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1 Introduction

Although the embedding space in our world is a three dimensional Euclidean space, the

motion of material objects is not always in three dimensions. The dimensionality depends

on constraint conditions [1].

Besides, in some applications, the fractional dimensions appear as an explicit param-
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eter when the physical problem is formulated in α dimensions in such a way that α may

be extended to non-integer values, as occurs in Wilson’s study of quantum field theory

models in less than four-dimensions [2], or as in the approach to quantum mechanics

proposed by Stillinger [3].

In [2, 3] it was pointed out that the fractional dimensional space represents an effective

physical description of confinement in low-dimensional systems. In addition, the integer

space is extended to the case of fractional space [2–6]. Some important applications

of the fractional dimension of space can be found in [7] and some experimental results

were reported in [8, 9]. Spacetime was modelled as a fractal subset of R
n in [10] and a

framework of calculus on net fractals was obtained in [11].

Fractional calculus deals with the generalization of differentiation and integration

to non-integer orders [13–18]. Various mathematicians have built up a large body of

mathematical knowledge on fractional integrals and derivatives. Fractional calculus, as

a natural generalization of classical calculus, has played a significant role in engineering,

science, pure and applied mathematics in recent years [19–42].

Many applications of fractional calculus are based on replacing the time derivative

in an evolution equation with a derivative of fractional order. A relation between sta-

ble distributions in probability theory and the fractional integral was obtained in [43].

The fractional integral and its physical interpretation was discussed in [44]. Under the

condition that the electric and magnetic fields are defined on fractals and do not exist

outside of fractals in Euclidean space, the fractional generalization of the integral Maxwell

equations was considered in [45]. The results of many recent researchers illustrate that

fractional derivatives seem to arise for deep mathematical reasons.The fractional deriva-

tives arise as the infinitesimal generators of a class of translation invariant convolution

semigroups. These semigroups appear universally as attractors. The fractional varia-

tional principles [23–27], [31–43] are under continuous development and some interesting

applications were reported recently (see for example Refs. [40–42] and the references there

in).

The above mentioned results suggest that interest in the fractional variational calculus

is continuing but much remains to be investigated.

The main aim of this paper is to obtain the fractional Hamilton’s equations for a

discrete systems on a fractional space.

The paper is organized as follows:

In Section 2, some of the basic properties of the RL fractional derivatives are reviewed.

Section 3 presents the fractional Hamilton’s equations in fractional time. Two examples

are described in Section 4. Conclusions are presented in section 5.

2 Mathematical tools

In this section, we formulate the problem in terms of the left and the right Riemann–

Liouville (RL) fractional derivatives, which are defined as follows:
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the left Riemann–Liouville fractional derivative [12–16]

aD
α
t f(t) =

1

Γ(n − α)

(
d

dt

)n
t∫

a

(−τ + t)n−α−1f(τ)dτ, (1)

and the right Riemann–Liouville fractional derivative

tD
α
b f(t) =

1

Γ(n − α)

(
− d

dt

)n
b∫

t

(τ − t)n−α−1f(τ)dτ. (2)

Here the order α fulfills n − 1 ≤ α < n and Γ denotes the Euler’s Gamma function. It

can be shown that if α becomes an integer, we recovered the usual definitions, namely,

aD
α
t f(t) =

(
d

dt

)α

f(t), tD
α
b f(t) =

(
− d

dt

)α

f(t), α = 1, 2, .... (3)

Fractional RL derivatives possess several interesting properties. The RL derivative of a

constant is not zero, namely

aD
α
t C = C

(t − a)−α

Γ(1 − α)
. (4)

The RL derivative of a power of t is given by

aD
α
t tβ =

Γ(α + 1)tβ−α

Γ(β − α + 1)
, (5)

such that α > −1, β ≥ 0. Finally, the fractional product rule becomes

aD
α
t (fg) =

∞∑
j=0

⎛
⎜⎝α

j

⎞
⎟⎠(

aD
α−j
t f

)(
dig

dtj

)
. (6)

By inspection we observe that the fractional product contains infinitely many terms

and this product takes into account the memory effect.

The result given in (4) creates complications in solving the fractional differential

equation by using RL fractional derivatives. Very recently, based on finite difference [46],

an alternative definition was proposed for the Riemann–Liouville derivatives (for more

details see Ref. [46] and the references there in). By using the approach presented in

[46] the troublesome effects of the initial conditions in the RL fractional derivative are

removed.

3 Fractional equations of motion

3.1 Fractional Euler–Lagrange equations

Let us consider the action function of the following form

S =
1

Γ(α)

∫ b

a

L(τ, aD
β
τ q, τD

γ
b q)(t − τ)α−1dτ, (7)
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where 0 ≤ β ≤ 1, 0 < γ < 1, 0 ≤ α ≤ 1, t represents the observer time and τ denotes

the intrinsic time.The appearance of the multi-time characteristic time is important in

applications.

Let us the ε finite variations of function S then

ΔεS =

∫ b

a

L(q + ε δq, aD
β
τ q + ε aD

β
τ δq, τD

γ
b q + ε τD

γ
b δq)(t − τ)α−1dτ. (8)

This equation leads us to obtain the Euler–Lagrange equations of motion which reads

as

∂L

∂q
+

1

(t − τ)α−1

[
τD

β
b

(
∂L

∂(aD
β
τ q)

(t − τ)α−1

)
+ aD

γ
τ

(
∂L

∂(τD
γ
b q)

(t − τ)α−1

)]
= 0. (9)

For β = γ = 1 and assuming that the Lagrangian depends only on aD
β
τ q or τD

β
b we

obtain [31]
∂L

∂q
− d

dτ

(
∂L

∂q̇

)
− α − 1

t − τ

∂L

∂q̇
= 0. (10)

From (10) we observe the presence of a fractional generalized external force acting on

the system. The presence of this term (see Ref. [47] and the references therein) provides

potential applications of the present approach in cosmology, finance and in all processes

involving dissipative Lagrangians. By inspection, using (10) we obtain for α = 1 the

classical Euler–Lagrange equations.

3.2 The fractional Hamilton’s equations of motion

Let us define the Lagrangian of the system in the form

L∗ = L(τ, aD
β
τ q, τD

γ
b q)(t − τ)α−1. (11)

Following references [32, 40], we define the generalized momenta as

pα
μ =

∂L∗

∂aD
μ
τ q

, (12)

pα
ν =

∂L∗

∂τD
ν
bq

. (13)

The canonical Hamiltonian is defined as

H = pα
μaD

μ
τ q + pα

ν τD
ν
b q − L∗. (14)

Making use of the generalized momenta and using the equations of motion, we obtain the

canonical Hamiltonian in terms of the canonical phase space (q, pα
μ, pα

ν ) as follows

H = H(q, pα
μ, pα

ν , τ). (15)

The equations of motion are given by

∂H

∂pα
μ

= aD
μ
τ q,

∂H

∂pα
ν

= τD
ν
bq,

∂H

∂q
= τD

μ
b pα

μ + aD
ν
τp

α
ν ,

∂H

∂τ
= −∂L∗

∂τ
. (16)
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4 Examples

4.1 Fractional free particle

As a first example let us consider the action function

S =

∫ b

a

1

2
ẋ(τ)2(t − τ)α−1dτ. (17)

We propose the fractional Lagrangian corresponding to (17) as

S
′
=

∫ b

a

1

2

(
aD

β
τ x(τ)

)2
(t − τ)α−1dτ. (18)

The generalized momenta have the following

pα
β = aD

β
τ x(τ)(t − τ)α−1. (19)

The canonical Hamiltonian is calculated as

H =
pα

β
2

2(t − τ)α−1
. (20)

The Hamilton’s equation of motion becomes

τD
β
b pα

β = τD
β
b

(
aD

β
τ x(τ)(t − τ)α−1

)
= 0. (21)

The solution of (21) is given by

x(τ) = C
(τ − a)β−1

Γ(β)
+

∫ τ

a
[(b−σ)(τ−σ)]β−1

(t−σ)α−1 dσ

Γ(β)
. (22)

It was observed that for β → 1, the equation (21) becomes

ẍ(τ)(t − τ) − ẋ(τ)(α − 1) = 0, (23)

having a solution:

x(τ) = C1 + C2(−t + τ)−α+2. (24)

For integer dimensional case, when t = 0 and in the limit α → 1 the classical solution

was recovered, namely

x(τ) = C1 + C2τ, (25)

where C1 and C2 are constants.
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4.2 Fractional simple pendulum

As a second example let us consider the fractional generalization of simple pendulum of

length l attracted to the circumference of a body of negligible radius and mass m. The

classical Lagrangian is

L =
1

2
θ̇2 − 1

2
mglθ2. (26)

Here θ denotes the angular coordinate. The fractional Lagrangian for this systems has

the form

L =

(
1

2

(
aD

β
τ θ

)2 − 1

2
mglθ2

)
(t − τ)α−1. (27)

The generalized momenta are calculated as

pα
β = aD

β
τ θ(τ)(t − τ)α−1. (28)

The canonical Hamiltonian is calculated as

H =
pα

β
2

2(t − τ)α−1
+

1

2
mglθ2(t − τ)α−1. (29)

The Hamilton’s equations of motion lead to

τD
β
b

(
(aD

β
τ θ)(t − τ)α−1

)
(t − τ)α−1

− mglθ = 0 (30)

For β → 1, we have

θ̈(τ) +
(α − 1)

t − τ
θ̇(τ) + mglθ(τ) = 0. (31)

The solution of (31) is given by

θ(τ) = C1e
−i

√
mglτKummerM

(
−1

2
+

α

2
, α − 1,−2i

√
mgl(t − τ)

)

+ C2e
−i

√
mglτKummerU

(
−1

2
+

α

2
, α − 1,−2i

√
mgl(t − τ)

)
, (32)

where KummerM and KummerU are Kummer functions and C1 and C2 are constants.

For α = 1 and t = 0, the classical solution is reobtained.

5 Conclusions

In this study the fractional Hamilton’s and Euler–Lagrange equations were investigated.

The fractional canonical equations on a classical space are obtained. The classical Euler–

Lagrange are obtained for β → 1 and α → 1. The fractional free particle and the

fractional pendulum on fractional space were analyzed and the analytical solutions of their

corresponding fractional Hamiltonian equations were obtained. The results so obtained

can be applied to describe the weak dissipative and nonconservative dynamical systems.
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