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Abstract: This paper integrates dispersive optical soli-
tons in special optical metamaterials with a time depen-
dent coe�cient. We obtained some optical solitons of
the aforementioned equation. It is shown that the exam-
ined dependent coe�cients are a�ected by the velocity
of the wave. The �rst integral method (FIM) and ansatz
method are applied to reach the optical soliton solutions
of the one-dimensional nonlinear Schrödinger’s equation
(NLSE) with time dependent coe�cients.
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1 Introduction
The dynamics of optical solitons propagating through op-
tical �bers for trans-continental and trans-oceanic dis-
tances is governed by the nonlinear Schrödinger’s equa-
tion (NLSE). This NLSE is derived fromMaxwell’s equation
in electromagnetic by the aid of multiple-scale perturba-
tion analysis. TheNLSE appears, in the literature of optical
solitons, with several forms of nonlinearity that depends
on the context where it is studied. The best knownmathe-
maticalmodeling of optical systems generally is expressed
by types of NLSE. The details of NLSE are given in the stud-
ies on nonlinear optics [1–8].

It is crucial to reach general solutions of these cor-
responding nonlinear equations. Thus, the general solu-
tions of these equations provide much information about
the character and the structure of the equations for re-
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searchers. Many e�ective methods have been improved to
provide much information for physicians and engineers.
Some of thesemethods are Tanh [9], G′/G -expansion [10],
Jacobi elliptic function [11], functional variable [12], Hirota
bilinear [13], exp-function [14], and �rst integral methods
[15]. All of these methods are e�ective methods for acquir-
ing traveling wave solutions for NPDE.

The FIM initially has been presented to the literature
by solving the Burgers-KdV equation by Feng [15]. This
method has been successfully implemented to NPDE and
some fractional di�erential equations, which are a new
type of equations. In recent years, many studies on this
method have beenmade. Raslan [16] has used thismethod
for the Fisher equation. Tascan and Bekir [17] have used
this method for the Cahn-Allen equation. Abbasbandy
and Shirzadi [18] have investigated the Benjamin Bona-
Mohany equation by thismethod. Jafari et al. [19] andHos-
seini et al. [20] have researched w.r.t. the Biswas–Milovic
equation, the KP equation, and so on [21–24].

For this paper, we present the governing equation for
metamaterials in Section 2. The FIM is described and ap-
plied in Section 3. In order to construct the combined soli-
ton solutions, an ansatz approach is applied in Section 4.
Lastly, we give some conclusions in the last section.

2 Governing equation
Soliton pulse propagation properties in complexmaterials
with simultaneous negative real dielectric permittivity and
magnetic permeability, also knownasdouble negativema-
terials, have attracted much attention in recent research.
These types ofmaterials are not found innature, but rather
need to be fabricated through material processed engi-
neering. Therefore, these materials are called metamateri-
als [25]. In recent years, the model equation that describes
the propagation of solitons and other waves through these
metamaterial waveguides has been studied by many re-
searchers. One of these studies is by Ebadi and co-workers:
the tanh functionmethod [26, 27]. We have used the afore-
mentionedequationwith additional terms that account for
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the metamaterials as

iht + a (t) hxx + b (t) |h|2 h =(
iα (t) hx + iλ (t)

(
|h|2 h

)
x
+ iµ (t)

(
|h|2
)
x
h

+ϕ1

(
|h|2 h

)
xx
+ ϕ2 |h|2 hxx + ϕ3h2h*xx

, (1)

where a, b, α, λ, µ andϕj are the groupvelocity dispersion,
Kerr lawnonlinearity, coe�cient of intermodal dispersion,
coe�cient of self-steepening, nonlinear dispersion, and
real-valued constants that account for speci�c metamate-
rials which were introduced earlier and reported in [26].

3 The �rst integral method
The principal structures of the FIM are as follows:
Step 1. Taking into account the usual NPDE as:

W(h, ht , hx , hxt , htt , hxx , . . .) = 0 (2)

then Equation (2) transforms the ODE as

L(H, H′, H′′, H′′′, . . .) = 0 (3)

such that ξ = x ∓ ct and H′ = ∂H(ξ )/∂ξ .
Step 2. The following can be taken in ODE (3):

h(x, t) = h(ξ ). (4)

Step 3. A new independent variable is produced by

H(ξ ) = h(ξ ), G(ξ ) = ∂H(ξ )/∂ξ (5)

which produces a new system of ODEs:

∂H(ξ )/∂ξ = G(ξ ), (6)
∂F(ξ )/∂ξ = P(H(ξ ), G(ξ )).

Step 4. In accordance with the qualitative theory of ODEs
[28], if it is possible to �nd the integrals for system (6), the
solutions of system (6) can be obtained immediately. On
account of the particular independent plane system, there
does not exist any approximation that can guide how to
reach its �rst integrals. TheDivision Theorem (DT) [29] pre-
sented us an idea how to reach the �rst integrals.

3.1 Application

Equation (1) turns into the following ODEs by using the
wave variable h = H (ξ ) ei[−κx+wt], where ξ = β (x − vt) . The

real and imaginary parts yield the following pair of rela-
tions

(βv + 2aβκ + αβ)Hξ + (3λβ + 2βµ − 2βκ (3ϕ1

+ϕ2 − ϕ3))H2Hξ = 0,
(7)

αβ2Hξξ −
(
w + aκ2 + ακ

)
H+

(
b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3)

)
H3−

−β2 (3ϕ1 + ϕ2 + ϕ3)H2Hξξ − 6β2ϕ1HH2
ξ = 0.

(8)

If we di�erentiate (7) once by ξ , we get

Hξξ = −
(
(3λβ + 2βµ − 2βκ (3ϕ1 + ϕ2 − ϕ3))

(βv + 2aβκ + αβ)

)
,

(
H2Hξξ + 2HH2

ξ

)
.

(9)

Then by equating the right side of (9) to
−β2 (3ϕ1 + ϕ2 + ϕ3)H2Hξξ − 6β2ϕ1HH2

ξ in (8), we have
the following constraint:

ϕ2 = −ϕ3, βϕ1 ̸= 0, 3λ − 6κϕ1 + 4κϕ3 + 2µ ̸= 0, (10)

v = 3λ − 3αβ2ϕ1 − 6κϕ1 − 6aβ2κϕ1 + 4κϕ3 + 2µ
3β2ϕ1

. (11)

In (10) and (11), Hξξ can be replaced in (8) instead of
−β2 (3ϕ1 + ϕ2 + ϕ3)H2Hξξ − 6β2ϕ1HH2

ξ . Then we have

(
1 + αβ2

)
Hξξ −

(
w + aκ2 + ακ

)
H

+
(
b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3)

)
H3 = 0.

(12)

Then with another transformation Hξ = G, we have

Hξ = G,

Gξ =
(
w + aκ2 + ακ

)
(1 + αβ2)

H

−
(
b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3)

)
(1 + αβ2)

H3.

(13)

In accordance with the FIM, it is supposed that H(ξ )
and G(ξ ) are non-trivial solutions of Equation (13) and

F(H, G) =
r∑
i=0
ai(H)Gi is an irreducible function in the do-

main C[H, G] such that

F(H(ξ ), G(ξ )) =
r∑
i=0
ai(H)Gi = 0, (14)
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where ai(H), (i = 0, 1, 2, . . . , r) are polynomials of H and
ar(H) ̸= 0. Equation (12) is the �rst integral for system (13),
owing to the DT, there exists g(H) + f (H)G in C[H, G] as:

dF/dξ = dF
dH

dH
dξ + dFdG

dG
dξ (15)

= [g(H) + f (H)G]
r∑
i=0
ai(H)Gi .

Here, we only consider r = 1 in Equation (15).
If we equate the coe�cients of Gi(i = 0, 1, 2, . . . , r) of

Equation (15) for r = 1, we have

ȧ1(H) = a1(H)g(H) (16)

ȧ0(H) = a1(H)g(H) + h(H)a0(H) (17)

a0(H)g(H) = a1(H)
[(
w + aκ2 + ακ

)
(1 + αβ2)

H

−
(
b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3)

)
(1 + αβ2)

H3

] (18)

Since ai(H)(i = 0, 1) is a polynomial of H, a1(H) is a con-
stant and h(H) = 0 from (16). For convenience, let a1(H) =
1, and equalizing the degrees of g(H) and a0(H) we con-
clude the degree of g(H) is equal to one. Then, we assume
that g(H) = A1 + 2A2H, and we obtain the following from
Equations (17) and (18):

a0(H) = A2H2 + A1H + A0. (19)

Replacing a0(H), a1(H) and g(H) in Equation (18), to sepa-
rate the common factors of the same terms, then equating
the coe�cients of H i to zero, we have the following case:

A1 = 0, A2 = ±

√
(λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3))

2 (1 + αβ2)
, (20)

A0 = ±
(
w + aκ2 + ακ

)√
2 (1 + αβ2) (λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3))

.

Putting (20) into (14), we have

Hξ = ±
(
w + aκ2 + ακ

)√
2 (1 + αβ2) (λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3))

(21)

±

√
(λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3))

2 (1 + αβ2)
H2(ξ ).

If we solve the Equations (21), we have the following dark
soliton solution

H = −

√
w + aκ2 + ακ

λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3)
(22)

tanh
[√

w + aκ2 + ακ
2 (1 + αβ2)

]
,

and the original solution of Equation (2) is

h(x, t) =


−

√
w + aκ2 + ακ

λκ − b − κ2 (ϕ1 + ϕ2 + ϕ3)

tanh
[√

w + aκ2 + ακ
2 (1 + αβ2)

β (x − vt)

]
 ei[−κx+wt].

(23)

4 The Ansatz approach
We use an ansatz approach to seek other types of soliton
solutions of Equation (1).

First, Equation (12)will be integrated to reach the com-
bined bright-dark [30] soliton solution of Equation (1). So
we will seek a solution of the following form

H (ξ ) = θ0 sech [ξ ] − iθ1 tanh [ξ ] , (24)

where θ0 and θ1 are amplitudes of the bright and dark soli-
tons, respectively.

By substituting (22) into (12) and setting the coe�-
cients of each term of sechi [ξ ] tanhj [ξ ] (i, j = 0, 1, 2) to
zero we get the following relations:

θ0 = θ1 = ±

√
1 + αβ2

2 (b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3))
, (25)

w = −12
(
1 + αβ2 + 2ακ + iκ2

)
.

From (25) the combined bright-dark soliton solution of
Equation (1) is obtained:

h(x, t) = ±

√
1 + αβ2

2 (b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3))
(sech [β (x − vt)] − i tanh [β (x − vt)])

ei[−κx− 1
2 (1+αβ2+2ακ+iκ2)t].

(26)
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Second, Equation (12) will be integrated to reach the
combined-dark soliton solution of Equation (1). So we will
seek a solution of the following form

H (ξ ) = θ0 tanh [ξ ] − iθ1 sech [ξ ] , (27)

where θ0 and θ1 (θ0 > 0, θ1 > 0) are the amplitudes of the
dark and bright solitons, respectively.

By substituting (27) into (12) and setting the coe�-
cients of each term of sechi [ξ ] tanhj [ξ ] (i, j = 0, 1, 2) to
zero we get the following relations:

θ0 = θ1 = ±

√
−1 − αβ2

2 (b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3))
, (28)

w = −12
(
1 + αβ2 + 2ακ + aκ2

)
.

From (28) it is the combined-dark soliton solution of Equa-
tion (1) is obtained:

h(x, t) = ±

√
−1 − αβ2

2 (b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3))
(tanh [β (x − vt)] − i sech [β (x − vt)])

ei[−κx− 1
2 (1+αβ2+2ακ+aκ2)t].

(29)

Third, Equation (12) will be integrated to reach the
combined-bright soliton solution of Equation (1). So we
will seek a solution of the following form

H (ξ ) = θ0 tanh [ξ ] + iθ1 sech [ξ ] , (30)

where θ0 and θ1 (θ0 > 0, θ1 > 0) are the amplitudes of the
dark and bright solitons respectively.

By substituting (30) into (12) and setting the coe�-
cients of each term of sechi [ξ ] tanhj [ξ ] (i, j = 0, 1, 2) to
zero we get the same relations as (28) and the combined-
bright soliton solution of Equation (1) is obtained:

h(x, t) = ±

√
−1 − αβ2

2 (b − λκ + κ2 (ϕ1 + ϕ2 + ϕ3))
(tanh [β (x − vt)] + i sech [β (x − vt)])

ei[−κx− 1
2 (1+αβ2+2ακ+aκ2)t].

(31)

5 Conclusion
Weused the FIMand antsatz approaches for acquiring sev-
eral newexact solutionsof theone-dimensionalNLSEwith
time dependent coe�cients. We have acquired di�erent

types of exact solutions which are dark, combined-bright,
and combined-dark optical solitons. These obtained solu-
tions are new according to our research of the literature. It
has been shown that the velocity function w (t) is related
to the group velocity term a (t) in (28). Consequently, the
FIM and ansatz approaches are crucial ones to construct
di�erent types of the exact solutions of the NPDE and sys-
tems.
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