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We utilize 𝑞-fractional Caputo initial value problems of order 0 < 𝛼 ≤ 1 to derive a 𝑞-analogue for Gronwall-type inequality. Some
particular cases are derived where 𝑞-Mittag-Leffler functions and 𝑞-exponential type functions are used. An example is given to
illustrate the validity of the derived inequality.

1. Introduction

The fractional differential equations have conspicuously re-
ceived considerable attention in the last two decades. Many
researchers have investigated these equations due to their
significant applications in various fields of science and engi-
neering such as in viscoelasticity, capacitor theory, electrical
circuits, electroanalytical chemistry, neurology, diffusion,
control theory, and statistics; see, for instance, the mono-
graphs [1–3].The study of 𝑞-difference equations, on the other
hand, has gained intensive interest in the last years. It has
been shown that these types of equations have numerous
applications in diverse fields and thus have evolved into
multidisciplinary subjects [4–11]. For more details on 𝑞-
calculus, we refer the reader to the reference [12]. The
corresponding fractional difference equations, however, have
been comparably less considered. Indeed, the notions of
fractional calculus and 𝑞-calculus are tracked back to the
works of Jackson [13], respectively. However, the idea of
fractional difference equations is considered to be very recent;
we suggest the new papers [14–28] whose authors have
taken the lead to promote the theory of fractional difference
equations.

The 𝑞-fractional difference equations which serve as
a bridge between fractional difference equations and 𝑞-
difference equations have become a main object of research
in the last years. Recently, many papers have appeared which
study the qualitative properties of solutions for 𝑞-fractional

differential equations [29–33], whereas few results exist for 𝑞-
fractional difference equations [34–36].The integral inequal-
ities which are considered as effective tools for studying
solutions properties have been also under consideration. In
particular, we are interested in Gronwall’s inequality which
has been amain target formany researchers.There are several
versions forGronwall’s inequality in the literature; we list here
those results which are concernedwith fractional order equa-
tions [37–41]. To the best of authors’ observation, however,
the 𝑞-fractional analogue for Gronwall-type inequality has
not been investigated yet.

A primary purpose of this paper is to utilize the 𝑞-
fractional Caputo initial value problems of order 0 < 𝛼 ≤ 1

to derive a 𝑞-analogue for Gronwall-type inequality. Some
particular cases are derived where 𝑞-Mittag-Leffler functions
and 𝑞-exponential type functions are used. An example is
given to illustrate the validity of the derived inequality.

2. Preliminary Assertions

Before stating and proving our main results, we introduce
some definitions and notations that will be used throughout
the paper. For 0 < 𝑞 < 1, we define the time scaleT𝑞 as follows:

T𝑞 = {𝑞
𝑛
: 𝑛 ∈ Z} ∪ {0} , (1)
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whereZ is the set of integers. In general, if 𝛼 is a nonnegative
real number then we define the time scale

T
𝛼

𝑞
= {𝑞
𝑛+𝛼

: 𝑛 ∈ Z} ∪ {0} , (2)

and thus we may write T0
𝑞
= T𝑞. For a function 𝑓 : T𝑞 → R,

the nabla 𝑞-derivative of 𝑓 is given by

∇𝑞𝑓 (𝑡) =
𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
, 𝑡 ∈ T𝑞 − {0} . (3)

The nabla 𝑞-integral of 𝑓 is given by

∫

𝑡

0

𝑓 (𝑠) ∇𝑞𝑠 = (1 − 𝑞) 𝑡

∞

∑

𝑖=0

𝑞
𝑖
𝑓 (𝑡𝑞
𝑖
) ,

∫

𝑡

𝑎

𝑓 (𝑠) ∇𝑞𝑠 = ∫

𝑡

0

𝑓 (𝑠) ∇𝑞𝑠 − ∫

𝑎

0

𝑓 (𝑠) ∇𝑞𝑠, for 0 ≤ 𝑎 ∈ 𝑇𝑞.

(4)

The 𝑞-factorial function for 𝑛 ∈ N is defined by

(𝑡 − 𝑠)
𝑛

𝑞
=

𝑛−1

∏

𝑖=0

(𝑡 − 𝑞
𝑖
𝑠) . (5)

In case 𝛼 is a nonpositive integer, the 𝑞-factorial function is
defined by

(𝑡 − 𝑠)
𝛼

𝑞
= 𝑡
𝛼

∞

∏

𝑖=0

1 − (𝑠/𝑡) 𝑞
𝑖

1 − (𝑠/𝑡) 𝑞𝑖+𝛼
. (6)

In the following lemma, we present some properties of 𝑞-
factorial functions.

Lemma 1 (see [32]). For 𝛼, 𝛾, 𝛽 ∈ R, one has the following.

(I) (𝑡 − 𝑠)𝛽+𝛾
𝑞

= (𝑡 − 𝑠)
𝛽

𝑞
(𝑡 − 𝑞
𝛽
𝑠)
𝛾

𝑞
.

(II) (𝑎𝑡 − 𝑎𝑠)𝛽
𝑞
= 𝑎
𝛽
(𝑡 − 𝑠)

𝛽

𝑞
.

(III) The nabla 𝑞-derivative of the 𝑞-factorial function with
respect to 𝑡 is

∇𝑞(𝑡 − 𝑠)
𝛼

𝑞
=
1 − 𝑞
𝛼

1 − 𝑞
(𝑡 − 𝑠)

𝛼−1

𝑞
. (7)

(IV) The nabla 𝑞-derivative of the 𝑞-factorial function with
respect to 𝑠 is

∇𝑞(𝑡 − 𝑠)
𝛼

𝑞
= −

1 − 𝑞
𝛼

1 − 𝑞
(𝑡 − 𝑞𝑠)

𝛼−1

𝑞
. (8)

For a function 𝑓 : T𝛼
𝑞
→ R, the left 𝑞-fractional integral

𝑞∇
−𝛼

𝑎
of order 𝛼 ̸= 0, −1, −2, . . . and starting at 0 < 𝑎 ∈ T𝑞 is

defined by

𝑞∇
−𝛼

𝑎
𝑓 (𝑡) =

1

Γ𝑞 (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑞𝑠)
𝛼−1

𝑞
𝑓 (𝑠) ∇𝑞𝑠, (9)

where

Γ𝑞 (𝛼 + 1) =
1 − 𝑞
𝛼

1 − 𝑞
Γ𝑞 (𝛼) , Γ𝑞 (1) = 1, 𝛼 > 0. (10)

One should note that the left 𝑞-fractional integral 𝑞∇
−𝛼

𝑎
maps

functions defined on T𝑞 to functions defined on T𝑞.

Definition 2 (see [14]). If 0 < 𝛼 ∉ N, then the Caputo left
𝑞-fractional derivative of order 𝛼 of a function 𝑓 is defined
by

𝑞𝐶
𝛼

𝑎
𝑓 (𝑡) := 𝑞∇

−(𝑛−𝛼)

𝑎
∇
𝑛

𝑞
𝑓 (𝑡)

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑞𝑠)
𝑛−𝛼−1

𝑞
∇
𝑛

𝑞
𝑓 (𝑠) ∇𝑞𝑠,

(11)

where 𝑛 = [𝛼] + 1. In case 𝛼 ∈ N, we may write 𝑞𝐶
𝛼

𝑎
𝑓(𝑡) :=

∇
𝑛

𝑞
𝑓(𝑡).

Lemma 3 (see [14]). Assume that 𝛼 > 0 and 𝑓 is defined in a
suitable domain. Then

𝑞∇
−𝛼

𝑎 𝑞
𝐶
𝛼

𝑎
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘

𝑞

Γ𝑞 (𝑘 + 1)
∇
𝑘

𝑞
𝑓 (𝑎) , (12)

and if 0 < 𝛼 ≤ 1, then

𝑞∇
−𝛼

𝑎 𝑞
𝐶
𝛼

𝑎
𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑎) . (13)

For solving linear 𝑞-fractional equations, the following
identity is essential:

𝑞∇
−𝛼

𝑎
(𝑥 − 𝑎)

𝜇

𝑞
=

Γ𝑞 (𝜇 + 1)

Γ𝑞 (𝛼 + 𝜇 + 1)
(𝑥 − 𝑎)

𝜇+𝛼

𝑞
,

0 < 𝑎 < 𝑥 < 𝑏,

(14)

where 𝛼 ∈ R+ and 𝜇 ∈ (−1,∞). See, for instance, the recent
papers [14, 15] for more information.

The 𝑞-analogue of Mittag-Leffler function with double
index (𝛼, 𝛽) is first introduced in [14]. Indeed, it was defined
as follows.

Definition 4 (see [14]). For 𝑧, 𝑧0 ∈ C and R(𝛼) > 0, the 𝑞-
Mittag-Leffler function is defined by

𝑞𝐸𝛼,𝛽 (𝜆, 𝑧 − 𝑧0) =

∞

∑

𝑘=0

𝜆
𝑘
(𝑧 − 𝑧0)

𝛼𝑘

𝑞

Γ𝑞 (𝛼𝑘 + 𝛽)
. (15)

In case 𝛽 = 1, we may use 𝑞𝐸𝛼(𝜆, 𝑧 − 𝑧0) := 𝑞𝐸𝛼,1(𝜆, 𝑧 − 𝑧0).

The following example clarifies how 𝑞-Mittag-Leffler
functions can be used to express the solutions of Caputo 𝑞-
fractional linear initial value problems.

Example 5 (see [14]). Let 0 < 𝛼 ≤ 1 and consider the left
Caputo 𝑞-fractional difference equation

𝑞𝐶
𝛼

𝑎
𝑦 (𝑡) = 𝜆𝑦 (𝑡) + 𝑓 (𝑡) , 𝑦 (𝑎) = 𝑎0, 𝑡 ∈ 𝑇𝑞. (16)
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Applying 𝑞∇
−𝛼

𝑎
to (16) and using (13), we end up with

𝑦 (𝑡) = 𝑎0 + 𝜆𝑞∇
−𝛼

𝑎
𝑦 (𝑡) + 𝑞∇

−𝛼

𝑎
𝑓 (𝑡) . (17)

To obtain an explicit form for the solution, we apply the
method of successive approximation. Set 𝑦0(𝑡) = 𝑎0 and

𝑦𝑚 (𝑡) = 𝑎0 + 𝜆𝑞∇
−𝛼

𝑎
𝑦𝑚−1 (𝑡) + 𝑞∇

−𝛼

𝑎
𝑓 (𝑡) ,

𝑚 = 1, 2, 3, . . . .

(18)

For𝑚 = 1, we have by the power formula (14)

𝑦1 (𝑡) = 𝑎0
[

[

1 +

𝜆(𝑡 − 𝑎)
(𝛼)

𝑞

Γ𝑞 (𝛼 + 1)

]

]

+ 𝑞∇
−𝛼

𝑎
𝑓 (𝑡) . (19)

For𝑚 = 2, we also see that

𝑦2 (𝑡) = 𝑎0 + 𝜆𝑎0 𝑞∇
−𝛼

𝑎
[1 +

(𝑡 − 𝑎)
𝛼

𝑞

Γ𝑞 (𝛼 + 1)
]

+ 𝑞∇
−𝛼

𝑎
𝑓 (𝑡) + 𝜆𝑞∇

−2𝛼

𝑎
𝑓 (𝑡)

= 𝑎0 [1 +

𝜆(𝑡 − 𝑎)
𝛼

𝑞

Γ𝑞 (𝛼 + 1)
+

𝜆
2
(𝑡 − 𝑎)

2𝛼

𝑞

Γ𝑞 (2𝛼 + 1)
]

+ 𝑞∇
−𝛼

𝑎
𝑓 (𝑡) + 𝜆𝑞∇

−2𝛼

𝑎
𝑓 (𝑡) .

(20)

If we proceed inductively and let 𝑚 → ∞, we obtain the
solution
𝑦 (𝑡)

= 𝑎0
[

[

1 +

∞

∑

𝑘=1

𝜆
𝑘
(𝑡 − 𝑎)

𝑘𝛼

𝑞

Γ𝑞 (𝑘𝛼 + 1)

]

]

+ ∫

𝑡

𝑎

[

∞

∑

𝑘=1

𝜆
𝑘−1

Γ𝑞 (𝛼𝑘)
(𝑡 − 𝑞𝑠)

𝛼𝑘−1

𝑞
]𝑓 (𝑠) ∇𝑞𝑠

= 𝑎0
[

[

1 +

∞

∑

𝑘=1

𝜆
𝑘
(𝑡 − 𝑎)

𝑘𝛼

𝑞

Γ𝑞 (𝑘𝛼 + 1)

]

]

+ ∫

𝑡

𝑎

[

∞

∑

𝑘=0

𝜆
𝑘

Γ𝑞 (𝛼𝑘 + 𝛼)
(𝑡 − 𝑞𝑠)

𝛼𝑘+(𝛼−1)

𝑞
]𝑓 (𝑠) ∇𝑞𝑠

= 𝑎0
[

[

1 +

∞

∑

𝑘=1

𝜆
𝑘
(𝑡 − 𝑎)

𝑘𝛼

𝑞

Γ𝑞 (𝑘𝛼 + 1)

]

]

+ ∫

𝑡

𝑎

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑞
[

∞

∑

𝑘=0

𝜆
𝑘

Γ𝑞 (𝛼𝑘 + 𝛼)
(𝑡 − 𝑞

𝛼
𝑠)
(𝛼𝑘)

𝑞
]𝑓 (𝑠) ∇𝑞𝑠.

(21)

That is,

𝑦 (𝑡) = 𝑎0𝑞𝐸𝛼 (𝜆, 𝑡 − 𝑎)

+ ∫

𝑡

𝑎

(𝑡 − 𝑞𝑠)
𝛼−1

𝑞 𝑞
𝐸𝛼,𝛼 (𝜆, 𝑡 − 𝑞

𝛼
𝑠) 𝑓 (𝑠) ∇𝑞𝑠.

(22)

Remark 6. If instead we use the modified 𝑞-Mittag-Leffler
function

𝑞𝑒𝛼,𝛽 (𝜆, 𝑧 − 𝑧0) =

∞

∑

𝑘=0

𝜆
𝑘
(𝑧 − 𝑧0)

𝛼𝑘+(𝛽−1)

𝑞

Γ𝑞 (𝛼𝑘 + 𝛽)
(23)

then, the solution representation (17) becomes

𝑦 (𝑡) = 𝑎0 𝑞𝑒𝛼 (𝜆, 𝑡 − 𝑎) + ∫

𝑡

𝑎
𝑞𝑒𝛼,𝛼 (𝜆, 𝑡 − 𝑞𝑠) 𝑓 (𝑠) ∇𝑞𝑠. (24)

Remark 7. If we set 𝛼 = 1, 𝜆 = 1, 𝑎 = 0, and 𝑓(𝑡) = 0, we
reach to the 𝑞-exponential formula 𝑒𝑞(𝑡) = ∑

∞

𝑘=0
(𝑡
𝑘
/Γ𝑞(𝑘+1))

on the time scale T𝑞, where Γ𝑞(𝑘+1) = [𝑘]𝑞! = [1]𝑞[2]𝑞 ⋅ ⋅ ⋅ [𝑘]𝑞

with [𝑟]𝑞 = (1 − 𝑞
𝑟
)/(1 − 𝑞). It is known that 𝑒𝑞(𝑡) = 𝐸𝑞((1 −

𝑞)𝑡), where 𝐸𝑞(𝑡) is a special case of the basic hypergeometric
series, given by

𝐸𝑞 (𝑡) = 1𝜙0 (0; 𝑞, 𝑡) =

∞

∏

𝑛=0

(1 − 𝑞
𝑛
𝑡)
−1
=

∞

∑

𝑛=0

𝑡
𝑛

(𝑞)
𝑛

, (25)

where (𝑞)𝑛 = (1 − 𝑞)(1 − 𝑞
2
) ⋅ ⋅ ⋅ (1 − 𝑞

𝑛
) is the 𝑞-Pochhammer

symbol.

3. The Main Results

Throughout the remaining part of the paper, we assume that
0 < 𝛼 ≤ 1. Consider the following 𝑞-fractional initial value
problem:

𝑞𝐶
𝛼

𝑎
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑎 ∈ T𝑞,

𝑦 (𝑎) = 𝑦0.

(26)

Applying 𝑞∇
−𝛼

𝑎
to both sides of (26), we obtain

𝑦 (𝑡) = 𝑦0 + 𝑞∇
−𝛼

𝑎
𝑓 (𝑡, 𝑦 (𝑡)) . (27)

Set

𝑓 (𝑡, 𝑦 (𝑡)) = 𝑥 (𝑡) 𝑦 (𝑡) , (28)

where

0 ≤ 𝑥 (𝑡) ≤
1

𝑡𝛼(1 − 𝑞)
𝛼 . (29)

In the following, we present a comparison result for the
fractional summation operator.

Theorem 8. Let 𝑤 and V satisfy

𝑤 (𝑡) ≥ 𝑤 (𝑎) + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) 𝑤 (𝑡) , (30)

V (𝑡) ≤ V (𝑎) + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) V (𝑡) , (31)

respectively. If 𝑤(𝑎) ≥ V(𝑎), then 𝑤(𝑡) ≥ V(𝑡) for 𝑡 ∈ Λ 𝑎 = {𝑎 =

𝑞
𝑛0 , 𝑞
𝑛0−1, . . .}.
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Proof. Set 𝑢(𝑡) = V(𝑡) − 𝑤(𝑡). We claim that 𝑢(𝑡) ≤ 0

for 𝑡 ∈ Λ 𝑎. Let us assume that 𝑢(𝑠) ≤ 0 is valid for 𝑠 =

𝑞
𝑛0 , 𝑞
𝑛0−1, . . . , 𝑞

𝑛−1, where 𝑛 < 𝑛0. Then, for 𝑡 = 𝑞
𝑛 we have

𝑢 (𝑡) = V (𝑡) − 𝑤 (𝑡)

≤ [V (𝑎) − 𝑤 (𝑎)] + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) [V (𝑡) − 𝑤 (𝑡)] ,

(32)

or

V (𝑡) − 𝑤 (𝑡) ≤ [V (𝑎) − 𝑤 (𝑎)]

+
1

Γ𝑞 (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑞𝑠)
𝛼−1

𝑞
𝑥 (𝑠) (V (𝑠) − 𝑤 (𝑠)) ∇𝑞𝑠.

(33)

It follows that

V (𝑡) − 𝑤 (𝑡)

≤ [V (𝑎) − 𝑤 (𝑎)]

+
1

Γ𝑞 (𝛼)
∫

𝑞𝑡

𝑎

(𝑡 − 𝑞𝑠)
𝛼−1

𝑞
𝑥 (𝑠) (V (𝑠) − 𝑤 (𝑠)) ∇𝑞𝑠

+
1

Γ𝑞 (𝛼)
∫

𝑡

𝑞𝑡

(𝑡 − 𝑞𝑠)
𝛼−1

𝑞
𝑥 (𝑠) (V (𝑠) − 𝑤 (𝑠)) ∇𝑞𝑠.

(34)

Since V(𝑡) − 𝑤(𝑡) ≤ 0 and ∫𝑡
𝜌(𝑡)

𝑓(𝑠)∇𝑠 = (𝑡 − 𝜌(𝑡))𝑓(𝑡), (34)
can be written in the form

V (𝑡) − 𝑤 (𝑡)

≤
1

Γ𝑞 (𝛼)
(𝑡 − 𝑞𝑡) (𝑡 − 𝑞𝑡)

𝛼−1

𝑞
𝑥 (𝑡) (V (𝑡) − 𝑤 (𝑡))

= (1 − 𝑞)
𝛼
𝑡
𝛼
𝑥 (𝑡) (V (𝑡) − 𝑤 (𝑡)) ,

(35)

where Γ𝑞(𝛼) = (1 − 𝑞)
𝛼−1

𝑞
/(1 − 𝑞)

𝛼−1 is used. It follows that

(1 − 𝑥 (𝑡) (1 − 𝑞)
𝛼
𝑡
𝛼
) (V (𝑡) − 𝑤 (𝑡)) ≤ 0. (36)

By (29), we conclude that V(𝑡) − 𝑤(𝑡) ≤ 0.

Define the following operator

𝑞Ω𝑥𝜙 = 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) 𝜙 (𝑡) . (37)

The following lemmas are essential in the proof of the main
theorem. We only state these statements as their proofs are
straightforward.

Lemma 9. For any constant 𝜆, one has
𝑞
Ω𝜆1


≤ 𝑞Ω|𝜆|1. (38)

Lemma 10. For any constant 𝜆, one has

𝑞Ω
𝑛

𝜆
1 =

𝜆
𝑛
(𝑡 − 𝑎)

𝑛𝛼

𝑞

Γ𝑞 (𝑛𝛼 + 1)
, where 𝑛 ∈ N. (39)

Lemma 11. Let 𝜆 > 0 be such that |𝑦(𝑡)| ≤ 𝜆 for 𝑡 ∈ Λ 𝑎. Then
𝑞
Ω
𝑛

𝑦
1

≤ 𝑞Ω
𝑛

𝜆
1, 𝑛 ∈ N. (40)

The next result together with Theorem 8 will give us the
desired 𝑞-fractional Gronwall-type inequality.

Theorem 12. Let |𝑥(𝑡)| ≤ 1/(1 − 𝑞)
𝛼
𝑡
𝛼 for 𝑡 ∈ Λ 𝑎 ∩ [𝑎, 𝑏].

Then, the 𝑞-fractional integral equation

𝑦 (𝑡) = 𝑦 (𝑎) + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) 𝑦 (𝑡) , (41)

for 𝑡 ∈ Λ 𝑎 ∩ [𝑎, 𝑏] where 𝑏 ∈ R, has a solution

𝑦 (𝑡) = 𝑦 (𝑎)

∞

∑

𝑘=0

𝑞Ω
𝑘

𝑥
1. (42)

Proof. The proof is achieved by utilizing the successive
approximation method. Set

𝑦0 (𝑡) = 𝑦 (𝑎) ,

𝑦𝑛 (𝑡) = 𝑦 (𝑎) + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) 𝑦𝑛−1 (𝑡) , for 𝑛 ≥ 1.

(43)

We observe that

𝑦1 (𝑡) = 𝑦 (𝑎) + 𝑞∇
−𝛼

𝑎
𝑥 (𝑡) 𝑦0 (𝑡)

= 𝑦 (𝑎) + 𝑞Ω𝑥𝑦 (𝑎) ,

𝑦2 (𝑡) = 𝑦 (𝑎) + 𝑞Ω𝑥 (𝑦 (𝑎) + 𝑞Ω𝑥𝑦 (𝑎))

= 𝑦 (𝑎) + 𝑞Ω𝑥𝑦 (𝑎) + 𝑞Ω
2

𝑥
𝑦 (𝑎) .

(44)

Inductively, we end up with

𝑦𝑛 (𝑡) = 𝑦 (𝑎)

𝑛

∑

𝑘=0

𝑞Ω
𝑘

𝑥
1, 𝑛 ≥ 0. (45)

Taking the limit as 𝑛 → ∞, we have

𝑦 (𝑡) = 𝑦 (𝑎)

∞

∑

𝑘=0

𝑞Ω
𝑘

𝑥
1. (46)

It remains to prove the convergence of the series in (46). The
subsequent analyses are carried out for 𝑎 = 0.

In virtue of (29), we obtain
∞

∑

𝑘=0

𝑞Ω
𝑘

𝑥
1 ≤

∞

∑

𝑘=0

𝑞Ω
𝑘

1/𝑡𝛼(1−𝑞)
𝛼1

≤

∞

∑

𝑘=0

(𝑞∇
−𝛼

0
)
𝑘

(
1

𝑡𝛼(1 − 𝑞)
𝛼)

≤
1

(1 − 𝑞)
𝛼

∞

∑

𝑘=0

(𝑞∇
−𝛼

0
)
𝑘

(𝑡
−𝛼
) .

(47)

However, for 𝑘 = 1 we observe that

𝑞∇
−𝛼

0
𝑡
−𝛼

=
Γ (1 − 𝛼)

Γ (0 + 1)
𝑡
0
= Γ𝑞 (1 − 𝛼) . (48)
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For 𝑘 = 2, it follows that

𝑞∇
−𝛼

0
(Γ𝑞 (1 − 𝛼))

= Γ𝑞(1 − 𝛼)𝑞∇
−𝛼

0
𝑡
0
=
Γ𝑞 (1 − 𝛼)

Γ𝑞 (𝛼 + 1)
𝑡
𝛼
.

(49)

For 𝑘 = 3, we have

𝑞∇
−𝛼

0
(
Γ𝑞 (1 − 𝛼)

Γ𝑞 (𝛼 + 1)
𝑡
𝛼
) =

Γ𝑞 (1 − 𝛼)

Γ𝑞 (𝛼 + 1)

Γ𝑞 (𝛼 + 1)

Γ𝑞 (𝛼 + 𝛼 + 1)
𝑡
2𝛼
, (50)

or

𝑞∇
−𝛼

0
(
Γ𝑞 (1 − 𝛼)

Γ𝑞 (𝛼 + 1)
𝑡
𝛼
) =

Γ𝑞 (1 − 𝛼)

Γ𝑞 (2𝛼 + 1)
𝑡
2𝛼
. (51)

For 𝑘 = 4, we get

𝑞∇
−𝛼

0
(
Γ𝑞 (1 − 𝛼)

Γ𝑞 (2𝛼 + 1)
𝑡
2𝛼
) =

Γ𝑞 (1 − 𝛼)

Γ𝑞 (3𝛼 + 1)
𝑡
3𝛼
. (52)

Therefore, (47) becomes

∞

∑

𝑘=0

𝑞Ω
𝑘

𝑥
1

≤
1

(1 − 𝑞)
𝛼 [1 + Γ𝑞 (1 − 𝛼) + Γ𝑞 (1 − 𝛼)

∞

∑

𝑘=1

𝑡
𝑘𝛼

Γ𝑞 (𝑘𝛼 + 1)
] .

(53)

Let 𝑎𝑘 = 𝑡
(𝑘−1)𝛼

/Γ𝑞((𝑘 − 1)𝛼 + 1). Then,

𝑎𝑘

𝑎𝑘−1

=
𝑡
𝑘𝛼

Γ𝑞 (𝑘𝛼 + 1)

Γ𝑞 ((𝑘 − 1) 𝛼 + 1)

𝑡(𝑘−1)𝛼

= 𝑡
𝛼
Γ𝑞 ((𝑘 − 1) 𝛼 + 1)

Γ𝑞 (𝑘𝛼 + 1)
≤
Γ𝑞 ((𝑘 − 1) 𝛼 + 1)

Γ𝑞 (𝑘𝛼 + 1)
.

(54)

We observe that

Γ𝑞 ((𝑘 − 1) 𝛼 + 1)

Γ𝑞 (𝑘𝛼 + 1)

=

(1 − 𝑞)
(𝑘−1)𝛼

𝑞
(1 − 𝑞)

(1−𝑘)𝛼

(1 − 𝑞)
𝑘𝛼

𝑞
(1 − 𝑞)

−𝑘𝛼
=

(1 − 𝑞)
(𝑘−1)𝛼

𝑞
(1 − 𝑞)

𝛼

(1 − 𝑞)
𝑘𝛼

𝑞

.

(55)

Setting

(1 − 𝑞)
(𝑘−1)𝛼

𝑞
(1 − 𝑞)

𝛼

(1 − 𝑞)
𝑘𝛼

𝑞

:= (1 − 𝑞)
𝛼
∏
∞

𝑖=0
((1 − 𝑞

𝑖+1
) / (1 − 𝑞

𝑖
𝑞
𝑘𝛼−𝛼+1

))

∏
∞

𝑖=0
((1 − 𝑞𝑖+1) / (1 − 𝑞𝑖𝑞𝑘𝛼+1))

,

(56)

we deduce that

lim
𝑘→∞

(1 − 𝑞)
𝛼
∏
∞

𝑖=0
((1 − 𝑞

𝑖+1
) / (1 − 𝑞

𝑖
𝑞
𝑘𝛼−𝛼+1

))

∏
∞

𝑖=0
((1 − 𝑞𝑖+1) / (1 − 𝑞𝑖𝑞𝑘𝛼+1))

= (1 − 𝑞)
𝛼
∏
∞

𝑖=0
(1 − 𝑞

𝑖+1
)

∏
∞

𝑖=0
(1 − 𝑞𝑖+1)

= (1 − 𝑞)
𝛼
< 1.

(57)

Hence, convergence is guaranteed. In case 𝑎 > 0, we can
proceed in a similar way taking into account that (𝑡−𝑎)𝑘𝛼

𝑞
/(𝑡−

𝑎)
𝑘𝛼−𝛼

𝑞
= (𝑡 − 𝑞

𝑘𝛼
𝑞
𝛼
𝑎)
𝛼

𝑞
→ 𝑡
𝛼 as 𝑘 → ∞.

Theorem 13 (𝑞-fractional Gronwall’s lemma). Let V and 𝜇 be
nonnegative real valued functions such that 0 ≤ 𝜇(𝑡) < 1/𝑡

𝛼
(1−

𝑞)
𝛼 for all 𝑡 ∈ Λ 𝑎 (in particular if 0 ≤ 𝜇(𝑡) < 1/(1 − 𝑞)

𝛼) and

V (𝑡) ≤ V (𝑎) + 𝑞∇
−𝛼

𝑎
V (𝑡) 𝜇 (𝑡) . (58)

Then

V (𝑡) ≤ V (𝑎)
∞

∑

𝑘=0

Ω
𝑘

𝜇
1. (59)

The proof of the previous statement is a straightforward
implementation of Theorems 8 and 12 by setting 𝑤(𝑡) =

V(𝑎)∑
∞

𝑘=0
(Ω
𝑘

𝜇
1)(𝑡).

In case 𝛼 = 1, we deduce the following immediate
consequence of Theorem 13 which can be considered as the
well-known 𝑞-Gronwall’s Lemma; consult, for instance, the
paper [42].

Corollary 14. Let 0 ≤ 𝛿(𝑡) < 1/(1 − 𝑞) for all 𝑡 ∈ Λ 𝑎. If

V (𝑡) ≤ V (𝑎) + ∫
𝑡

𝑎

𝛿 (𝑠) V (𝑠) ∇𝑞𝑠, (60)

then

V (𝑡) ≤ V (𝑎) 𝑒𝑞 (𝑡, 𝑎) , (61)

where 𝑒𝑞(𝑡, 𝑎) = 𝑞Ω1(1, 𝑡 − 𝑎) is the nabla 𝑞-exponential
function on the time scale T𝑞.

4. Applications

In this section, we show, by the help of the 𝑞-fractional
Gronwall inequality proved in the previous section, that small
changes in the initial conditions of Caputo 𝑞-fractional initial
value problems lead to small changes in the solution.

Let 𝑓(𝑡, 𝑦) satisfy a Lipschitz condition with constant 0 ≤
𝐿 < 1 for all 𝑡 and 𝑦.

Example 15. Consider the following 𝑞-fractional initial value
problems:

𝑞∇
𝛼

𝑎
𝜑 (𝑡) = 𝑓 (𝑡, 𝜑 (𝑡)) , 0 < 𝛼 ≤ 1, 𝑎 ∈ T𝑞, 𝑡 ∈ Λ 𝑎,

𝜑 (𝑎) = 𝛾,

𝑞∇
𝛼

𝑎
𝜓 (𝑡) = 𝑓 (𝑡, 𝜓 (𝑡)) , 0 < 𝛼 ≤ 1, 𝑎 ∈ T𝑞, 𝑡 ∈ Λ 𝑎,

𝜓 (𝑎) = 𝛽.

(62)
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It follows that

𝜑 (𝑡) − 𝜓 (𝑡) = (𝛾 − 𝛽) + 𝑞∇
−𝛼

𝑎
[𝑓 (𝑡, 𝜑 (𝑡)) − 𝑓 (𝑡, 𝜓 (𝑡))] .

(63)

Taking the absolute value, we obtain

𝜑 (𝑡) − 𝜓 (𝑡)
 ≤

𝛾 − 𝛽
 +

𝑞
∇
−𝛼

𝑎
𝑓 (𝑡, 𝜑 (𝑡)) − 𝑓 (𝑡, 𝜓 (𝑡))


,

(64)

or
𝜑 (𝑡) − 𝜓 (𝑡)

 ≤
𝛾 − 𝛽

 + 𝐿 𝑞∇
−𝛼

𝑎

𝜑 (𝑡) − 𝜓 (𝑡)
 . (65)

By usingTheorem 13, we get

𝜑 (𝑡) − 𝜓 (𝑡)
 ≤

𝛾 − 𝛽


∞

∑

𝑖=0

𝑞Ω
𝑖

𝐿
1 =

𝛾 − 𝛽
 𝑞Ω𝛼 (𝐿, 𝑡 − 𝑎) .

(66)

Consider the following 𝑞-fractional initial value problem:

𝑞∇
𝛼

𝑎
𝜙 (𝑡) = 𝑓 (𝑡, 𝜙 (𝑡)) , 0 < 𝛼 ≤ 1, 𝑎 ∈ T𝑞, 𝑡 ∈ Λ 𝑎,

𝜙 (𝑎) = 𝛾𝑛,

(67)

where 𝛾𝑛 → 𝛾. If the solution of (67) is denoted by 𝜙𝑛, then
for all 𝑡 ∈ Λ 𝑎 we have

𝜑 (𝑡) − 𝜙𝑛 (𝑡)
 ≤

𝛾 − 𝛾𝑛


∞

∑

𝑖=0

𝑞Ω
𝑖

𝐿
1 =

𝛾 − 𝛾𝑛
 𝑞Ω𝛼 (𝐿, 𝑡 − 𝑎) .

(68)

Hence |𝜑(𝑡) − 𝜙𝑛(𝑡)| → 0 as 𝛾𝑛 → 𝛾. This clearly verifies the
dependence of solutions on the initial conditions.
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