and𝑀 are linear operators, and𝑀 is closed.

(H2) 𝐷(𝐿) ⊂ 𝐷(𝑀) and 𝐿 is bijective.
(H
3
) 𝐿−1 : 𝑌 → 𝐷(𝐿) ⊂ 𝑋 is a linear compact operator.

Remark 5. From (H
3
), we deduce that 𝐿−1 is a bounded

operator; for short, we denote 𝐶 = ‖𝐿
−1
‖. Note (H

3
) also

implies that 𝐿 is closed since 𝐿−1 is closed and injective;
then its inverse is also closed. It comes from (H

1
)–(H
3
)

and the closed graph theorem; we obtain the boundedness
of the linear operator 𝑀𝐿−1 : 𝑌 → 𝑌. Consequently,
𝑀𝐿
−1 generates a semigroup {𝑆(𝑡) := 𝑒𝑀𝐿

−1

𝑡
, 𝑡 ≥ 0}. We

suppose that 𝑀0 := sup
𝑡≥0
‖𝑆(𝑡)‖ < ∞. According to

previous definitions, it is suitable to rewrite problem (1) as
the equivalent integral equation

𝐿𝑥 (𝑡) = 𝐿 [𝑥0 − 𝑔 (𝑥)]

+
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× [𝑀𝑥 (𝑠) + 𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠) ,

(7)

provided the integral in (7) exists. Before formulating the
definition of mild solution of (1), we first give the following
definitions, corollaries, lemmas, and notations.

Let (Ω, Γ, 𝑃) be a complete probability space equipped
with a normal filtration Γ

𝑡
, 𝑡 ∈ 𝐽 satisfying the usual

conditions (i.e., right continuous and Γ
0
containing all 𝑃-null

sets). We consider four real separable spaces 𝑋, 𝑌, 𝐸, and 𝑈
and 𝑄-Wiener process on (Ω, Γ

𝑏
, 𝑃) with the linear bounded

covariance operator 𝑄 such that tr𝑄 < ∞. We assume that
there exists a complete orthonormal system {𝑒

𝑛
}
𝑛≥1

in 𝐸, a
bounded sequence of nonnegative real numbers {𝜆

𝑛
} such

that 𝑄𝑒
𝑛
= 𝜆
𝑛
𝑒
𝑛
, 𝑛 = 1, 2, . . ., and a sequence {𝛽

𝑛
}
𝑛≥1

of
independent Brownian motions such that

⟨𝑤 (𝑡) , 𝑒⟩ =

∞

∑

𝑛=1

√𝜆
𝑛
⟨𝑒
𝑛
, 𝑒⟩ 𝛽
𝑛 (𝑡) , 𝑒 ∈ 𝐸, 𝑡 ∈ 𝐽. (8)

and Γ
𝑡
= Γ
𝑤

𝑡
, where Γ𝑤

𝑡
is the sigma algebra generated

by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}. Let 𝐿0
2
= 𝐿
2
(𝑄
1/2
𝐸;𝑋) be

the space of all Hilbert-Schmidt operators from 𝑄1/2𝐸 to 𝑋
with the inner product ⟨𝜓, 𝜋⟩𝐿0

2
= tr[𝜓𝑄𝜋∗]. Let 𝐿2(Γ

𝑏
, 𝑋)

be the Banach space of all Γ𝑏-measurable square integrable
random variables with values in the Hilbert space𝑋. Let 𝐸(⋅)
denote the expectation with respect to the measure 𝑃. Let
𝐶(𝐽; 𝐿

2
(Γ, 𝑋)) be theHilbert space of continuousmaps from 𝐽

into 𝐿2(Γ, 𝑋) satisfying sup
𝑡∈𝐽
𝐸‖𝑥(𝑡)‖

2
< ∞. Let𝐻2(𝐽; 𝑋) be

a closed subspace of 𝐶(𝐽; 𝐿2(Γ, 𝑋)) consisting of measurable
and Γ
𝑡
-adapted𝑋-valued process 𝑥 ∈ 𝐶(𝐽; 𝐿2(Γ, 𝑋)) endowed

with the norm ‖𝑥‖
𝐻
2

= (sup
𝑡∈𝐽
𝐸‖𝑥(𝑡)‖

2

𝑋
)
1/2. For details, we

refer the reader to [35, 44] and references therein.
The following results will be used through out this paper.

Lemma 6 (see [33]). Let 𝐺 : 𝐽 × Ω → 𝐿
0

2
be a strongly

measurable mapping such that ∫𝑏
0
𝐸‖𝐺(𝑡)‖

𝑝

𝐿
0

2

𝑑𝑡 < ∞. Then

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝐺(𝑠)𝑑𝑤(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

≤ 𝐿
𝐺
∫

𝑡

0

𝐸‖𝐺(𝑠)‖
𝑝

𝐿
0

2

𝑑𝑠 (9)

for all 0 ≤ 𝑡 ≤ 𝑏 and 𝑝 ≥ 2, where 𝐿
𝐺 is the constant involving

𝑝 and 𝑏.

Now, we present the mild solution of the problem (1).

Definition 7 (compare with [46, 47] and [36, 45]). A stochas-
tic process 𝑥 ∈ 𝐻2(𝐽, 𝑋) is a mild solution of (1) if, for
each control 𝑢 ∈ 𝐿2

Γ
(𝐽, 𝑈), it satisfies the following integral

equation:

𝑥 (𝑡) = S (𝑡) 𝐿 [𝑥0 − 𝑔 (𝑥)]

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

T (𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

T (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠) ,

(10)

where S(𝑡) andT(𝑡) are characteristic operators given by

S (𝑡) = ∫
∞

0

𝐿
−1
𝜉𝑞 (𝜃) 𝑆 (𝑡

𝑞
𝜃) 𝑑𝜃,

T (𝑡) = 𝑞∫
∞

0

𝐿
−1
𝜃𝜉
𝑞 (𝜃) 𝑆 (𝑡

𝑞
𝜃) 𝑑𝜃.

(11)

Here, 𝑆(𝑡) is a 𝐶0-semigroup generated by the linear
operator𝑀𝐿−1 : 𝑌 → 𝑌; 𝜉

𝑞
is a probability density function

defined on (0,∞); that is, 𝜉
𝑞
(𝜃) ≥ 0, 𝜃 ∈ (0,∞) and

∫
∞

0
𝜉
𝑞
(𝜃)𝑑𝜃 = 1.

Lemma 8 (see [45, 48, 49]). The operators {S(𝑡)}
𝑡≥0

and
{T(𝑡)}

𝑡≥0
are strongly continuous; that is, for 𝑥 ∈ 𝑋 and

0 ≤ 𝑡1 < 𝑡2 ≤ 𝑏, one has ‖S(𝑡2)𝑥 − S(𝑡1)𝑥‖ → 0 and
‖T(𝑡2)𝑥 −T(𝑡1)𝑥‖ → 0 as 𝑡

2
→ 𝑡
1
.

We impose the following conditions on data of the
problem.

(i) For any fixed 𝑡 ≥ 0,T(𝑡) andS(𝑡) are bounded linear
operators; that is, for any 𝑥 ∈ 𝑋,

‖T (𝑡) 𝑥‖ ≤ 𝐶𝑀0 ‖𝑥‖ , ‖S (𝑡) 𝑥‖ ≤
𝐶𝑀
0

Γ (𝑞)
‖𝑥‖ . (12)

(ii) The functions 𝑓 : 𝐽 × 𝑋 → 𝑌, 𝜎 : 𝐽 × 𝑋 → 𝐿
0

2
and

𝑔 : 𝐶(𝐽 : 𝑋) → 𝑌 satisfy linear growth and Lipschitz
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conditions. Moreover, there exist positive constants
𝑁1, 𝑁2 > 0, 𝐿1, 𝐿2 > 0, and 𝑘1, 𝑘2 > 0 such that

󵄩󵄩󵄩󵄩𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)
󵄩󵄩󵄩󵄩

2
≤ 𝑁
1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

󵄩󵄩󵄩󵄩𝑓(𝑡, 𝑥)
󵄩󵄩󵄩󵄩

2
≤ 𝑁
2
(1 + ‖𝑥‖

2
) ,

󵄩󵄩󵄩󵄩𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)
󵄩󵄩󵄩󵄩

2

𝐿
0

2

≤ 𝐿
1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

‖𝜎(𝑡, 𝑥)‖
2

𝐿
0

2

≤ 𝐿
2
(1 + ‖𝑥‖

2
) ,

󵄩󵄩󵄩󵄩𝑔(𝑥) − 𝑔(𝑦)
󵄩󵄩󵄩󵄩

2
≤ 𝑘1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

󵄩󵄩󵄩󵄩𝑔(𝑥)
󵄩󵄩󵄩󵄩

2
≤ 𝑘2 (1 + ‖𝑥‖

2
) .

(13)

(iii) The linear stochastic system is approximately control-
lable on 𝐽.

For each 0 ≤ 𝑡 < 𝑏, the operator 𝛼(𝛼𝐼 + Ψ𝑏
0
)
−1
→ 0 in

the strong operator topology as 𝛼 → 0
+, where Ψ𝑏

0
= ∫
𝑏

0
(𝑏 −

𝑠)
2(𝑞−1)

T(𝑏−𝑠)𝐵𝐵∗T∗(𝑏−𝑠)𝑑𝑠 is the controllability Gramian.
Here 𝐵∗ denotes the adjoint of 𝐵, andT∗(𝑡) is the adjoint of
T(𝑡).

Observe that Sobolev type nonlocal linear fractional
deterministic control system

𝐶
𝐷
𝑞

𝑡
[𝐿𝑥 (𝑡)] = 𝑀𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽,

𝑥 (0) + 𝑔 (𝑥 (𝑡)) = 𝑥0,

(14)

corresponding to (1) is approximately controllable on 𝐽 iff
the operator 𝛼(𝛼𝐼 + Ψ𝑏

0
)
−1
→ 0 strongly as 𝛼 → 0

+. The
approximate controllability for linear fractional deterministic
control system (14) is a natural generalization of approximate
controllability of linear first order control system (𝑞 = 1,
𝑔 = 0, and 𝐿 is the identity) [50].

Definition 9. The system (1) is approximately controllable on
𝐽 ifR(𝑏) = 𝐿2(Ω, Γ

𝑏
, 𝑋), where

R (𝑏) = {𝑥 (𝑏) = 𝑥 (𝑏, 𝑢) : 𝑢 ∈ 𝐿
2

Γ
(𝐽, 𝑈)} . (15)

Here 𝐿2
Γ
(𝐽, 𝑈) is the closed subspace of 𝐿2

Γ
(𝐽 × Ω;𝑈),

consisting of all Γ
𝑡
-adapted, 𝑈-valued stochastic processes.

The following lemma is required to define the control
function [35].

Lemma 10. For any 𝑥
𝑏
∈ 𝐿
2
(Γ
𝑏
, 𝑋), there exists 𝜑 ∈

𝐿
2

Γ
(Ω; 𝐿
2
(0, 𝑏; 𝐿

0

2
)) such that 𝑥

𝑏
= 𝐸𝑥
𝑏
+ ∫
𝑏

0
𝜑(𝑠)𝑑𝑤(𝑠).

Now for any 𝛼 > 0 and 𝑥
𝑏
∈ 𝐿
2
(Γ
𝑏
, 𝑋), one defines the

control function in the following form:

𝑢
𝛼
(𝑡, 𝑥) = 𝐵

∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡)

× [(𝛼𝐼 + Ψ
𝑏

0
)
−1

{𝐸𝑥𝑏 −S (𝑏) 𝐿 [𝑥0 − 𝑔 (𝑥)]}

+∫

𝑡

0

(𝛼𝐼 + Ψ
𝑏

0
)
−1

𝜑 (𝑠) 𝑑𝑤 (𝑠)]

− 𝐵
∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡)

× ∫

𝑡

0

(𝛼𝐼 + Ψ
𝑏

0
)
−1

(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− 𝐵
∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡)

× ∫

𝑡

0

(𝛼𝐼 + Ψ
𝑏

0
)
−1

(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠)

× 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠) .

(16)

Lemma 11. There exist positive real constants 𝑀̂, 𝑁̂ such that,
for all 𝑥, 𝑦 ∈ 𝐻

2
, one has

𝐸
󵄩󵄩󵄩󵄩𝑢
𝛼
(𝑡, 𝑥) − 𝑢

𝛼
(𝑡, 𝑦)

󵄩󵄩󵄩󵄩

2
≤ 𝑀̂𝐸

󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)
󵄩󵄩󵄩󵄩

2
, (17)

𝐸
󵄩󵄩󵄩󵄩𝑢
𝛼
(𝑡, 𝑥)

󵄩󵄩󵄩󵄩

2
≤ 𝑁̂ (

1

𝑏
+ 𝐸‖𝑥(𝑡)‖

2
) . (18)

Proof. We start to prove (17). Let 𝑥, 𝑦 ∈ 𝐻
2
; from Hölder’s

inequality, Lemma 6, and the assumption on the data, we
obtain

𝐸
󵄩󵄩󵄩󵄩𝑢
𝛼
(𝑡, 𝑥) − 𝑢

𝛼
(𝑡, 𝑦)

󵄩󵄩󵄩󵄩

2

≤ 3𝐸
󵄩󵄩󵄩󵄩󵄩󵄩
𝐵
∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡) (𝛼𝐼 + Ψ

𝑏

0
)
−1

×S (𝑏) 𝐿 [𝑔 (𝑥 (𝑡)) − 𝑔 (𝑦 (𝑡))]
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 3𝐸
󵄩󵄩󵄩󵄩󵄩
𝐵
∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡)

× ∫

𝑡

0

(𝛼𝐼 + Ψ
𝑏

0
)
−1

(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩

2

+ 3𝐸
󵄩󵄩󵄩󵄩󵄩
𝐵
∗
(𝑏 − 𝑡)

𝑞−1
T
∗
(𝑏 − 𝑡)

× ∫

𝑡

0

(𝛼𝐼 + Ψ
𝑏

0
)
−1

(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠)

× [𝜎 (𝑠, 𝑥 (𝑠)) − 𝜎 (𝑠, 𝑦 (𝑠))] 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩

2
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≤
3

𝛼2
‖𝐵‖
2
(𝑏)
2𝑞−2
(𝐶𝑀0)

2
(
𝐶𝑀0

Γ(𝑞)
)

2

‖𝐿‖
2
𝑘1𝐸
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩

2

+
3

𝛼2
‖𝐵‖
2
(𝑏)
2𝑞−2
(
𝐶𝑀
0

Γ (𝑞)
)

4

𝑏
2𝑞−1

(2𝑞 − 1)
𝑁
1

× ∫

𝑡

0

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠

+
3

𝛼2
‖𝐵‖
2
(𝑏)
2𝑞−2
(
𝐶𝑀0

Γ (𝑞)
)

4

𝑏
2𝑞−1

(2𝑞 − 1)
𝐿1

× ∫

𝑡

0

𝐸
󵄩󵄩󵄩󵄩𝑥(𝑠) − 𝑦(𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠

≤ 𝑀̂𝐸
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩

2
,

(19)

where 𝑀̂ = (3/𝛼
2
)‖𝐵‖
2
(𝑏)
2𝑞−2
{(𝐶𝑀

0
)
2
(𝐶𝑀
0
/Γ(𝑞))

2
‖𝐿‖
2
𝑘
1
+

(𝐶𝑀
0
/Γ(𝑞))

4
(𝑏
2𝑞−1
/(2𝑞 − 1))𝑏[𝑁

1
+ 𝐿
1
]}. The proof of the

inequality (18) can be established in a similar way to that of
(17).

3. Approximate Controllability

In this section, we formulate and prove conditions for
the existence and approximate controllability results of the
nonlocal fractional stochastic dynamic control system of
Sobolev type (1) using the contractionmapping principle. For
any 𝛼 > 0, define the operator 𝐹𝛼 : 𝐻2 → 𝐻2 by

𝐹
𝛼
𝑥 (𝑡) = S (𝑡) 𝐿 [𝑥0 − 𝑔 (𝑥)]

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

T (𝑡 − 𝑠) [𝐵𝑢
𝛼
(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

T (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠) .

(20)

We state and prove the following lemma, which will be
used for the main results.

Lemma 12. For any 𝑥 ∈ 𝐻
2
, 𝐹
𝛼
(𝑥)(𝑡) is continuous on 𝐽 in

𝐿
2-sense.

Proof. Let 0 ≤ 𝑡
1
< 𝑡
2
≤ 𝑏. Then for any fixed 𝑥 ∈ 𝐻

2
, from

(20), we have

𝐸
󵄩󵄩󵄩󵄩(𝐹𝛼𝑥)(𝑡2) − (𝐹𝛼𝑥)(𝑡1)

󵄩󵄩󵄩󵄩

2
≤ 4[

4

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

𝑖
(𝑡
2
) − Π
𝑥

𝑖
(𝑡
1
)
󵄩󵄩󵄩󵄩

2
] .

(21)

We begin with the first term and get

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

1
(𝑡2) − Π

𝑥

1
(𝑡1)
󵄩󵄩󵄩󵄩

2
= 𝐸
󵄩󵄩󵄩󵄩(S(𝑡2) − S(𝑡1))𝐿[𝑥0 − 𝑔(𝑥)]

󵄩󵄩󵄩󵄩

2

≤ ‖𝐿‖
2
[
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

2
+ 𝑘
2
(1 + ‖𝑥‖

2
)]

× 𝐸
󵄩󵄩󵄩󵄩S(𝑡2) −S(𝑡1)

󵄩󵄩󵄩󵄩

2
.

(22)

The strong continuity of S(𝑡) implies that the right-hand
side of the last inequality tends to zero as 𝑡

2
− 𝑡
1
→ 0.

Next, it follows fromHölder’s inequality and assumptions
on the data that

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

2
(𝑡2) − Π

𝑥

2
(𝑡1)
󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

0

(𝑡2 − 𝑠)
𝑞−1

T (𝑡2 − 𝑠) 𝐵𝑢
𝛼
(𝑠, 𝑥) 𝑑𝑠

−∫

𝑡
1

0

(𝑡1 − 𝑠)
𝑞−1

T(𝑡1 − 𝑠)𝐵𝑢
𝛼
(𝑠, 𝑥)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

(𝑡1 − 𝑠)
𝑞−1
(T (𝑡2 − 𝑠) −T (𝑡1 − 𝑠))

× 𝐵𝑢
𝛼
(𝑠, 𝑥) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

((𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
)T (𝑡

2
− 𝑠)

× 𝐵𝑢
𝛼
(𝑠, 𝑥) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝑞−1

T(𝑡
2
− 𝑠)𝐵𝑢

𝛼
(𝑠, 𝑥)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
𝑡
2𝑞−1

1

2𝑞 − 1

× ∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩(T(𝑡2 − 𝑠) −T(𝑡1 − 𝑠))𝐵𝑢

𝛼
(𝑠, 𝑥)𝑑𝑠

󵄩󵄩󵄩󵄩

2

+ (
𝐶𝑀0

Γ(𝑞)
)

2

‖𝐵‖
2
(∫

𝑡
1

0

((𝑡2 − 𝑠)
𝑞−1
− (𝑡1 − 𝑠)

𝑞−1
)
2

𝑑𝑠)

× (∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩𝑢
𝛼
(𝑠, 𝑥)

󵄩󵄩󵄩󵄩

2
𝑑𝑠)

+
(𝑡2 − 𝑡1)

2𝑞−1

1 − 2𝑞
(
𝐶𝑀0

Γ(𝑞)
)

2

‖𝐵‖
2
∫

𝑡
2

𝑡
1

𝐸
󵄩󵄩󵄩󵄩𝑢
𝛼
(𝑠, 𝑥)

󵄩󵄩󵄩󵄩

2
𝑑𝑠.

(23)

Also, we have

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

3
(𝑡
2
) − Π
𝑥

3
(𝑡
1
)
󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝑞−1

T (𝑡
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1

T(𝑡
1
− 𝑠)𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1
(T (𝑡
2
− 𝑠) −T (𝑡

1
− 𝑠))

×𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2



6 Abstract and Applied Analysis

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

((𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
)

×T (𝑡
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝑞−1

T (𝑡
2
− 𝑠) 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
𝑡
2𝑞−1

1

2𝑞 − 1

× ∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩(T (𝑡2 − 𝑠) −T (𝑡1 − 𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩

2

+ (
𝐶𝑀
0

Γ(𝑞)
)

2

(∫

𝑡
1

0

((𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
)
2

𝑑𝑠)

× (∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩𝑓(𝑠, 𝑥(𝑠))

󵄩󵄩󵄩󵄩

2
𝑑𝑠)

+
(𝑡
2 − 𝑡1)

2𝑞−1

1 − 2𝑞
(
𝐶𝑀0

Γ(𝑞)
)

2

∫

𝑡
2

𝑡
1

𝐸
󵄩󵄩󵄩󵄩𝑓(𝑠, 𝑥(𝑠))

󵄩󵄩󵄩󵄩

2
𝑑𝑠.

(24)

Furthermore, we use Lemma6 andprevious assumptions;
we obtain

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

4
(𝑡
2
) − Π
𝑥

4
(𝑡
1
)
󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝑞−1

T (𝑡
2
− 𝑠) 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠)

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1

T (𝑡
1
− 𝑠) 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1
(T (𝑡
2
− 𝑠) −T (𝑡

1
− 𝑠))

× 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

((𝑡2 − 𝑠)
𝑞−1
− (𝑡1 − 𝑠)

𝑞−1
)T (𝑡2 − 𝑠)

× 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝑞−1

T(𝑡2 − 𝑠)𝜎(𝑠, 𝑥(𝑠))𝑑𝑤(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐿
𝜎

𝑡
2𝑞−1

1

2𝑞 − 1

× ∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩(T(𝑡2 − 𝑠) −T(𝑡1 − 𝑠))𝜎(𝑠, 𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩

2

+ 𝐿
𝜎
(∫

𝑡
1

0

((𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
)
2

𝑑𝑠)

× (∫

𝑡
1

0

𝐸
󵄩󵄩󵄩󵄩T (𝑡2 − 𝑠) 𝜎 (𝑠, 𝑥 (𝑠))

󵄩󵄩󵄩󵄩

2
𝑑𝑠)

+ 𝐿𝜎

(𝑡2 − 𝑡1)
2𝑞−1

1 − 2𝑞
(
𝐶𝑀0

Γ(𝑞)
)

2

× ∫

𝑡
2

𝑡
1

𝐸
󵄩󵄩󵄩󵄩T(𝑡2 − 𝑠)𝜎(𝑠, 𝑥(𝑠))

󵄩󵄩󵄩󵄩

2
𝑑𝑠.

(25)

Hence using the strong continuity ofT(𝑡) and Lebesgue’s
dominated convergence theorem, we conclude that the right-
hand side of the previous inequalities tends to zero as 𝑡

2
−

𝑡
1
→ 0. Thus, we conclude 𝐹

𝛼
(𝑥)(𝑡) is continuous from

the right of [0, 𝑏). A similar argument shows that it is also
continuous from the left of (0, 𝑏].

Theorem 13. Assume hypotheses (i) and (ii) are satisfied.Then
the system (1) has a mild solution on 𝐽.

Proof. We prove the existence of a fixed point of the operator
𝐹
𝛼
by using the contractionmapping principle. First, we show

that 𝐹
𝛼
(𝐻
2
) ⊂ 𝐻

2
. Let 𝑥 ∈ 𝐻

2
. From (20), we obtain

𝐸
󵄩󵄩󵄩󵄩𝐹𝛼𝑥(𝑡)

󵄩󵄩󵄩󵄩

2
≤ 4[sup

𝑡∈𝐽

4

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

𝑖
(𝑡)
󵄩󵄩󵄩󵄩

2
] . (26)

Using assumptions (i)-(ii), Lemma 11, and standard com-
putations yields

sup
𝑡∈𝐽

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

1
(𝑡)
󵄩󵄩󵄩󵄩

2
≤ 𝐶
2
𝑀
2

0
‖𝐿‖
2
[
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

2
+ 𝑘
2
(1 + ‖𝑥‖

2
)] , (27)

sup
𝑡∈𝐽

4

∑

𝑖=2

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

𝑖
(𝑡)
󵄩󵄩󵄩󵄩

2

≤ (
𝐶𝑀
0

Γ(𝑞)
)

2
𝑏
2𝑞−1

2𝑞 − 1
‖𝐵‖
2
𝑁̂ (

1

𝑏
+ ‖𝑥‖
2

𝐻
2

)

+ (
𝐶𝑀0

Γ (𝑞)
)

2

[
𝑏
2𝑞−1

2𝑞 − 1
𝑁2 −

𝑏
2𝑞−1

2𝑞 − 1
𝐿2𝐿𝜎] (1 + ‖𝑥‖

2

𝐻
2

) .

(28)

Hence (26)–(28) imply that 𝐸󵄩󵄩󵄩󵄩𝐹𝛼𝑥
󵄩󵄩󵄩󵄩

2

𝐻
2

< ∞. By
Lemma 12, 𝐹

𝛼
𝑥 ∈ 𝐻

2
. Thus for each 𝛼 > 0, the operator

𝐹
𝛼
maps 𝐻

2
into itself. Next, we use the Banach fixed point

theorem to prove that 𝐹
𝛼
has a unique fixed point in𝐻

2
. We
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claim that there exists a natural 𝑛 such that𝐹𝑛
𝛼
is a contraction

on𝐻
2
. Indeed, let 𝑥, 𝑦 ∈ 𝐻

2
; we have

𝐸
󵄩󵄩󵄩󵄩(𝐹𝛼𝑥) (𝑡) − (𝐹𝛼𝑦) (𝑡)

󵄩󵄩󵄩󵄩

2

≤ 4

4

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩Π
𝑥

𝑖
(𝑡) − Π

𝑦

𝑖
(𝑡)
󵄩󵄩󵄩󵄩

2

≤ 4𝑘
1
𝐶
2
𝑀
2

0
‖𝐿‖
2
𝐸
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩

2

+ 4(
𝐶𝑀
0

Γ (𝑞)
)

2

× [𝑀̂‖𝐵‖
2 𝑏
2𝑞−1

2𝑞 − 1
+
𝑏
2𝑞−1

2𝑞 − 1
𝑁
1
+
𝑏
2𝑞−1

2𝑞 − 1
𝐿
1
𝐿
𝜎
]

× 𝐸
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩

2
.

(29)

Hence, we obtain a positive real constant 𝛾(𝛼) such that

𝐸
󵄩󵄩󵄩󵄩(𝐹𝛼𝑥) (𝑡) − (𝐹𝛼𝑦) (𝑡)

󵄩󵄩󵄩󵄩

2
≤ 𝛾 (𝛼) 𝐸

󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)
󵄩󵄩󵄩󵄩

2
, (30)

for all 𝑡 ∈ 𝐽 and all 𝑥, 𝑦 ∈ 𝐻
2
. For any natural number

𝑛, it follows from the successive iteration of the previous
inequality (30) that, by taking the supremum over 𝐽,

󵄩󵄩󵄩󵄩(𝐹
𝑛

𝛼
𝑥)(𝑡) − (𝐹

𝑛

𝛼
𝑦)(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
2

≤
𝛾
𝑛
(𝛼)

𝑛!

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
2

. (31)

For any fixed 𝛼 > 0, for sufficiently large 𝑛, 𝛾𝑛(𝛼)/𝑛! < 1.
It follows from (31) that 𝐹𝑛

𝛼
is a contraction mapping, so that

the contraction principle ensures that the operator 𝐹
𝛼
has a

unique fixed point 𝑥𝛼 in 𝐻2, which is a mild solution of (1).

Theorem 14. Assume that the assumptions (i)–(iii) hold.
Further, if the functions 𝑓 and 𝜎 are uniformly bounded and
{T(𝑡) : 𝑡 ≥ 0} is compact, then the system (1) is approximately
controllable on 𝐽.

Proof. Let 𝑥
𝛼
be a fixed point of 𝐹

𝛼
. By using the stochastic

Fubini theorem, it can be easily seen that

𝑥
𝛼 (𝑏)

= 𝑥
𝑏
− 𝛼(𝛼𝐼 + Ψ)

−1
(𝐸𝑥
𝑏
−S (𝑏) 𝐿 [𝑥0 − 𝑔 (𝑥)])

+ 𝛼∫

𝑏

0

(𝛼𝐼 + Ψ
𝑏

𝑠
)
−1

(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝛼 (𝑠)) 𝑑𝑠

+ 𝛼∫

𝑏

0

(𝛼𝐼 + Ψ
𝑏

𝑠
)
−1

[(𝑏 − 𝑠)
𝑞−1

T (𝑏 − 𝑠) 𝜎

× (𝑠, 𝑥
𝛼 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑤 (𝑠) .

(32)

It follows from the assumption on 𝑓, 𝑔, and 𝜎 that there
exists𝐷 > 0 such that

󵄩󵄩󵄩󵄩𝑓(𝑠, 𝑥𝛼(𝑠))
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑔(𝑥𝛼(𝑠))

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝜎(𝑠, 𝑥𝛼(𝑠))

󵄩󵄩󵄩󵄩

2
≤ 𝐷 (33)

for all 𝑠 ∈ 𝐽. Then there is a subsequence still denoted by
{𝑓(𝑠, 𝑥𝛼(𝑠)), 𝑔(𝑥𝛼(𝑠)), 𝜎(𝑠, 𝑥𝛼(𝑠))} which converges weakly to
some {𝑓(𝑠), 𝑔(𝑠), 𝜎(𝑠)} in 𝑌2 × 𝐿0

2
.

From the previous equation, we have

𝐸
󵄩󵄩󵄩󵄩𝑥𝛼(𝑏) − 𝑥𝑏

󵄩󵄩󵄩󵄩

2

≤ 8𝐸
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

0
)
−1

(𝐸𝑥
𝑏
−S(𝑏)𝐿𝑥

0
)
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 8𝐸
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

0
)
−1󵄩󵄩󵄩󵄩󵄩󵄩

2
󵄩󵄩󵄩󵄩S (𝑏) 𝐿 (𝑔 (𝑥𝛼 (𝑠)) − 𝑔 (𝑠))

󵄩󵄩󵄩󵄩

2

+ 8𝐸
󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

0
)
−1󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩S(𝑏)𝐿𝑔(𝑠)
󵄩󵄩󵄩󵄩

2

+ 8𝐸(∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

𝑠
)
−1

𝜑(𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
0

2

𝑑𝑠)

+ 8𝐸(∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

𝑠
)
−1󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩T (𝑏 − 𝑠) (𝑓 (𝑠, 𝑥𝛼 (𝑠)) − 𝑓 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠)

2

+ 8𝐸(∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

𝑠
)
−1

T(𝑏 − 𝑠)𝑓(𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠)

2

+ 8𝐸(∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

𝑠
)
−1󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩T(𝑏 − 𝑠)(𝜎(𝑠, 𝑥𝛼(𝑠)) − 𝜎(𝑠))

󵄩󵄩󵄩󵄩

2

𝐿
0

2

𝑑𝑠)

+ 8𝐸∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝛼(𝛼𝐼 + Ψ

𝑏

𝑠
)
−1

T(𝑏 − 𝑠)𝜎(𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
0

2

𝑑𝑠.

(34)

On the other hand, by assumption (iii), for all 0 ≤ 𝑠 <
𝑏, the operator 𝛼(𝛼𝐼 + Ψ𝑏

𝑠
)
−1
→ 0 strongly as 𝛼 → 0

+

and moreover ‖𝛼(𝛼𝐼 + Ψ𝑏
𝑠
)
−1
‖ ≤ 1. Thus, by the Lebesgue

dominated convergence theorem and the compactness of
both S(𝑡) andT(𝑡) it is implied that 𝐸‖𝑥

𝛼
(𝑏) − 𝑥

𝑏
‖
2
→ 0 as

𝛼 → 0
+. Hence, we conclude the approximate controllability

of (1).

In order to illustrate the abstract results of this work, we
give the following example.

4. Example

Consider the fractional stochastic system with nonlocal
condition of Sobolev type

𝜕
𝑞

𝜕𝑡𝑞
[𝑥 (𝑧, 𝑡) − 𝑥𝑧𝑧 (𝑧, 𝑡)] −

𝜕
2

𝜕𝑧2
𝑥 (𝑧, 𝑡)

= 𝜇 (𝑧, 𝑡) + 𝑓 (𝑡, 𝑥 (𝑧, 𝑡)) + 𝜎̂ (𝑡, 𝑥 (𝑧, 𝑡))
𝑑𝑤 (𝑡)

𝑑𝑡
,
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𝑥 (𝑧, 0) +

𝑚

∑

𝑘=1

𝑐𝑘𝑥 (𝑧, 𝑡𝑘) = 𝑥0 (𝑧) , 𝑧 ∈ [0, 1] ,

𝑥 (0, 𝑡) = 𝑥 (1, 𝑡) = 0, 𝑡 ∈ 𝐽,

(35)

where 0 < 𝑞 ≤ 1, 0 < 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑏 and 𝑐

𝑘
are positive

constants, 𝑘 = 1, . . . , 𝑚; the functions 𝑥(𝑡)(𝑧) = 𝑥(𝑡, 𝑧),
𝑓(𝑡, 𝑥(𝑡))(𝑧) = 𝑓(𝑡, 𝑥(𝑡, 𝑧)), 𝜎(𝑡, 𝑥(𝑡))(𝑧) = 𝜎̂(𝑡, 𝑥(𝑡, 𝑧)), and
𝑔(𝑥(𝑡))(𝑧) = ∑

𝑚

𝑘=1
𝑐
𝑘
𝑥(𝑧, 𝑡
𝑘
). The bounded linear operator

𝐵 : 𝑈 → 𝑋 is defined by𝐵𝑢(𝑡)(𝑧) = 𝜇(𝑧, 𝑡), 0 ≤ 𝑧 ≤ 1, 𝑢 ∈ 𝑈;
𝑤(𝑡) is a two-sided and standard one-dimensional Brownian
motion defined on the filtered probability space (Ω, Γ, 𝑃).

Let𝑋 = 𝐸 = 𝑈 = 𝐿2[0, 1]; define the operators 𝐿 : 𝐷(𝐿) ⊂
𝑋 → 𝑌 and 𝑀 : 𝐷(𝑀) ⊂ 𝑋 → 𝑌 by 𝐿𝑥 = 𝑥 − 𝑥󸀠󸀠 and
𝑀𝑥 = −𝑥

󸀠󸀠, where domains𝐷(𝐿) and𝐷(𝑀) are given by

{𝑥 ∈ 𝑋 : 𝑥, 𝑥
󸀠 are absolutely continuous, 𝑥󸀠󸀠 ∈ 𝑋,

𝑥 (0) = 𝑥 (1) = 0} .

(36)

Then 𝐿 and𝑀 can be written, respectively, as

𝐿𝑥 =

∞

∑

𝑛=1

(1 + 𝑛
2
) (𝑥, 𝑥

𝑛
) 𝑥
𝑛
, 𝑥 ∈ 𝐷 (𝐿) ,

𝑀𝑥 =

∞

∑

𝑛=1

−𝑛
2
(𝑥, 𝑥𝑛) 𝑥𝑛, 𝑥 ∈ 𝐷 (𝑀) ,

(37)

where 𝑥
𝑛(𝑧) = (√2/𝜋) sin 𝑛𝑧, 𝑛 = 1, 2, . . . is the orthogonal

set of eigen functions of𝑀. Further, for any 𝑥 ∈ 𝑋 we have

𝐿
−1
𝑥 =

∞

∑

𝑛=1

1

1 + 𝑛2
(𝑥, 𝑥𝑛) 𝑥𝑛,

𝑀𝐿
−1
𝑥 =

∞

∑

𝑛=1

−𝑛
2

1 + 𝑛2
(𝑥, 𝑥
𝑛
) 𝑥
𝑛
,

𝑆 (𝑡) 𝑥 =

∞

∑

𝑛=1

exp( −𝑛
2
𝑡

1 + 𝑛2
) (𝑥, 𝑥

𝑛
) 𝑥
𝑛
.

(38)

It is easy to see that 𝐿−1 is compact and bounded with
‖𝐿
−1
‖ ≤ 1 and𝑀𝐿−1 generates the above strongly continuous

semigroup 𝑆(𝑡) on𝑌with ‖𝑆(𝑡)‖ ≤ 𝑒−𝑡 ≤ 1.Therefore, with the
above choices, the system (35) can be written as an abstract
formulation of (1) and thus Theorem 13 can be applied to
guarantee the existence of mild solution of (35). Moreover,
it can be easily seen that Sobolev type deterministic linear
fractional control system corresponding to (35) is approxi-
mately controllable on 𝐽, which means that all conditions of
Theorem 14 are satisfied. Thus, fractional stochastic control
system of Sobolev type (35) is approximately controllable on
𝐽.

5. Conclusion

Sufficient conditions for the approximate controllability of
a class of dynamic control systems described by Sobolev

type nonlocal fractional stochastic differential equations in
Hilbert spaces are considered. Using fixed point technique,
fractional calculations, stochastic analysis, and methods
adopted directly from deterministic control problems. In
particular, conditions are formulated and proved under
the assumption that the approximate controllability of the
stochastic control nonlinear dynamical system is implied by
the approximate controllability of its corresponding linear
part. More precisely, the controllability problem is trans-
formed into a fixed point problem for an appropriate non-
linear operator in a function space. The main used tools are
the above required conditions, we guarantee the existence of
a fixed point of this operator and study controllability of the
considered systems.

Degenerate stochastic differential equations model the
phenomenon of convection-diffusion of ideal fluids and
therefore arise in a wide variety of important applications,
including, for instance, two or three phase flows in porous
media or sedimentation-consolidation processes. However,
to the best of our knowledge, no results yet exist on
approximate controllability for fractional stochastic degener-
ate systems. Upon making some appropriate assumptions, by
employing the ideas and techniques as in this paper, one can
establish the approximate controllability results for a class of
fractional stochastic degenerate differential equations.
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