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Abstract: In this work, a theoretical study of di�usion
of neumatic liquid crystals was done using the concept
of fractional order derivative. This version of fractional
derivative is very easy to handle and obey to almost all the
properties satis�ed by the conventional Newtonian con-
cept of derivative. The mathematical equation underpin-
ning this physical phenomenon was solved analytically
via the so-called homotopy decomposition method. In or-
der to show the accuracy of this iteration method, we con-
structed aHilbert space inwhichwe proved its stability for
the time-fractional Hunder-Saxton equation.

Keywords: neumatic liquid crystal; fractional derivative;
stability analysis; special solution

PACS: 02.30.Jr; 02.30.Mv; 02.30.Uu; 02.60.Nm

1 Introduction
Liquid crystals are material in a state that has properties
between those of conventional and those of solid crystal.
Examples of liquid crystals can be found both in the nat-
ural world and in technological applications. Furthermost
contemporaneous electronic displays use liquid crystals.
For instance, many proteins and cell membranes are liq-
uid crystals. Other distinguished examples of liquid crys-
tals are solutions of soapandvarious relateddetergents, as
well as the tobaccomosaic virus. It is perhaps to recall that,
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the history of liquid crystals can be traced back to thework
done in 1888 by Austrian botanical physiologist Friedrich
Reinitzer, who examined the physico-chemical properties
of various derivatives of cholesterol which nowadays be-
longs to the class of materials known as cholesteric liq-
uid crystals [1–4]. However, one of the most common LC
phases is the neumatic. Since every natural occurring can
be measured or at least be converted into mathematical
equation allowing us to predict the future. Therefore in
mathematical community, the Hunter-Saxton equation is
an integrable partial di�erential equation that arises in
the theoretical study of neumatic liquid crystals. If the
molecules in the liquid crystal are initially all aligned,
and some of them are waggled slightly, this interruption
in orientation will propagate through the crystal, and the
Hunder-Saxton equation describes certain of such orienta-
tionwaves. The equationunder considerationhere is given
as

utx + u2x + uux =
1
2u

2
x . (1)

2 Time-fractional Hunder-Saxton
equation

However, when searching in the literature, we �nd out
that, the orientation of research in modeling real world
problems is shifting toward the use of fractional order
derivative. Due to the fact that in many cases, the results
have been in agreement with the observed facts. Therefore
due to the great rewards of this concept, we shall in this
work consider reverting the conventional Hunter-Saxton
equation to the scope of fractional order derivative, this
will be achieved by replacing the derivative respect to time
to the fractional order derivative. The reason of using the
fractional derivative in modelling real problems has been
documented in [5]. Our new equation will throughout the
test be

A
0Dαt [utx] + u2x + uux =

1
2u

2
x 0 < α ≤ 1. (2)

We inform that the fractional derivative chosen here is
chosen in the way that any time alpha is integer we re-
cover the conventional Hunder-Saxton equation. Also we
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chose this version that can satisfy themaximumproperties
of the conventional derivatives. The fractional derivative
used here is referred to the Atangana’s fractional deriva-
tive de�ned as

A
0Dαt [f (t)] = lim

ε→0

f
(
t + ε

(
t + 1

Γ(α)

)1−α)
− f (t)

ε . (3)

The above de�nition has many interesting properties see
for example:

Theorem 1. Assuming that f : [a,∞) → R, be a functions
such that, f is di�erentiable and also α−di�erentiable. Let
g be a function de�ned in the range of f and also di�eren-
tiable, then we have the following rule [6]

A
0Dβx(gof (x)) = f (x)A0Dβx(g(f (x))). (4)

Theorem 2. [6] Assuming that, g ̸= 0 and f are two func-
tions β−di�erentiable with β ∈ (0, 1] then, the following re-
lations can be satis�ed
1. A

0Dαx
(
af (x) + bg(x)

)
= aA0Dαx f (x) + bA0Dαxg(x) for all a

and b real number.
2. A

0Dαx (c) = 0 for c any given constant.
3. A

0Dαx
(
f (x).g(x)

)
= g(x)A0Dαx f (x) + f (x)A0Dαxg(x)

4. A
0Dαx

(
f (x)
g(x)

)
= g(x)A0D

α
x f (x)−f (x)

A
0D

α
x g(x)

g2(x) .

3 Analytical solution
One of the di�cult parts in the �eld of non-linear equation
is to provide their solutions. The proof of existence of a so-
lution does not show us the solution, but the derivation of
an exact solution shows both the existence and the solu-
tion. More importantly, we shall mention that in the �eld
of modelling real world problems, the proof of existence
of solution is very useless because we need the solution
of this problem to predict the future. Because of the use-
fulness of these solutions for real world problems, several
scholars havedevoted their attention to proposedmethods
to solve approximately or exactly these problems. We can
name some of them for instance the homotopy perturba-
tion method by He [7, 8]. The variational iteration method
by Cheng [9], the Laplace perturbation method by Khan
[10], the Adomian decomposition method [11] and the ho-
motopy decomposition method [12, 13] and many others
[14–16]. We shall make use of the recently proposed one
that used the double Laplace transform and the Lagrange
Multiplier. According to the methodology of this version,
we shall �rst apply the inverse operator of beta -fractional

derivative on both sides of Equation (2) to obtain

ux(x, t) − ux(x, 0) = A
0 Iαt
[
1
2u

2
x − u2x − uux

]
, (5)

where

A
0 Iαt [f (t)] =

t∫
0

(
v + 1

Γ (α)

)α−1
f (v)dv (6)

and is referred as beta-fractional integral. Again applying
the integral in respect to x in both sides of Equation (5) we
obtained

u(x, t) = A(x, t) +
x∫

0

(
A
0 Iαt
[
−12u

2
v − uuv

])
dv. (7)

The next step is to assume that, the solution of our equa-
tion can be obtained in series form as follows

u(x, t) =
∞∑
n=0

un(x, t). (8)

Therefore replacing the above expression in (7) and mak-
ing use of the homotopy idea which allows us to include
an embedding parameter says for example p ∈ (01]. Then
after evaluating terms of samepower of the embedding pa-
rameter, we obtain the following recurrence formulas

u0(x, t) = A(x, t) (9)

u1(x, t) =
x∫

0

(
A
0 Iαt
[
1
2

(
u2v
)
0
−
(
u2v
)
0
− u0 (uv)0

])
dv,

un(x, t) =
x∫

0

(
A
0 Iαt
[
−12Hn − Bn

])
dv,

with

Hn =
n−1∑
j=0

1
2 (uv)j (uv)n−j−1 , Bn =

n−1∑
j=0

(uv)j (u)n−j−1 .

(10)
Note that as soon as we provide the �rst term, which is the
combination of the initial conditions, we can by using the
following algorithm obtain the remaining terms.

Algorithm 3. – Input: I(x, t) = A(x, t) as early boarder,
– k−number terms in the series calculation
– Output: upart(x, t), the special solution
Step 1 : put u0(x, t) = I(x, y, t) and upart(x, t) = u0(x, t),
Step 2 : for k = 0 to n − 1 do step 3, step 4 and step 5
Step 3 : compute accordingly

Hn =
n−1∑
j=0

1
2(uv)j(uv)n−j−1

Bn =
n−1∑
j=0

(uv)j(u)n−j−1,
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bn = un(x, t) =
x∫

0

(
A
0 Iαt
[
−12Hn − Bn

])
dv, n ≥ 1,

Step 4 : Compute

un+1(x, t) = bn + un ,

Step 5 : Compute

upart(x, t) = upart(x, t) + un+1(x, t),

Stop.

We shall use the above algorithm to derive the solution of
Equation (2).

4 Stability and convergence
analysis

In this section we shall present �rst the stability analysis
of the iteration method used to derive the special solution
of Equation (2). To achieved this we propose the following
theorem

Theorem 4. Taking into account the initial conditions as-
sociate to the fractional Hunder-Saxton equation, the ho-
motopy decompositionmethod provide a special solution of
Equation (2).

Proof. Let us consider the following operator

M(u) = A
0Dαt [utx] = −

1
2u

2
x − uux . (11)

Furthermore let us consider the following theHilbert space
H = L2 ((η, λ) × [O, T]) , de�ned as

H =
{
(u, v) : (η, λ) × [O, T] with,

∫
uvdıdk < ∞

}
.

Then by de�nition of operator (11) we have the following

M(u) −M(v) = −12u
2
x − uux +

1
2 v

2
x + vvx (12)

= −12

[(
u2x − v2x

)
+
((
u2
)
x
−
(
v2
)
x

)]
.

Let us consider the inner product and the following prop-
erties in fact; the explanation on Hilbert space accommo-
dates plentiful designs of the inner product spaces where
the metric constructed by the inner product precedes a
comprehensivemetric space. Inner product spaceshavean
unconsciously de�ned norm based on the inner product
of the space itself that does not the parallelogram equality
[17, 18]:

‖x‖ =
√
(x, x). (13)

It is a well de�ned by the no negativity axiom of the de�ni-
tion of the inner product space. The following properties
can be observed ∣∣(x, y)∣∣ ≤ ‖x‖ ‖y‖ . (14)

The above is the well-known Cauchy-Schwarz inequality.
Also the following can be obtained

‖a.x‖ = |a| . ‖x‖ . (15)

The above is called homogeneity. The last interesting one
for this paper will be given as:

‖x + y‖ ≤ ‖x‖ + ‖y‖ . (16)

The above is called triangular inequality. Therefore with
the above properties in mind, we shall evaluate(

M(u) −M(v), u − v
)
=(

1
2

[(
v2x − u2x

)
+
((
v2
)
x
−
(
u2
)
x

)]
, u − v

)
. (17)

Making use of the inner product properties we have(
M(u) −M(v), u − v

)
=

− 1
2

[(
u2x − v2x , u − v

)
+
((
u2
)
x
−
(
v2
)
x
, u − v

)]
. (18)

Makinguseof theCauchy-Schwartz inequality andalso the
above properties we obtain the following inequalities un-
der the condition that (u, u), (v, v) ≤ N2((

u2
)
x
−
(
v2
)
x
, u − v

)
≤ 2N2δ1 ‖u − v‖2 . (19)

If in addition we have the following condition
(ux , ux), (vx , vx) ≤ D2 then we can obtain the following
inequality((

u2
)
x
−
(
v2
)
x
, u − v

)
≤ 2D2δ2 ‖u − v‖2 . (20)

Therefore replacing Equation (20) and (19) into Equa-
tion (17) we obtain(

M(u) −M(v), u − v
)
≥
(
N2δ1 + D2δ2

)
‖u − v‖2 . (21)

Then, for all u, v ∈ H we can �nd a positive constant g
such that(
M(u) −M(v), u − v

)
≥ g ‖u − v‖2 , g =

(
N2δ1 + D2δ2

)
.

(22)
We shall follow our proof by evaluating(

M(u) −M(v), w
)
=

− 1
2

[(
u2x − v2x , w

)
+
((
u2
)
x
−
(
v2
)
x
, w
)]

. (23)
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However, usingderivation as earlier,wehave the following
inequality(

M(u) −M(v), w
)
≥
(
N2δ1 + D2δ2

)
‖u − v‖ ‖w‖ . (24)

Thus, for all u, v, w ∈ H, we can �nd a positive constant g
such that (

M(u) −M(v), w
)
≥ g ‖u − v‖ ‖w‖ . (25)

With the Equation (25) and (22) satis�ed, the proof of sta-
bility is completed.

5 Special solution
In this section, we shall make use of Algorithm 3 to derive
the special solution of the time-fractional Hunder-Saxton
equation. If we choose for instance the initial condition to
be

A(x, t) = x. (26)

Then we shall have

u0(x, t) = x

u1(x, t) =
x2
(
−
(
t + 1

Γ[α]

)α
+
(

1
Γ[α]

)α)
2α

u2(x, t) =
x3
(

1
Γ[α]

)2α (
−1 + (1 + tΓ [α])α

)2
4α2

u3(x, t) = −
x4
(

1
Γ[α]

)3α (
−1 + (1 + tΓ [α])α

)3
8α3

u4(x, t) =
x5
(

1
Γ[α]

)4α (
−1 + (1 + tΓ [α])α

)4
16α4

u5(x, t) = −
x6
(

1
Γ[α]

)5α (
−1 + (1 + tΓ [α])α

)5
32α5

u6(x, t) =
x7
(

1
Γ[α]

)6α (
−1 + (1 + tΓ [α])α

)6
64α6 .

One can notice that, the terms of the series solution follow
a certain pattern; therefore we can conclude that for any
n ≥ 1 the nth term of the solution is given as

un(x, t) = (−1)n
xn+1

(
1
Γ[α]

)nα (
−1 + (1 + tΓ [α])α

)n
(2α)n . (27)

So that the solution of the time-fractional Hunder-Saxton
equation with the chosen initial conditions can be ex-
pressed as

u(x, t) =
∞∑
n=0

(−1)n
xn+1

(
1
Γ[α]

)nα (
−1 + (1 + tΓ [α])α

)n
(2α)n .

(28)
The special solution or the approximate solution is given
in terms of certain m as

u(x, t,m) =
m∑
n=0

(−1)n
xn+1

(
1
Γ[α]

)nα (
−1 + (1 + tΓ [α])α

)n
(2α)n .

6 Results and discussion
In the recent decades several physical problems that have
been represented inmathematical formula with fractional
derivatives have o�ered great results. For example in the
�eld of groundwater �ow and groundwater pollution, the
results o�ered by the fractional derivatives were in good
agreement of experimental data. Now let A0Dαt [f (t)] = v(t)
as a physical interpretation of the fractional derivative we
have that when 0 < β < 1, v(t) is represented with an ad-

ditional function gt(β) =
(
t + 1

Γ(β)

)1−β
describing the inho-

mogeneous time scale, which depends not only β, but also
on the parameter t representing all the individual times
measured of the moving object. This is in agreement with
the current views in physic. In this point of view, v(t) is al-
most the real velocity of the moving object at the real dis-
tance f (t) whereas, when β = 1 , v(t) is the average veloc-
ity describing the ratio between the approximate distance
travelled and the local time t which is considered as the
�owing equably time. Therefore, the result obtained via
the fractional derivative, represented the real orientation
of the waves.

7 Conclusion
An integrable partial di�erential equation that arises in
the theoretical study of neumatic liquid crystals was fur-
ther extended to the concept of fractional derivative.
The fractional derivative used here is referred to beta-
fractional derivative. This fractional derivative has inter-
esting properties that cannot be o�ered by thewell-known
fractional derivatives. Wemake use of the so-called homo-
topy decomposition method (HDM) to derive a special so-
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lution of the time-fractional Hunder-Saxton equation. The
show the e�ciency of the used method, we used the inner
product present the .
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