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We apply generalized operators of fractional integration involving Appell’s function 𝐹
3
(⋅) due to Marichev-Saigo-Maeda, to the

product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable
generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of
fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that
the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas
involving simpler functions.

1. Introduction, Definitions, and Preliminaries

The fractional calculus is nowadays one of the most rapidly
growing subject of mathematical analysis. It is a field of
applied mathematics that deals with derivatives and integrals
of arbitrary orders.The fractional integral operator involving
various special functions has found significant importance
and applications in various subfields of applicable mathemat-
ical analysis. Many applications of fractional calculus can be
found in turbulence andfluid dynamics, stochastic dynamical
system, plasma physics and controlled thermonuclear fusion,
nonlinear control theory, image processing, nonlinear biolog-
ical systems, astrophysics, and in quantum mechanics. Since
last four decades, a number of workers like Love [1], McBride
[2], Kalla [3, 4], Kalla and Saxena [5], Saigo [6, 7], Kilbas
[8], Kilbas and Sebastian [9], Kiryakova [10, 11], Baleanu [12],
Baleanu and Mustafa [13], Baleanu et al. [14], Baleanu et al.
[15], Purohit and Kalla [16], Purohit [17], Agarwal [18–20]
and Agarwal and Jain [21], and so forth have studied, in
depth, the properties, applications, and different extensions

of various operators of fractional calculus. A detailed account
of fractional calculus operators along with their properties
and applications can be found in the research monographs
by Miller and Ross [22], Kiryakova [10], and so forth.

The computation of fractional derivatives (and fractional
integrals) of special functions of one and more variables is
important from the point of view of the usefulness of these
results in the evaluation of generalized integrals and the
solution of differential and integral equations. Motivated by
these avenues of applications, a remarkably large number
of fractional integral formulas involving a variety of spe-
cial functions have been developed by many authors (see,
e.g., [23–27]). Fractional integration formulae for the Bessel
function and generalized Bessel functions are given recently
by Kilbas and Sebastian [9], Saxena et al. [28], Malik et al.
[29] and Purohit et al. [27]. A useful generalization of the
Bessel function 𝑤](𝑧) has been introduced and studied in
[30–34]. Here we aim at presenting composition formula of
Marichev-Saigo-Maeda fractional integral operators and the
product of generalized Bessel function, which are expressed
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in terms of themultivariable generalized Lauricella functions.
Some interesting special cases of our main results are also
considered.

For our purpose, we begin by recalling some known func-
tions and earlier works. This paper deals with two integral
transforms defined for 𝑥 > 0 and 𝛼, 𝛼


, 𝛽, 𝛽

, 𝛾 ∈ C by

(𝐼
𝛼,𝛼

,𝛽,𝛽

,𝛾

0,+
𝑓) (𝑥)

=
𝑥
−𝛼

Γ (𝛾)
∫

𝑥

0
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𝛾−1
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𝐹
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, 𝛽, 𝛽
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𝑡

𝑥
, 1 −

𝑥

𝑡
) 𝑑𝑥,

(R (𝛾) > 0) ,

(1)

(𝐼
𝛼,𝛼

,𝛽,𝛽

,𝛾

0,−
𝑓) (𝑥)

=
𝑥
−𝛼


Γ (𝛾)
∫

∞

𝑥

(𝑡 − 𝑥)
𝛾−1

𝑡
−𝛼

𝐹
3
(𝛼, 𝛼

, 𝛽, 𝛽

; 𝛾;

1 −
𝑥

𝑡
, 1 −

𝑡

𝑥
) 𝑑𝑥,

(R (𝛾) > 0) .

(2)

These operators (integral transforms) were introduced by
Marichev [35] as Mellin type convolution operators with a
special function 𝐹

3
(⋅) in the kernel. These operators were

rediscovered and studied by Saigo in [36] as generalization
of the so-called Saigo fractional integral operators (see [37]).
Such further properties as, for example, their relations with
the Mellin transform and with the hypergeometric operators
(or the Saigo fractional integral operators), together with
their decompositional, operational and other properties in
the McBride space 𝐹

𝑝;𝜇
(see [38]) were studied by Saigo and

Maeda [39].
In (1) and (2) the symbol 𝐹

3
(⋅) denotes so-called 3rd

Appell function (known also as Horn function) (see [40, page
413]):

𝐹
3
(𝛼, 𝛼

; 𝛽, 𝛽

; 𝜂; 𝑥; 𝑦)

=

∞

∑

𝑚,𝑛=0

(𝛼)𝑚(𝛼

)
𝑛
(𝛽)
𝑚
(𝛽
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𝑛

(𝜂)
𝑚+𝑛

𝑚!𝑛!
𝑥
𝑚
𝑦
𝑛

× (max {|𝑥| ,
𝑦

} < 1) .

(3)

The properties of this function are discussed in [40, pages
412–415]. In particular, its relation to theGauss hypergeomet-
ric function is presented as follows:

𝐹
3
(𝛼, 𝜂 − 𝛼; 𝛽, 𝜂 − 𝛽; 𝜂; 𝑥; 𝑦)

=
2
𝐹
1
(𝛼, 𝛽; 𝜂; 𝑥 + 𝑦 − 𝑥𝑦) .

(4)

It is known that the 3rd Appell function cannot be expressed
as a product of two

2
𝐹
1
functions that satisfy pairs of linear

partial differential equations of the second order.

We investigate compositions of integral transforms (1)
and (2) with the product of generalized Bessel function of the
first kind,𝑤](𝑧), which is defined for 𝑧 ∈ C\{0} and 𝑏, 𝑐, ] ∈ C

withR(]) > −1 by the following series (see, e.g., [30, page 10,
equation (1.15)]; for a very recent work, see also [31–33], [34,
page 182, equation (2.2)], and [29, page 2, equation (8)]):

𝑤] (𝑧) =

∞

∑
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(−1)
𝑘
𝑐
𝑘
(𝑧/2)

]+2𝑘

𝑘!Γ (] + 𝑘 + (1 + 𝑏) /2)
, (5)

where C denotes the set of complex numbers and Γ(𝑧) is the
familiar Gamma function (see [41, Section 1.1]).

Then we show that the composition is expressed in terms
of the multivariable generalized Lauricella functions due to
Srivastava andDaoust (see, [42, page 454]) is a generalization
of the Wright function

𝑝Ψ𝑞
in several variables and defined

by (see e.g., [43, page 107])
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where
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(7)

The coefficients 𝛼
𝑘

𝑗
(𝑗 = 1, . . . , 𝑝), 𝛽𝑘

𝑗
(𝑗 = 1, . . . , 𝑞), 𝛾𝑘

𝑗

(𝑗 = 1, . . . , 𝑝
𝑘
), and 𝛿

𝑘

𝑗
(𝑗 = 1, . . . , 𝑞

𝑘
), for all 𝑘 = 1, . . . , 𝑛, are

real and positive and (𝑎
𝑝
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𝑎
1
, . . . , 𝑎

𝑝
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), (𝛾1
𝑝
1

), (𝛼1
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),
and so forth, and where (𝑎)

𝑛
is the Pochhammer symbol

defined (for 𝑎 ∈ C) by (see [41, page 2 and pages 4–6])

(𝑎)
𝑛 := {

1, (𝑛 = 0) ,

𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑛 − 1) , (𝑛 ∈ N := {1, 2, 3, . . .})

=
Γ (𝑎 + 𝑛)

Γ (𝑎)
(𝑎 ∈ C \ Z

−

0
) ,

(8)

and Z−
0
denotes the set of nonpositive integers.

The paper is organized as follows. The composition for-
mula of Marichev-Saigo-Maeda fractional integral operators
(1) and (2) with the product of generalized Bessel function of
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the first kind (5) is proved in terms of the multivariable gen-
eralized Lauricella functions (6) in Sections 2 and 3, respec-
tively.The corresponding results for the corresponding asser-
tions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville
and Weyl type of fractional integrals are also presented in
Sections 2 and 3. Special cases giving compositions of frac-
tional integrals with the product of trigonometric functions
and concluding remarks are considered in Section 4.

2. Left-Side Fractional Integration of
Generalized Bessel Functions

Our results in this Section are based on the preliminary asser-
tions giving composition formula of fractional integral (1)
with a power function.

Lemma 1 (Saigo and Maeda [39, Lemma 1]). Let 𝛼, 𝛼, 𝛽, 𝛽

,

𝛾 ∈ C and ifR(𝛾) > 0,R(𝜌) > max{0,R(𝛼+𝛼
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× 𝑥
𝜌+𝛾−𝛼−𝛼


−1

.

(9)

The Marichev-Saigo-Maeda fractional integration (1) of
product of generalized Bessel functions (5) and Binomial
function is given by the following result.

Theorem 2. Let 𝛼, 𝛼, 𝛽, 𝛽
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𝑗
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𝑗
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where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, and 𝐻 are given by the following

𝐴 = [
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𝑛
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𝑗
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1
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𝜌
𝑗
+ 𝛾 − 𝛼
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1
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2
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𝑛
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Proof. For sake of convenience, let the left-hand side of the
(11) be denoted by I. Using definition (5) and the binomial
expansion, namely,
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∏
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∞
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𝑏
)
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× (

∞

∑

𝑘
1
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𝑘
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1
𝑡
𝜌
1/2)

]
1
+2𝑘
1

𝑘
1
!Γ (]
1
+ 𝑘
1
+ (𝑏 + 1) /2)

)

× ⋅ ⋅ ⋅ × (
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0
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+ 𝛽 − 𝛾) ,R (𝛼


− 𝛽

)]

(22)
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𝑘
1(𝑐)
𝑘
1(𝑎
1
/2)

]
1
+2𝑘
1

𝑘!𝑘
1
!Γ (]
1
+ 𝑘
1
+ (𝑏 + 1) /2)

(
𝑎

𝑏
)

𝑘

× ⋅ ⋅ ⋅
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+ 𝑘
𝑛
+ (𝑏 + 1) /2)
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∏
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×
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𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

× (Γ(𝜎 + 𝛽

+ 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

−1

× (Γ(𝜎 + 𝛾 − 𝛼 − 𝛼

− 𝛽 + 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
)

× Γ(𝜎 + 𝛽

− 𝛼

+ 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

× (Γ(𝜎 + 𝛾 − 𝛼 − 𝛼

+ 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
)

× Γ(𝜎 + 𝛾 − 𝛼

− 𝛽 + 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

−1

×
1

Γ(]
1
+ 𝑘
1
+ (𝑏 + 1) /2) ⋅ ⋅ ⋅ Γ(]

𝑛
+ 𝑘
𝑛
+ (𝑏 + 1)/2)

× −
(𝑎
1
𝑥
2𝜌1/4)

𝑘1

𝑘
1
!

× ⋅ ⋅ ⋅ × −
(𝑎
𝑛
𝑥
2𝜌𝑛/4)

𝑘𝑛

𝑘
𝑛
!

×
(𝑎𝑥/𝑏)

𝑘

𝑘!
.

(24)

This, in accordance with (6), gives the required result (11).
This completed the proof of the Theorem 2.

On setting 𝛼


= 0 in Theorem 2, we get the following
Saigo hypergeometric fractional image of the product of gen-
eralized Bessel function of the first formula kind 𝑤](𝑧).

Corollary 3. If 𝛼, 𝛽, 𝛽

, 𝜎, 𝜆, 𝛾, ]

𝑗
, 𝜌
𝑗
, 𝑏, 𝑐 ∈ C and 𝑥 > 0,

|𝑎𝑥/𝑏| < 1

R (𝛾) > 0, R (𝜎) > 0, R(

𝑛

∑

𝑗=1

]
𝑗
+

𝑏 + 1

2
) > 0,

R(𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) > 0,

(25)

then there hold the results:

(𝐼
(𝛾,𝛼−𝛾,−𝛽)

0,+
[

[

𝑡
𝜎−1

(𝑏 − 𝑎𝑡)
−𝜆

𝑛

∏

𝑗=1

𝑤]
𝑗

(𝑎
𝑗
𝑡
𝜌
𝑗)]

]

) (𝑥)

=
𝑥
𝜎+𝛾−𝛼−1

Γ (𝜆) 𝑏
𝜆

𝑛

∏

𝑗=1

(

𝑎
𝑗
𝑥
𝜌
𝑗

2
)

]
𝑗

𝑆
2;0;...;0;1

2;1;...;1;0
[

𝐴, 𝐶 : 𝐺;

𝐷, 𝐹 : 𝐻;
−

𝑎
2

1
𝑥
2𝜌
1

4
,

. . . , −
𝑎
2

𝑛
𝑥
2𝜌
𝑛

4
,
𝑎𝑥

𝑏
] ,

(26)

where 𝐴, 𝐶, 𝐷, 𝐹, 𝐺, and 𝐻 are given by (12), (14), (15), (17),
(18), and (19), respectively.

Again, on letting 𝛼

= 0 and 𝛼 = 0 in Theorem 2, we get

the Riemann-Liouville fractional image of the product of
generalized Bessel function of the first formula kind; asserted
by the following corollary.



The Scientific World Journal 5

Corollary 4. Let 𝛽, 𝛽

, 𝜎, 𝜆, 𝛾, ]

𝑗
, 𝜌
𝑗
, 𝑏, 𝑐 ∈ C and 𝑥 > 0,

|𝑎𝑥/𝑏| < 1, and

R (𝛾) > 0, R (𝜎) > 0, R(

𝑛

∑

𝑗=1

]
𝑗
+

𝑏 + 1

2
) > 0,

R(𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) > 0.

(27)
Then, one has

(𝐼
(𝛾)

0,+
[

[

𝑡
𝜎−1

(𝑏 − 𝑎𝑡)
−𝜆

𝑛

∏

𝑗=1

𝑤]
𝑗

(𝑎
𝑗
𝑡
𝜌
𝑗)]

]

) (𝑥)

=
𝑥
𝜎+𝛾−1

Γ (𝜆) 𝑏
𝜆

𝑛

∏

𝑗=1

(

𝑎
𝑗
𝑥
𝜌
𝑗

2
)

]
𝑗

𝑆
1;0;...;0;1

1;1;...;1;0
[

𝐴 : 𝐺;

𝐷 : 𝐻;
−

𝑎
2

1
𝑥
2𝜌
1

4
,

. . . , −
𝑎
2

𝑛
𝑥
2𝜌
𝑛

4
,
𝑎𝑥

𝑏
] ,

(28)
where 𝐴, 𝐷, 𝐺, and 𝐻 are given by (12), (15), (18), and (19),
respectively.

3. Right-Side Fractional Integration of
Generalized Bessel Functions

In the sequel, we use the following results.

Lemma 5 (Saigo and Maeda [39, Lemma 2]). Let 𝛼, 𝛼, 𝛽, 𝛽

,

𝛾 ∈ C and if R(𝛾) > 0, R(𝜌) < 1 + min{R(−𝛽),R(𝛼 + 𝛼

−

𝛾),R(𝛼 + 𝛽

− 𝛾)}, then

(𝐼
𝛼,𝛼

,𝛽,𝛽

,𝛾

0,−
𝑥
𝜌−1

) (𝑥)

= (Γ (1 − 𝜌 − 𝛽) Γ (1 − 𝜌 − 𝛾 + 𝛼 + 𝛼

)

× Γ (1 − 𝜌 + 𝛼 + 𝛽

− 𝛾))

× (Γ (1 − 𝜌) Γ (1 − 𝜌 + 𝛼 + 𝛼

+ 𝛽

− 𝛾)

× Γ (1 − 𝜌 + 𝛼 − 𝛽) )
−1

𝑥
𝜌+𝛾−𝛼−𝛼


−1

.

(29)

The Marichev-Saigo-Maeda fractional integration (2) of
product of generalized Bessel functions (5) and Binomial
function is given by the following result.

Theorem 6. Let 𝛼, 𝛼, 𝛽, 𝛽

, 𝜎, 𝜆, 𝛾, ]

𝑗
, 𝜌
𝑗
, 𝑏, 𝑐 ∈ C and 𝑥 > 0,

|𝑎/𝑏𝑥| < 1 such that

R (𝛾) > 0, R (𝜎) > 0, R(

𝑛

∑

𝑗=1

]
𝑗
+

𝑏 + 1

2
) > 0,

R(𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
)

< 1 + min {R (−𝛽) ,R (𝛼 + 𝛼

− 𝛾) ,R (𝛼 + 𝛽


− 𝛾)} .

(30)

Then, one has

(𝐼
(𝛼,𝛼

,𝛽,𝛽

,𝛾)

0,−
[

[

𝑡
𝜎−1

(𝑏 −
𝑎

𝑡
)

−𝜆 𝑛

∏

𝑗=1

w]
𝑗

(

𝑎
𝑗

𝑡
𝜌
𝑗

)]

]

) (𝑥)

=
𝑥
𝜎+𝛾−𝛼−𝛼


−1

Γ (𝜆) 𝑏
𝜆

𝑛

∏

𝑗=1

(

𝑎
𝑗

2𝑥
𝜌
𝑗

)

]
𝑗

𝑆
3;0;...;0;1

3;1;...;1;0
[
𝐴

, 𝐶

, 𝐸

: 𝐺;

𝐵

, 𝐷

, 𝐹

: 𝐻;

−
𝑎
2

1

4𝑥2𝜌1
,

. . . , −
𝑎
2

𝑛

4𝑥2𝜌𝑛
,

𝑎

𝑏𝑥
] ,

(31)

where 𝐴
, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹

 are given by the following:

𝐴

= [

[

(1 − 𝜎 − 𝛽 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . , (2𝜌

𝑛
) , (1)]

]

,

(32)

𝐵

= [

[

(1 − 𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . , (2𝜌

𝑛
) , (1)]

]

, (33)

𝐶

= [

[

(1 − 𝜎 − 𝛾 + 𝛼 + 𝛼

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . ,

(2𝜌
𝑛
) , (1) ]

]

,

(34)

𝐷

= [

[

(1 − 𝜎 + 𝛼 − 𝛽 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . , (2𝜌

𝑛
) , (1)]

]

,

(35)

𝐸

= [

[

(1 − 𝜎 − 𝛾 + 𝛼 + 𝛽

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . ,

(2𝜌
𝑛
) , (1) ]

]

,

(36)

𝐹

= [

[

(1 − 𝜎 − 𝛾 + 𝛼 + 𝛼

+ 𝛽

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) : (2𝜌

1
) , . . . ,

(2𝜌
𝑛
) , (1) ]

]

,

(37)

and 𝐺,𝐻 are given by (18) and (19), respectively.

Proof. For convenience, let the left-hand side of the (31) be
denoted by J. Applying definition (5) and the binomial
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expansion for (𝑏 − 𝑎𝑡)
−𝜆 and then changing the order of inte-

gration and summation, we find

J = 𝑏
−𝜆

∞

∑

𝑘,𝑘
1
,...,𝑘
𝑛
=0

(𝜆)𝑘(−1)
𝑘
1(𝑐)
𝑘
1(𝑎
1
/2)

]
1
+2𝑘
1

𝑘!𝑘
1
!Γ (]
1
+ 𝑘
1
+ (𝑏 + 1) /2)

× (
𝑎

𝑏
)

𝑘

⋅ ⋅ ⋅
(−1)
𝑘
𝑛(𝑐)
𝑘
𝑛(𝑎
𝑛
/2)

]
𝑛
+2𝑘
𝑛

𝑘
𝑛
!Γ (]
𝑛
+ 𝑘
𝑛
+ (𝑏 + 1) /2)

× (𝐼
(𝛼,𝛼

,𝛽,𝛽

,𝛾)

0,+

× {𝑡
𝜎−𝑘−]

1
𝜌
1
−⋅⋅⋅−]

𝑛
𝜌
𝑛
−2]
1
𝑘
1
−⋅⋅⋅−2]

𝑛
𝑘
𝑛
−1

} ) (𝑥) .

(38)

Following the convergence condition of Theorem 6, for any
𝑘 ∈ N

0

R(𝜎 − 𝑘 −

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
− 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
)

≤ R(𝜎 −

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
)

< 1 + min {R (−𝛽) ,R (𝛼 + 𝛼

− 𝛾) ,R (𝛼 + 𝛽


− 𝛾)} .

(39)

Now, on making use of Lemma 5 and (9), we obtain

J

=
𝑥
𝜎+𝛾−𝛼−𝛼


−1

Γ (𝜆) 𝑏
𝜆

×

𝑛

∏

𝑗=1

(

𝑎
𝑗

2𝑥
𝜌
𝑗

)

]
𝑗

×

∞

∑

𝑘,𝑘
1
,...,𝑘
𝑛
=0

(Γ (𝜆 + 𝑘) Γ(1 − 𝜎 − 𝛽 + 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗

+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

× (Γ(1 − 𝜎 − 𝛾 + 𝛼 + 𝛼

+ 𝛽

+ 𝑘

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

−1

× (Γ(1 − 𝜎 − 𝛾 + 𝛼 + 𝛼

+ 𝑘

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
)

× Γ(1 − 𝜎 − 𝛾 + 𝛼 + 𝛽

+ 𝑘

+

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

× (Γ(1 − 𝜎 + 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
)

× Γ(1 − 𝜎 + 𝛼 − 𝛽 + 𝑘 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
+ 2

𝑛

∑

𝑗=1

]
𝑗
𝑘
𝑗
))

−1

×
1

Γ(]
1
+ 𝑘
1
+ (𝑏 + 1)/2) ⋅ ⋅ ⋅ Γ(]𝑛 + 𝑘

𝑛
+ (𝑏 + 1)/2)

−

(𝑎
1
/4𝑥
2𝜌
1)
𝑘
1

𝑘
1
!

⋅ ⋅ ⋅ −

(𝑎
𝑛
/4𝑥
2𝜌
𝑛)
𝑘
𝑛

𝑘
𝑛
!

(𝑎/𝑏𝑥)
𝑘

𝑘!
.

(40)

This, in accordance with (6), gives the required result (31).
This completed the proof of Theorem 6.

On taking 𝛼


= 0 in Theorem 6, we get the right-sided
Saigo hypergeometric fractional image of the product of gen-
eralized Bessel function of the first formula kind, 𝑤](𝑧) as
follows.

Corollary 7. Let 𝛼, 𝛽, 𝛽

, 𝜎, 𝜆, 𝛾, ]

𝑗
, 𝜌
𝑗
, 𝑏, 𝑐 ∈ C and 𝑥 > 0,

|𝑎/𝑏𝑥| < 1, and

R (𝛾) > 0, R (𝜎) > 0, R(

𝑛

∑

𝑗=1

]
𝑗
+

𝑏 + 1

2
) > 0,

R(𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) > 0.

(41)

Then

(𝐼
(𝛾,𝛼−𝛾,−𝛽)

𝑥,∞
[

[

𝑡
𝜎−1

(𝑏 −
𝑎

𝑡
)

−𝜆 𝑛

∏

𝑗=1

𝑤]
𝑗

(

𝑎
𝑗

𝑡
𝜌
𝑗

)]

]

) (𝑥)

=
𝑥
𝜎+𝛾−𝛼−𝛼


−1

Γ (𝜆) 𝑏
𝜆

𝑛

∏

𝑗=1

(

𝑎
𝑗

2𝑥
𝜌
𝑗

)

]
𝑗

𝑆
2;0;...;0;1

2;1;...;1;0
[

𝐴

, 𝐶

: 𝐺;

𝐵

, 𝐷

: 𝐻;

−
𝑎
2

1

4𝑥2𝜌1
,

. . . , −
𝑎
2

𝑛

4𝑥2𝜌𝑛
,

𝑎

𝑏𝑥
] ,

(42)

where 𝐴
, 𝐵, 𝐶, 𝐷, 𝐺 and 𝐻 are given by (32), (33), (34),

(35), (18), and (19), respectively.

Again, on setting 𝛼

= 0 and 𝛼 = 0 in Theorem 6, we get

the following image formula for the product of generalized
Bessel function of the first kind involving Riemann-Liouville
type fractional integral operator.
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Corollary 8. Let 𝛽, 𝛽

, 𝜎, 𝜆, 𝛾, ]

𝑗
, 𝜌
𝑗
, 𝑏, 𝑐 ∈ C and 𝑥 > 0,

|𝑎/𝑏𝑥| < 1, and

R (𝛾) > 0, R (𝜎) > 0, R(

𝑛

∑

𝑗=1

]
𝑗
+

𝑏 + 1

2
) > 0,

R(𝜎 +

𝑛

∑

𝑗=1

]
𝑗
𝜌
𝑗
) > 0.

(43)

Then

(𝐼
(𝛾)

𝑥,∞
[

[

𝑡
𝜎−1

(𝑏 −
𝑎

𝑡
)

−𝜆 𝑛

∏

𝑗=1

𝑤]
𝑗

(

𝑎
𝑗

𝑡
𝜌
𝑗

)]

]

) (𝑥)

=
𝑥
𝜎+𝛾−𝛼−𝛼


−1

Γ (𝜆) 𝑏
𝜆

𝑛

∏

𝑗=1

(

𝑎
𝑗

2𝑥
𝜌
𝑗

)

]
𝑗

𝑆
1;0;...;0;1

1;1;...;1;0
[

𝐶

: 𝐺;

𝐵

: 𝐻;

−
𝑎
2

1

4𝑥2𝜌1
,

. . . , −
𝑎
2

𝑛

4𝑥2𝜌𝑛
,

𝑎

𝑏𝑥
] ,

(44)

where 𝐵
, 𝐶, 𝐺, and 𝐻 are given by (33), (34), (18), and (19),

respectively.

4. Consequence Results and Concluding
Remarks

In this section, we briefly consider another variation of the
results derived in the preceding sections. Bessel functions
are important special functions that appear widely in science
and engineering. Bessel functions of the first kind 𝐽](𝑧)

are oscillatory and may be regarded as generalizations of
trigonometric functions. Indeed, for large argument (𝑧 ≥ 1)

the function√𝜋𝑧/2𝐽](𝑧) is well approximated by the trigono-
metric function cos(𝑧−𝜋]/2−𝜋/4). Similarly,modified Bessel
functions of the first kind 𝐼](𝑧), which are Bessel functions
of imaginary argument, may be regarded as generalization
of exponentials. Exponential functions have the unique and
special property that they are particularly easy tomultiply and
to raise to powers: 𝑒𝑎𝑧𝑒𝑏𝑧 = 𝑒

(𝑎+𝑏)𝑧 and (𝑒
𝑧
)
𝑟
= 𝑒
𝑟𝑧. Further, it

can be easily seen that for 𝑐 = 1 and 𝑏 = 1, the Generalized
Bessel function of the first kind (5) reduces to 𝐽](𝑧), andwhen
𝑐 = −1 and 𝑏 = 1 the function𝑤](𝑧) becomes 𝐼](𝑧). Similarly,
when 𝑐 = 1 and 𝑏 = 2, the function 𝑤](𝑧) reduces to 2𝑗]/√𝜋,
while if 𝑐 = −1 and 𝑏 = 2, then 𝑤](𝑧) becomes 2𝑖]/√𝜋.
In the sequel from (5), we have 𝑤](0) = 0. Therefore, the
results presented in this paper are easily converted in terms
of the various special Bessel functions after some suitable
parametric replacement.

For example, if we set ] = −𝑏/2, then the generalized
Bessel function 𝑤](𝑧) in (5) have following relation with
cosine function when 𝑐 is replaced by 𝑐

2 (see, e.g., [29]):

𝑤
−𝑏/2,𝑐

2 (𝑧) = (
2

𝑧
)

𝑏/2 cos 𝑐𝑧
√𝜋

. (45)

While if ] = −𝑏/2 and 𝑐 = −𝑐
2, 𝑤](𝑧) in (5) have relation

with hyperbolic cosine function as (see, e.g., [29])

𝑤
−𝑏/2,−𝑐

2 (𝑧) = (
2

𝑧
)

𝑏/2 cosh 𝑐𝑧

√𝜋
. (46)

In the sequel, if we set ] = 1 − 𝑏/2, then the generalized
Bessel function 𝑤](𝑧) in (5) have following relation with sine
function when 𝑐 is replaced by 𝑐

2 (see, e.g., [29]):

𝑤
1−𝑏/2,𝑐

2 (𝑧) = (
2

𝑧
)

𝑏/2 sin 𝑐𝑧

√𝜋
. (47)

Further, if we put ] = 1 − 𝑏/2 and 𝑐 = −𝑐
2 in (5), we

have the following relation with 𝑤](𝑧) and hyperbolic sine
function as (see, e.g., [29])

𝑤
1−𝑏/2,−𝑐

2 (𝑧) = (
2

𝑧
)

𝑏/2 sinh 𝑐𝑧

√𝜋
. (48)

Now, by virtue of the relations (45) to (48), one can easily
derive the Marichev-Saigo-Maeda type fractional integrals
involving product of trigonometric functions. Therefore, we
omit the details of these results.

Further, it is interesting to observe that, if we set at 𝛼 = 0,
the results given by Malik et al. [29, pages 5 and 8, Theorems
4.1 and 5.1] follow as special cases of ourmain results. Again, if
we set 𝜆 = 0 and 𝑏 = 𝑐 = 1, then our main results (11) and (31)
follow the kown results due to [28]. Finally, if we set 𝜆 = 0,
𝑛 = 𝑏 = 𝑐 = 1 and give some suitable parametric replacement
in the main results (11) and (31), we can arrive at the known
results due to Purohit et al. [27] in a slightly different notation.

Fractional integral formulas involving products of Bessel
functions have been developed and play an important role
in several physical problems. In fact, Bessel functions are
playing the important role in studying solutions of dif-
ferential equations, integral equations [44], and they are
associated with a wide range of problems in important areas
of mathematical physics, like problems of acoustics, radio-
physics, hydrodynamics, and atomic and nuclear physics.
These considerations have led various workers in the field of
special functions for exploring the possible extensions and
applications for the Bessel functions. Amongmany properties
of Bessel functions, they also have investigated some possible
extensions of the Bessel functions. The generalized Bessel
function defined by (5), possess the advantage that a number
of Bessel functions, trigonometric functions and hyperbolic
functions happen to be the particular cases of this function.
Therefore, we conclude this paper with the remark that,
the results deduced above are significant and can lead to
yield numerous other fractional integrals involving various
Bessel functions and trigonometric functions by the suitable
specializations of arbitrary parameters in the theorems. More
importantly, they are expected to find some applications to
the solutions of fractional differential and integral equations.
The results thus derived in this paper are general in character
and likely to find certain applications in the theory of special
functions.
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