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1 Introduction

As a matter of fact, it might be said that many phenomena of almost all practical engineer-
ing and applied science problems like physical applications, potential theory and electro-
statics are reduced to solving integral equations. Since these equations usually cannot be
solved explicitly, so it is required to obtain approximate solutions. There are numerous
numerical methods which have been focusing on the solution of integral equations. For
example, Tricomi in his book [1], introduced the classical method of successive approxi-
mations for integral equations. Variational iteration method [2] and Adomian decompo-
sition method [3] were effective and convenient for solving integral equations. Also, the
Homotopy analysis method (HAM) was proposed by Liao [4] and then has been applied in
[5]. Taylor expansion approach was presented for solving integral equations by Kanwal and
Liuin [6] and then has been extended in [7, 8]. In addition, Babolian et al. [9] solved some
integral equations systems by using the orthogonal triangular basis functions. Jafari et al.
[10] applied Legendre wavelets method to find numerical solution system of linear integral
equations. Moreover, some different valid methods for solving this kind of equations have
been developed. First time, the Bernstein polynomials have been used for the solution
of some linear and nonlinear differential equations in [11-14]. Mandal and Bhattacharya
[15] obtained approximate numerical solutions of some classes of integral equations by
using Bernstein polynomials. Also, they used these polynomials to approximate solution
of linear Volterra integral equations [16]. In addition, Maleknejad et al. [17] has applied
the polynomials for solving Volterra integral equations of the second kind. Furthermore,
in [18] an architecture of artificial neural networks (ANNs) was suggested to approximate
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solution of linear integral equations systems. For this aim, first the truncations of the Tay-
lor expansions for unknown functions were substituted in the original system. Then the
proposed neural network has been applied for adjusting the real coefficients of the given
expansions in the resulting system.

In this paper, we are going to propose a new numerical approach to approximate the
solutions of linear Fredholm and Volterra integral equations systems of the second kind.
This method converts the given systems with unique solutions, into a system of linear
algebraic equations in generalized case. To do this, first the Bernstein polynomials of cer-
tain degree n of unknown functions are substituted in the given integral equations system.
Suppose that the given closed interval [a, b] is partitioned into uniform spacing (b — a)/n
and nodes t; =a +ih (fori=0,...,n). ff we put t = ¢; (for i = 0,..., n), the given system of
integral equations, yields a linear algebraic system. The solution of the resulting system
yields the unknown Bernstein coefficients of the solution functions.

Here is an outline of the paper. Section 2 describes how to find approximate solutions of
the given linear integral equations systems by using the proposed approach. In Section 3,
the convergence of the method is established for each class of integral equations systems.
Finally in Section 4, two numerical examples are provided and the results are compared
with the analytical solutions to demonstrate the validity and applicability of the method.
Also, a comparison is made with other numerical approaches that were proposed recently
for solving the given systems.

2 The general method
The basic definition of integral equation is given in [15, 17, 19]. In this section, we intend
to use the Bernstein polynomials to get a new numerical method for solving the linear
Fredholm and Volterra integral equations systems of the second kind. In other words,
it will be described how to apply these polynomials for approximating solutions of the
unknowns in the systems.

2.1 System of the Fredholm integral equations
In this subdivision, we want to obtain a numerical solution of the linear Fredholm integral
equations system of the second kind in the form

> (Ay(0)E(®) f(t)+ (xi,» / tkl,(s,t)F,(s)ds) i=1,...,m 1)
j=1 j=1 4

or

YT AGOF®) = i) + X7 Gy [ Kij(s, )E (s) ),

S A OF) = £i(e) + X O [ Ki(s, O)E ) ds), 2)

S A (DFD)) = fon0) + 30 Ouy [ Koy (5, OE () ).

Let us consider

E’,n(t) = Zaj,an,p(t): (3)

p=0
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where
ajp, = Fla+ph) and h=(b-a)ln,

which are the Bernstein expansions of degree # for the unknown functions F;(t) for j =
1,...,m. After substituting these polynomials instead of the unknowns in the system (2),
we have:

Z;Z1(A1,j(t) Z;=o aj,po,n(t))
= A8 + X Chay S K (5,8) Xoln @1y Bpn(s) ds),

2;21 (Ai,j(t) Z;=0 aj,po,n (t))

4
=ﬂ(t) + Z;:l()w',j fﬂb ki,j(sr t) Zp 0%p pn( )dS) ( )

Z;Zl (Am,j(t) Z;=o aj,po,n (t))
= Fn8) + 2 oy [ Ko (5,8) a0 @1,y B () ).

In order to find a;,, in Eq. (3), the system (4) is converted to an algebraic system of linear
equations by replacing ¢ with t, = a + p(b — a)/n (for p = 0,..., n). Notice that in this way
we can skip the singularity problem. After this work, the system is transformed to the

following form:

Z l,i(tq)Bp,n(tq)) “Ajp
Jj=1 p=0
=fit,) + ZZ( l]/ ki j(s,4)Bp,n s)ds) @iy, i=1,...,mq=0,...,n (5)

j=1 p=0

For brevity, we define below symbols as:

b
T(l[i) U( q)Bpn( ) Rf;;g) - )\l/f kij(S: tq)Bp,n(s) ds.

Now we can write the system (5) in the form

ZZT;’ “Gjp f(tq)‘fZZR(” iy, i=1,...

j=1 p=0 j=1 p=0

,m;q=0,...,n. (6)

Consequently, the expression (6) can be summarized in a matrix form as follows:

WY =E + VY, (7)
where

Y= [al,o,...,al,,,,...,a,',o,...,a,»,n,...,am,o,...,am,n]T,

E=[A(t0) .o filtn)s o filt0)s oo filla)s s font0), oo fin(8)]
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W(l,l) . W(l,m) V(l,l) . V(l,m)
W = E ‘. . E and V= : . :
wiml) o ymm) ym) oy imm)

Parochial matrices W), V@) for (i,j = 1,...,m) are defined with following elements:

(&) (i) (i) (i)
Woo -+ Wonu Voo o Vo
weh = | . o, ye - o o,
W i i v
where
(1,1 T(6) (@) _ pliy)
w, T and Vol =Ry

The resulting generalized linear system can be solved for a;, forj=1,...,m; p=0,...,n
by a standard method, and hence F;(t) is obtained.

2.2 System of Volterra integral equations

At first, consider again the system of linear Volterra integral equations (1). For numerical
solving of the present system, the unknown function F;(t) is approximated by its Bernstein
approximation (3). Now we have the following system:

2ot 2 p0(ALi(6)Byn(D)) - @y
=fi(6) + X Yoy [ Kuj(s, 0By u(s) ds) - ap,

YA Y0 Aij()By (D)) - ajp ®)
= i) + 37 o (hij fy Kij(5:00Bpn(s) dS) -

> 20 Amj(O)Byu (D) - 4y,
= fon(8) + Y S o Comy [y Kimj(5, £)Byu(s) dis) - .

Similarly, by replacing the variable ¢ with ¢, = a + p(b — a)/n for p = 0,...,n, we obtain the
generalized linear system

m
ZZT;J p f(tq)+ZZR("’ @iy, i=1,...,mq=0,...,n, 9)
j=1 p=0 j=1 p=0

where

t
T8 = Attt RS =y [ Kilsit)By9ds
a
Consequently, the expression (6) can be summarized in a matrix form as follows:

W(l,l) . W(l,m) Yl El V(l,l) . V(l,m) Yl

W(Wt,l) . W(m,m) Ym Em V(m,l) . v(m,m) Ym
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where
(&) (&)
ﬂi,o ﬁ(to) WO,O A WO,n
Yi=| |, E=| : |, w@=| : o (10)
iy filt) W w)
and
(i) ()
V0,0 Vo
V) = :
Ve v

In the above generalized linear system, the symbols are defined as follows:

W) = i

(i) — pli)
a.p a.p and Vq,p =R

ap:
3 Convergence analysis
In this section, we prove that the present numerical method converges to the exact solu-

tions of the systems (2) and (1).

Theorem 1 Let F;,(¢) for j =1,...,m be the Bernstein polynomials of degree n such that
their coefficients have been produced by solving the generalized linear system (7). Then the
given polynomials converge to the exact solution of the Fredholm integral equations system

(2), when n — +00.

Proof Consider the system (2). Since the series (3) converge to Fj(t) forj = 1,...,m, respec-

tively, then we conclude that:

m m b
D (A§(OF(8) =fi(e) + Z(xi, f kij(s, £)F; . (s) ds>, i=1,...,m, 11)
j=1 j=1 “

and it holds that

Fi(t) = lim F, (&)

We defined the error function e, (t) by subtracting Eqs. (2) and (11) as follows:
en(t) =) einlt), (12)
i=1

where

m m b
ein(®) = Y Aij(t)(F(®) - Fu(t,7)) - ini( / kij(s, £) (Ej(s) = Eju(s)) ds>.

1 EEE
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We must prove that when n — +00, the error function e,(¢) tends to zero. Hence, we

proceed as follows:

m

leall < D lleiul

i=1

> (4O - [ (Ee) = Fou(®) )

j=1

m m b
+3 (m,,w [ Wi 156~ Bato)] ds).

i=1 j=1

'M§

I
—_

i

Since ||k;;|| and ||4;|| are bounded, therefore, ||Fj(s) — Fj,.(s)|| — O implies that |le,|| — 0
and the proof is completed. d

Theorem 2 Suppose that F;,(t) for j =1,...,m are the Bernstein polynomials of degree n
such that their coefficients have been produced by solving the generalized linear system (10).
Then the given polynomials converge to the exact solution of the Volterra integral equations

system (1), when n — +00.

Proof Consider the system (1). Using a similar procedure as an outline in mentioned The-
orem 1, we have the following corollary in which we are refrained from going through

proof details. Now the error of the approximation method can be written as
en(t) =) einlt), (13)
where
m m t
ein(t) = ZAi,j(t) (Fi(8) = Fyu(t,r)) — Z Aij (/ kij(s, ) (F;(s) = Eju(s)) dS)-
j=1 j=1 a

Due to Theorem 1, the error function e, (t) must tend to zero, when n — +00. Hence, we

proceed as follows:

leall = D lleinll

N

I
—_

S (EO - Eu) )

j-1

23 (vl [ w56 -Eao ) a5),
i=1 j=1 a

M

Il
[

Since ||k;;|l and ||A;| are bounded, therefore, ||(Fj(s) — Fj,(s))|| — O implies that ||e,|| — 0
and the proof follows immediately. The stability and the convergence of Bernstein poly-
nomials is studied in [12, 13]. O
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4 Numerical examples

In this section, in order to investigate the accuracy of the proposed method, we have cho-
sen three examples of linear integral equations systems of the second kind. Also, to show
the efficiency of the present method for our problem, results will be compared with the
exact solution. Moreover, the present method is compared with artificial neural network
(ANN) method and the trapezoidal quadrature rule (TQR) [18].

Example 1 Consider the system of linear Fredholm integral equations

2R(1) + 3F5(8) = it) + [, (¢ + $)Fi(s) ds + [ tsFa(s)ds,
BF(t) - 4F,(t) = fo(0) + [y (2ts — DFi(s)ds + [, (t — s)F>(s) ds

with

fi(t) =2¢ - t—iZ —tle-1)—t(In(4)-1) - 1,

4
fo(t) = =2t +In(4) + 3¢ + Pt tn(2) -2 +e,

where the exact solution is F; () = e’ and F»(¢) = ﬁ In this example, we illustrate the use
of the present technique to approximate solution of this integral equations system. Using

Eq. (7), the coefficients matrices W, V and E are calculated for # = 3 as following:

wl)  y2) yan  ya2) E
W= [Wm) w2 |’ V= yen e |’ E= E |’
where

2 0 0 0

29,630 8,889 11,110 2,120
W(l,l): 50,000 10,000 25,000 28,610

212 1,111 8,889 2,963 |’
2,861 2,500 10,000 5,000
L O 0 0 2 ]
3 0 0 0 ]
8,889 13,333 6,667 1,111
W(I.Z): 10,000 10,000 10,000 10,000
1,111 6,667 13,333 8,889 |’
10,000 10,000 10,000 10,000
. O 0 0 3
" 3 0 0 0 ]
8,889 13,333 6,667 1,111
W(Z,l) _ | 10,000 10,000 10,000 10,000

1,111 6,667 13,333 8,889 |’
10,000 10,000 10,000 10,000

| 0 0 0 3 |

[ -4 0 0 0

-296 -8889 -8889  -456
w2 _ | 250 5000 10,000 3,079

—456 —8,889 —8,889 -2,963 |’
3,079 10,000 5,000 2,500

0 0 0 —4
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21 3 1 5
20 10 20 5 0 0 0 0 2
2 un 7 1 i 1 1 1 3,563
11 _ 15 60 30 60 1,2 60 30 20 15 _ 1,233
V=15 4 1 ul| LA I O U O Er=1 350 |
60 15 60 30 30 15 10 15 625
3 7 2 9 1 1 3 1 1,333
L 10 20 5 20 20 15 20 5 250
R G B | -1 -1 =3 -l 7,420
4 4 4 4 20 10 20 5 2,390
13 -u =3 7 I S 4 1901
2,1 _ 60 60 20 60 2,2 _ 30 60 15 60 _ 635
Vsl % 4 1| L R S T Ex = 1007
60 60 20 60 60 15 60 30 348
8 -1 1 3 1 3 1 1 1291
L 20 20 20 20 5 20 10 20 362

Now by using the above matrices, thevector solution of the generalized linear system (7)
is obtained as follows:

[a10] [0.99997]
a 1.3380
ayy 1.8181
yo |@s|_| 27186
a2 0.5001
a1 0.5918
sy 0.6835
| 423 | |.1.0001 |

Consequently, the approximate functions F 3(t) and F,3(t) can be written as follows:

2,353 5 272 , 2,185 11,171
= e —t+ L+ ,
8,445 639 2,154 11,172

1,3

9 , 1 , 2747 1,846
F2,3 =—1 - t°+ t+ .
40 345,468,948,216,863 9,989 3,691

Figures 1 and 2 show the accuracy of the solution functions F; 5(¢t) and F, 3(¢), respectively.
As shown, the difference between the exact solutionand the computed solution is dispens-
able. Numerical results can be seen in Table 1 and also Table 2 illustrates the absolute
values of the errors obtained here and the absolute errors of [18] for this example.

Trapezoidal rule Moreover, this example is going to show the difference between the
present method and the trapezoidal quadrature rule.Consider again Example 1, let the
region of integration be subdivided into 4 equal intervals of width / = 0.25, 5 integration
nodes t; = 0.25i fori = 0,...,4. Table 2 illustrates the absolute values of the errors obtained
here and the absolute errors of [18] for this example. It should be noted that the Lagrange
basis functions have been used for finding the 4th degree collocation polynomials through
the points (¢;, F;j) for i = 0,...,4;j=1,2.

Example 2 Let the system of linear Volterra integral equations

(3t — 8)Fi(t) + (=2t + 5)F(t) = fi(t) + [o (¢t + S)Fi(s)ds + [, tsFa(s)ds,
4tFi(8) + (t = 5)F(0) = () + [5 (2t = s)Fy(s) ds + [, (s + st)Fa(s) dis,

IA
=~
IA
e
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26 Z i

22f Z ,

2F 1651 /7 -

1.81 0.5 0.51 —

14} 4

——F0

1.2F B

- - -F 0

1 | | | | | | | | 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 1 The comparison between F;(t) and Fj 3(t) for Example 1. Show the accuracy of the solution
functions F; (t) and F 3(t), respectively with exact solutions. As shown, the difference between the exact
solution and the computed solution is dispensable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 2 The comparison between F,(t) and F,3(t) for Example 1. The comparison between solution of
Example 1.
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Table 1 Numerical results with error analysis for Example 1

t= zl, Exact solution Approximate solution Error

F1(t) Fa(t) F1,3(t) F2,3(t) eq,3(t) e2,3(t)
r=1 16487 0.6667 16484 0.6658 0.0004 0.0009
r=2 1.2840 05714 1.2845 0.5724 0.0004 0.0010
r=3 1.1331 05333 1.1339 0.5350 0.0008 0.0016
r=4 1.0645 05161 1.0650 0.5174 0.0005 0.0012
r=5 1.0317 05079 1.0320 0.5087 0.0003 0.0008
r=6 1.0157 0.5039 1.0159 0.5044 0.0001 0.0005
r=7 1.0078 0.5020 1.0079 0.5023 0.0001 0.0003
r=8 1.0039 05010 1.0039 0.5012 0.0000 0.0002
r=9 1.0020 0.5005 1.0019 0.5007 0.0001 0.0002
Table 2 Absolute errors for Example 1
t= 2‘—, Presented method ANN method TQR

eq,4(t) e2,4(t) e1,4(t) e2,4(t) eq,4(t) e2,4(t)

r=1 350 x 107° 117 x 107 732 x 107 384 x 107 411 %10 735x 107
r=2 290 x 107° 1.06 x 107 1.15 x 107 562 % 107 381 x 107 514 x 107
r=3 478 x 107 2.50 x 107 534 x 107 6.11 x 107 129 x 1072 841 x 107
r=4 503 x 107 250 x 107 671 x 107 630 x 107 417 x 1073 328 x 1073
r=5 371 x 107 163 x 107 9.80 x 107 327 x 107 208 x 1073 820 x 107
r=6 253 %107 890 x 107 117 x 107 483 x 107 327 x 1073 353 %1073
r=7 179 x 107 430 x 107 415 %107 488 x 107 1.08 x 1072 271 x 1072
r=8 137 x 107 177 x 107 3.12x 107 487 x 1074 631 x 1073 384 x 107
r=9 116 x 107 430 x 10°° 1.16 x 107 482 x 107 2,10 x 107 384 x 1073
with

fi(t) = 5e" — 2t — 9sin(t) — t2e’ + 2t cos(t) — te' + 3tsin(z),

fo(t) = -3t — 4e’ +sin(t) — t2e’ + tcos(t) + te’ + 4tsin(t) — 1.

The exact solution of the present problem is, Fi(¢) = sin(¢) and F,(¢) = €. Similarly, the

present method is applied to approximate solution of the integral equations system. We

calculate the coefficients matrices W, V and E by using Eq. (10) for n = 4 as following:

WD) yr2)
T | wenye2 |’
where
-8 0
10283 1670
W 5,000 609
Ly _ 5 5
w - “16 4
137 _ 341
10,000 2,078
0 0
5 0 0
791 27 524
w2 625 16 621
) _| 3 3 9
w - 16 4 8
39 469 262
5000 5000 621
0 0 0

YD)y 12)
| yenye)
0 0
_85 188
609 617
_15 _5
8 4
773 _L546
1,047 1,047
0 0
0 0
3 39
16 2,500
3 3
4 16
524 791
621 1,250
0 1

E;
E,

) E-=

_ 127
5,000
5

_ 1691
1527

-2

’

E
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Wb -

w22 -

Vl,l _

V1,2 —

V2,1 —

V2,2 —

0 0
791 524
1250 621
1
I 1
117 528
5000 1,877
0 0
-5
_682  _
479
_1
4
137
10,000
0
0 0
737 165
3433 1391
8 1
160 2
932 821
1273 969
“ 16
15 15
0 0
141 132
4,538 5843
97
160 40
515 343
2587 891
4 08
15 15
0 0
834 781
3433 7,680
2 1
32 40
3596 650
3373 703
22 4
15 3
0 0
423 347
4,538 5120
v 7
80 20
1,359 657
4,096 1,024
2 4
5 5
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0 0 0
262 469 39
621 5,000 5,000
3 1 1
2 4 ’
791 1577 2,373
625 623 1,250
0 0 8
0 0 0 0
2373 L009 1,099 11
1,250 1,063 5,211 625
3 _ _1
-1 2 1 4
341 773 1546 1,691
2,078 1,047 1,047 1,527
0 0 0 -3
0 0 0
183 43 1
5120 7,680 30,720
27 2 R
80 15 480 |’
891 1701 343
1,024 2,560 1,314
6 4 22
5 3 15
0 0 0
77 19 1
10240 15360 12,288
1 7 1
80 120 96 ’
1,651 343 729
3,313 803 4,096
4 16 4
5 15 3
0 0 0
27 29 7
1,024 7,680 30,720
21 AL 7
80 120 480 |°
548 243 1,701
737 512 10,240
6 16 14
5 15 15
0 0
231 19 1
10,240 5120 4,096
1 7 1
40 60 48
1,701 729 361
2,048 1,024 1217
6 8
5 5 2 _

E,

Page 11 of 15

_ 4131
607
_ 2,501

3,999
203

155526
353

Now by using the above matrices, the vector solution of the generalized linear system (10)

is obtained as follows:

a 0

a1 0.4976
3% 1.0113
a3 1.1247

yo|a|_ 0.9062 .
a 1.0000
az 1.4883
asy 2.3751
a3 3.7268
| d24 | [ 7.3813 ]
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F\0
- - -F 0

1 1.001

Figure 3 The comparison between F;(t) and Fj 4(t) for Example 2. Show the accuracy of the solution
functions F; (t) and F 4(t), respectively with exact solutions. As shown, the difference between the exact
solution and the computed solution is dispensable.

Consequently, the approximate functions F; 4(¢) and F, 4(£) can be written as follows:

108 , 319 , 142 , 613
= ¢t - £+ 1,
3565 1,532

F1,4

t
5,855 616

197 , 352 ;3 489t2 1,793
+

=—t +—t"+ t+1
1,779 10,621 818 1,836

2,4

Similarly, Figures 3 and 4 show the accuracy of the solution functions F; 4(¢) and F4(t), re-
spectively. As shown, the difference betweenthe exact solution and the computed solution

is dispensable. Similarly, numerical results can be seen in Table 3.

Trapezoidal rule Suppose that the region of integration is subdivided into 5 equal in-
tervals of width / = 0.4, 6 integration nodes ¢; = 0.4i for i = 0,...,5. Table 4 illustrates the
absolute values of the errors obtained here and the absolute errors of [18] for this example.
Furthermore, the Lagrange interpolation method has been used to design the interpola-

tion polynomials.
Example 3 Consider

Q282 + 3)F1() = fi(t) + [o(£> = 25)Fi(s)ds + [, (s* - t)Fx(s)ds
+ fot 25F5(s) ds,

(1-3)E(t) = (8 + [y s(t + DEi(s)ds + [, st(t* + 1)Fx(s) ds
+ fot(Zs2 + t3)Fs(s) ds,

B +6)F(0) =f(0) + [y (s— OFi(s)ds + [, (s* — £*)Fx(s) ds
+ [y (2ts + s2)F3(s) ds,
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Figure 4 The comparison between F;(t) and F; 4(t) for Example 2. The comparison between solution of
Example 2.

Table 3 Numerical results with error analysis for Example 2

t= 21—, Exact solution Approximate solution Error

F4(t) F>(t) F1,4(t) F3,4(t) eq,4(t) e2,4(t)
r=1 04794 1.6487 04795 16488 0.0001 0.0001
r=2 0.2474 1.2840 0.2472 1.2825 0.0002 0.0016
r=3 0.1247 1.1331 0.1244 11315 0.0003 0.0016
r=4 0.0625 1.0645 0.0622 1.0634 0.0002 0.0011
r=5 0.0312 1.0317 0.0311 1.0311 0.0001 0.0006
r=6 00156 1.0157 00156 1.0154 0.0001 0.0003
r=7 0.0078 1.0078 0.0078 1.0077 0.0001 0.0002
r=8 0.0039 1.0039 0.0039 1.0038 0.0001 0.0001
r=9 0.0020 1.0020 0.0019 1.0019 0.0001 0.0001
Table 4 Absolute errors for Example 2
t= zl, Presented method ANN method TQR

eq,5(t) ex5(t) eq,5(t) ey5(t) eq,5(t) ey 5(t)

r=1 266 x 107 492 x 107 1.16 x 1072 928 x 107 832 x 1073 807 x 1073
r=2 585 x 107 137 x 107 430 x 1073 148 x 1073 214 x 1072 481 x 1073
r=3 855x% 107 204 x 107 204 %1073 443 x 1073 3.01 x 1072 371 x 1072
r=4 6.14 x 107 411 %107 173 x 1073 591 x 1073 391 x 1072 3.16 x 1072
r=5 389 x 107 944 x 107 801 x 107 794 x 1073 112 x 107! 424 %107
r=6 212 %107 517 x 107 623 x 107 194 x 1072 362 x 107 2.80 x 107"
r=7 111 % 107 271 %107 537 x 1074 413 x 1072 854 x 1072 178 x 107
r=8 570 x 107° 138 x 107 495 x 107 6.89 x 1072 637 x 1072 7.07 x 1072
r=9 2.90 x 107° 701 x 107 475 % 107 940 x 1072 864 x 1072 9.04 x 1073

Page 13 0of 15
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Table 5 Numerical results with error analysis for Example 3

t= zl, Exact solution Approximate solution Error
Fi(t) Fa(t) F3(t) F1,3(t) Fa3(t) F3,3(t) e 3(t),i=1,...,3

r=1 10.500 -4.5000 1.7500 10.500 -4.5000 1.7500 0.0000
r=2 9.2500 -4.8750 1.3125 9.2500 -4.8750 13125 0.0000
r=3 8.6250 -4.9688 1.1406 8.6250 -4.9688 1.1406 0.0000
r=4 83125 -4.9922 1.0664 83125 -4.9922 1.0664 0.0000
r=5 8.1563 -4.9980 1.0322 8.1563 -4.9980 1.0322 0.0000
r=6 8.0781 —4.9995 1.0159 8.0781 -4.9995 1.0159 0.0000
r=7 8.0391 -4.9999 1.0079 8.0391 -4.9999 1.0079 0.0000
r=8 8.0195 -5.0000 1.0039 8.0195 -5.0000 1.0039 0.0000
r=9 8.0098 -5.0000 1.0020 8.0098 -5.0000 1.0020 0.0000

Table 6 Absolute errors for Example 3

t= 21—, ANN method Trapezoidal quadrature rule
e1,3(t) e2,3(t) e33(t) eq,3(t) ey3(t) e33(t)

r=1 24 % 1072 72 %1073 78 x 107 62 x 1073 58x 1073 8.1x 1073
r=2 6.1 %1073 49% 1073 57 x 107 20 % 1072 20 % 1072 2.1 x 1072
r=3 13x 1072 44 % 1073 5.1 %107 3.7 x 1072 2.1 %1072 24 %1072
r=4 14 %1072 42 %1073 51x 107 28 x 1072 15%x 1072 32 % 1072
r=5 15x 1072 43 %1073 5.1 %107 25% 1073 48 x 1073 57 %1073
r=6 16 x 1072 42 %1073 51x 10 2.1 x 1072 53 x 1072 6.7 x 1073
r=7 16x 1072 43x107 50 x 107 47 x 1072 6.9 x 1073 73 %1073
r=8 16 x 1072 43 %1073 50 % 107 43 x 1072 34 % 1072 2.2 % 1072
r=9 16 x 1072 43 %1073 5.1 %107 24 %1072 33x 10 26 x 1072

where
1
fiO=-1 (6¢° + 35¢* — 95¢% — 270¢* - 225¢ - 360),

1
f(t) = —%(m7 +10£° - 33¢° + 275¢* + 115¢% - 390¢> + 150),

1
£(t) = @(4-0116 - 661> —175t* + 250£° + 780¢> + 360¢ + 360),

with the exact solution, Fy(t) = 5t + 8, F»(t) = 2t> — 5 and F3(t) = £2 + t + 1. Again,we solved
this example by this method and the results are given in Table 5. Table 6 illustrates the
absolute errors of ANN method and TQR for this example.

As we can see this method will be useful when the exact solution is a polynomial. In
other word, the proposed method give the analytical solution for the system, if the exact
solution be polynomials of degree # or less than n.

5 Conclusions

In some cases, an analytical solution cannot be found for integral equations system, there-
fore, numerical methods have been applied. In this study, we have worked out a compu-
tational method to approximate solution of the Fredholm and Volterra integral equations
systems of the second kind. The present course is a method for approximating unknown
functions in terms of truncated sequences including Bernstein polynomials. It is clear that
to get the best approximating solutions of the given systems, the truncation degree # must
be chosen large enough. An interesting feature of this method is finding the analytical so-
lution for given system, if the exact solution be polynomials of degree # or less than #.
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Additionally, the proposed method has been compared with ANN method [18] and TQR.
The analyzed examples illustrated the ability and reliability of the present method. The
obtained solutions, in comparison with exact solutions admit a remarkable accuracy. Ex-
tensions to the case of more general systems of integral equations are left for future studies.
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