ÇANKAYA UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES INDUSTRIAL ENGINEERING

MASTER THESIS

WORKFORCE ASSIGNMENT IN A MULTI-WORKER MULTI-SIDED MIXED-MODEL ASSEMBLY LINE BALANCING PROBLEM

FUNDA KARABAK

SEPTEMBER 2012

Title of the Thesis : Workforce Assignment in a Multi-Worker Multi-Sided Mixed-Model Assembly Line Balancing Problem

Submitted by : Funda KARABAK

Approval of the Graduate School of Natural and Applied Sciences, Çankaya University.

Prof. Dr. Taner ALTINOK

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferda Can ÇETİNKAYA Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Benhür SATIR

Prof. Dr. Levent KANDILLER

Examination Date : 21.09.2012

Examining Committee Members

Prof. Dr. Murat Caner TESTIK

Prof. Dr. Levent KANDILLER

Asst, Prof. Dr. Nureddin KIRKAVAK

Asst. Prof. Dr. Talip KELLEGÖZ

Asst. Prof. Dr. Benhür SATIR

(Hacettepe Üni.)

(Çankaya Üni.)

(Çankaya Üni.)

(Gazi Üni.)

(Çankaya Üni.)

Hum

STATEMENT OF NON PLAGIARISM

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that as required by thesis rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

> Name, Last Name: Funda KARABAK Signature:

Date: 21.09 2012

ABSTRACT

WORKFORCE ASSIGNMENT IN A MULTI-WORKER MULTI-SIDED MIXED-MODEL ASSEMBLY LINE BALANCING PROBLEM

KARABAK, Funda

M.Sc., Department of Industrial Engineering Supervisor: Levent KANDİLLER, Ph.D. Co-Supervisor: Benhür SATIR, Ph.D. September 2012, 52 pages

In this thesis, workforce scheduling problem in a mixed model assembly line is studied in which precedence relations, qualification of workers, walking times between tasks and worker requirements are considered. The motivation of the study comes from a real life problem at MAN Türkiye A.Ş. Mixed integer linear programming formulations for minimization of number of actively used workers and minimization of makespan value are developed. However, since the problem is NP-Hard, a heuristic approach is introduced. The developed heuristic attempts to minimize the number of actively used workers first, and then to minimize the makespan value.

Keywords: Mixed model assembly lines, workforce scheduling

ÖZ

ÇOK İŞÇİLİ ÇOK TARAFLI KARIŞIK MONTAJ HATTI DENGELEME PROBLEMLERİNDE İŞGÜCÜ ATAMASI

KARABAK, Funda

Yüksek Lisans, Endüstri Mühendisliği Ana Bilim Dalı Tez Yöneticisi: Prof. Dr. Levent KANDİLLER Yardımcı Tez Yöneticisi: Yrd. Doç Dr. Benhür SATIR Eylül 2012, 52 sayfa

Bu tez kapsamında, karışık modelli montaj hatlarında işgücü çizelgelemesi çalışılmıştır. Söz konusu problemin karakteristiklerini, öndelik ilişkileri, işçi kalifikasyonları, işler arası yürüme zamanları ve çok işçi ile yapılması gereken işler oluşturmaktadır. Bu çalışmanın motivasyonu MAN Türkiye A.Ş.' de karşılaşıan bir gerçek hayat problemine dayanmaktadır. Bu probleme yönelik iki adet karışık tamsayılı doğrusal programlama formulasyonu yapılmıştır. Birincisi kullanılacak olan işçilerin sayısını en küçüklerken, ikincisi birincisinin sonucunu kullanarak işlerin arasındaki en büyük tamamlanma süresini küçültmektedir. Problemin NP-Zor olması dolayısıyla sezgisel bir yaklaşım geliştirilmiştir. Geliştirilen yaklaşım ilk olarak aktif olarak kullanılan işçilerin sayısını enküçüklemeye çalışırken, diğeri enküçüklenmiş işçi sayısını kullanarak işlerin arasındaki en büyük tamamlanma süresini arasındaki en büyük tamamlanına süresini enküçüklemeye çalışırken, diğeri enküçüklenmiş işçi sayısını kullanarak işlerin arasındaki en büyük tamamlanma süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini arasındaki en büyük tamamlanına süresini enküçüklemeye çalışırken, diğeri

Anahtar Kelimeler: Karışık modelli montaj hattı, işgücü çizelgeleme

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors Prof. Dr. Levent Kandiller and Asst. Prof. Dr. Benhür Satır for their valuable guidance through all the stages of myM. Sc. study with wholehearted patience and sincerity.

I would like to thank Asst. Prof. Dr. Abdülkadir Görür, for his patience, interest and guidance through the coding process of my algorithm.

I am grateful to my examining committee members, Prof. Dr. Murat Caner Testik, Asst. Prof. Dr. Nureddin Kırkavak, and Asst. Prof. Dr. Talip Kellegöz for accepting to be on my committee and for their valuable suggestions on my research.

I would also like to express my deepest thanks to my fiancé Nizamettin Doğan Güner for all his endless academic and moral support during all my desperate times.

I am grateful to my all collegues at the IE department, especially Derya Akbulut, Miray Hanım Aslan Yıldırım, Atıl Kurt, İpek Seyran Topan for all their support.

I would also express my thanks to my family for all the supports that they provided to me.

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM	iii
ABSTRACT	iv
ÖZ	v
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	x
INTRODUCTION	1
CHAPTERS:	
1. LITERATURE REVIEW	3
1.1 ASSEMBLY LINE BALANCING	4
1.2 MODEL SEQUENCING LITERATURE	7
1.3 WORKFORCE SCHEDULING LITERATURE	7
2. PROBLEM DEFINITON & MODEL FORMULATION	11
2.1 PROBLEM DEFINITION	
2.2 MATHEMATICAL FORMULATION	14
2.2.1 Mathematical Model 1 (MM1)	15
2.2.2 Mathematical Model 2 (MM 2)	
2.3 LOWER BOUNDS	
2.3.1 Lower Bound 1 (LB1)	
2.3.2 Lower Bound 2 (LB2)	
3. SOLUTION METHODOLOGY	
3.1 CONSTRUCTION ALGORITHM (PHASE 1)	
3.2 MAKESPAN MINIMIZATION (PHASE 2)	
3.2.1 Construction of Makespan Minimization (Phase 2-1)	
3.2.2 Rescheduling (Phase 2-2)	
3.2.3 Task Transfer (Phase 2-3)	

4. EXPERIMENTAL STUDY	34
4.1 PROBLEM GENERATION AND EXPERIMENTAL DESIGN	34
4.2 RESULTS	35
5. CASE STUDY AT MAN TÜRKİYE A.Ş	40
5.1 PROBLEM ENVIRONMENT	40
5.2 REAL LIFE PROBLEM INSTANCE	43
6. CONCLUSION AND DISCUSSIONS	47
REFERENCES	49
APPENDICES:	
A - Workplaces (Zones) of Workpiece at MAN Türkiye A.Ş	53
B - Sample Forms Used in MAN Türkiye A.Ş	54
C - Inputs of Case Study at MAN Türkiye A.Ş	55
D - Input Data of Problem 1	59

LIST OF TABLES

Table 1 Comparison of properties of our study and other studies in the schedulin	g
literature	. 10
Table 2 Relation between problem size and optimal solutions	21
Table 3 Relation between problem size and number of optimal solutions found	23
Table 4 Worker-task qualification	26
Table 5 Walking times between tasks	26
Table 6 Worker requirements of each task	27
Table 7 Mathematical model MM1 and heuristic algorithm (Phase 1) results	. 36
Table 8 MM2 and heuristic algorithm (Phase 2, 2-1, 2-2) results	. 37
Table 9 Performance evaluation of Phase 1 and MM1	. 38
Table 10 Performance evaluation of Phase 2, 2-1, 2-2 and MM2	. 38
Table 11 CPU times of Phase 1, 2-1, 2-2 and MM1 on optimal solutions	. 38
Table 12 CPU Times of Phase 2, 2-1, 2-2 and MM2 on optimal solutions	. 39
Table 13 Results for real life problem instances	. 46

LIST OF FIGURES

Figure 1 Operational Planning of a Mixed Model Assembly Line	3
Figure 2 Illustration of the assembly line	. 12
Figure 3 Worker teams during production of workpiece	. 13
Figure 4 Relationship between mathematical models	. 14
Figure 5 Relationship between phases of heuristic algorithm	. 24
Figure 6 Precedence diagram of the example	. 26
Figure 7 Resulting schedule of construction algorithm (Phase 1)	. 28
Figure 8 Resulting schedule of minimization of makespan	. 30
Figure 9 Schedule of the most loaded worker in resulting solution of Phase 2	. 31
Figure 10 Result of the rescheduling phase applied to the Phase 2 solution	. 31
Figure 11Tasks assignment before rescheduling	. 32
Figure 12 Precedence diagram for the example	. 32
Figure 13 Task assignment after rescheduling	. 33
Figure 14 Cost centers of MAN Türkiye A.Ş	. 41
Figure 15 Relationship between process, task and job	. 41
Figure 16 Workpiece flow in the line	. 42
Figure 17 Precedence relations between 27 tasks	. 44
Figure 18 Resulting schedule of minimization of actively used workers (MM1)	. 44
Figure 19 Resulting schedule of minimization of makespan (Phase 2, 2-1, 2-2)	. 45

INTRODUCTION

By considering customer needs, firms produce products to survive in today's free market economy. This results in the existence of same type of products with different specifications. Especially, this situation occurs in automotive industry. While the firms from automotive industry produce differentiated products based on customer needs, their main concern is how they use their resources (workers, time, raw materials, etc.) efficiently. Therefore, their production line should be designed accordingly.

This thesis is motivated from a problem occurred in production line of MAN Türkiye A.Ş. that has been established in 1966. In 1985, truck and motor production plants were opened in Ankara. Since 1995, MAN Türkiye A.Ş. has been manufacturing busses where product families include travel buses, public transportation buses and middle distance buses. The products in the product family have many sub models with different options, leading to approximately twenty different bus types. The production method of these twenty different models is a good example for mixed model assembly line models defined in the literature. In the company, there are five cost centers corresponding to production. The production system of the company is assembly flow line with many workstations. There are approximately 110 workstations with 62 active workstations. The predefined operations are performed by the workers at these stations and the final product exists at the end of last station. The unique cycle time for each station is fixed. The operations that are assigned to the workstations have to be completed within the given cycle time. Because of large dimensions of workpieces, worker teams work simultaneously at different locations of workpiece at each workstation. Moreover, workforce management is difficult and complex in mixed model assembly lines under multi-worker situation. The problem studied in the scope of this thesis is not exactly pure mixed model assembly line balancing problem in mixed model assembly lines. MAN Türkiye A.Ş. has all its tasks assignments for each workstation in the line. However, as stated before, it manages the line with the manner of mixed model assembly lines. It means that at the beginning of each day, production mix and the model sequence are known. Moreover, because of the large size of a workpiece at each workstation, more than one worker is allowed to work simultaneously at each workstation. Therefore, the problem returns from static assembly line balancing problem to a scheduling problem solved for every period (cycle) for each workstation with properties of precedence relations between tasks, qualifications of workers for each tasks, multi-worker tasks and walking time with sequence dependent setups to first minimize number of actively used workers in resulting schedule, then to minimize makespan value of this resulting schedule.

In our study, two mixed integer linear programming model formulations are presented. First of them minimizes the total number of workers in the line, and the second one minimizes the makespan value by using the solution of first phase. Furthermore, for large sized problem instances, heuristic approaches are proposed since it is hard to get even a feasible solution in a reasonable time by feeding the proposed mathematical formulations to general solvers. Heuristic approaches are based on defined priority rules. Lack of any benchmark problem in the literature made us to generate them by considering real life data. The results of the experimental study indicate that our heuristic approach gives satisfactory results.

The organization of the study is as follows: Literature review of the problem considered is presented in Chapter 2. Chapter 3 includes problem definition and model formulation. In Chapter 4, our solution methodology is provided. Chapter 5 presents the experimental study and the results. In Chapter 6, the case study performed in MAN Türkiye A.Ş. is explained in detail. Finally, In Chapter 7, conclusion and discussions are presented.

CHAPTER I

In this chapter, a literature review for assembly line balancing, model sequencing and workforce scheduling is presented. In Section 2.1, detailed information about assembly line balancing and related works is given. In Section 2.2, model sequencing studies are introduced in detail. Section 2.3 covers workforce scheduling and works in the literature.

1. LITERATURE REVIEW

In this thesis, three basic different problems arising from assembly lines are considered: Assembly line balancing, model sequencing and workforce scheduling. These problems are integrated to each other as seen in Figure 1.

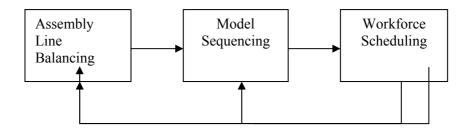


Figure 1 - Operational Planning of a Mixed Model Assembly Line

A classical assembly line balancing problem for assigning all tasks of each model to workstations taken as the first stage. Based on the output of the balancing, the model sequencing problem is solved as a second step. Depending on the sequencing results, line balancing could be reconfigured. At last, workforce should be scheduled on each workstation along with assembly lines. In the following sections, a detailed literature review for each basic problem is explained.

1.1 ASSEMBLY LINE BALANCING

Assembly line balancing problem can be described as a design problem of assignment of tasks to the workstations by considering several constraints such as a fixed cycle time and precedence relations between all tasks (Becker and Scholl, 2006). Assembly lines are the concern of many scientists since Henry Ford's study on single model assembly lines in 1915. Assembly lines are classified into many branches due to the developing technology and changes on the product specified by customers. The firms usually produce their goods based on the customer options. This results in that there is not only one type of product, but there are many variations of the main product due to the differentiated customer demands. Therefore, the firms need more different types of assembly line configurations than the traditional single one to stay competitive in the market. It can be said that single model assembly lines have been turned into a more flexible system, namely mixed model assembly lines. Mixed model assembly lines are concerned with production of variations of a small number of products on the same line. The production of the different variations needs assigning all of their tasks to the workstations in the line. It is much more difficult to balance mixed model assembly lines than simple assembly lines in terms of assigning different tasks of all product variations to the same workstations (Scholl, 1999).

In line manufacturing of similar products, the assembly line is arranged to decrease setup or change over times. Because of significant differences in assembly processes to realize this aim, they are produced in batches. These lines are called multi model assembly lines (Boysen et. al, 2007).

To the best of our knowledge the design of assembly lines was first applied by Henry Ford in 1915. However, the first mathematical model was presented by Salveson (1955) for balancing single model assembly lines. Later on, single model assembly lines have been of the interest of many academicians and practioners, thus extensive research has been induced. Then, the change of production paradigm towards a customer needs based production has created new research area, on the design of mixed model assembly lines. Mixed model assembly line balancing problems were studied first by Thomopoulus (1967). Mixed model assembly line balancing problems are harder than the single model assembly line balancing problems, because variations of the main model may require different station times in each workstation (Becker and Scholl, 2006). Requirement of different station times in each workstation results in idle time or work overloads. Therefore, all tasks of various products in the line are assigned to workstations as well, by smoothening overall work load. This is called as horizontal balancing (Merengo et.al, 1999). Mixed model assembly line balancing problems have the same basic assumptions that of single model assembly line balancing problems: deterministic task times, assignment restrictions such as precedence constraints, equipment restrictions, fixed cycle time that is all workstations on the assembly line have same time restriction (Baybars, 1986).

To model and solve the mixed model assembly line balancing problems, two different approaches are used. Basic idea of the first approach is that although there are differences between different product models, there are many similarities, since they usually belong to the same product family. Based on this idea, joint precedence diagram is constructed by considering the precedence diagrams of each model variations (Thomopoulus, 1970). Using joint precedence diagram, the mixed model balancing problem is transformed. The second approach states that although the mixed model balancing problem can be represented as a single model problem by means of the joint precedence diagram, processing time of each model at each station is different for each model yielding work overload and hence idle times (Becker and Scholl, 2006). Therefore, smoothing the work overload is a vital issue for the mixed model assembly assembly lines (Emde, 2009). Thomopoulus (1970) and Buckhin et.al (2002) have presented different objective functions for their purpose.

Assembly line balancing problems are known as NP-Hard. Therefore, effective algorithms have been developed to get near optimal solutions in a reasonable time. As an example, Pastor et.al (2002) use tabu search, Vilarinho and Simaria (2002) use simulated annualing, Karabati and Sayin (2003) use priority rule based

heuristics, Kim et.al (2000b) use genetic algorithm. Alternier et.al. (2009) mention about a Decision Support System which does not perform all tasks assignment, just a reconfiguration of assignment of tasks to the stations.

In the case of large size of products such as buses, yatches, etc. that are produced on the assembly lines, there are parallel workplaces (zones) in the product at which more than one worker can work simultaneously (Akagi et al., 1983). Bartholdi (1993) defines two sided (left side and right side) assembly lines. In two sided assembly lines, tasks are grouped according to their location requirements (left side and right side). In the light of these studies, multiple worker assignment to a workstation has been an issue to reduce the number of workstations. Study on two sided assembly lines was done by Özcan and Toklu (2009). Then, Özcan (2010) considered stochastic nature of two sided assembly lines. Moreover, Özcan and Toklu (2010) studided two sided assembly linesd with sequence dependent setup times. And, to the best of our knowledge recent study on two sided assembly lines were made by Özcan et.al (2010). For more than two sided assembly lines, Becker and Scholl (2009) have considered the final assembly of automobile by splitting the automobile to five zones named as workplaces. In the study of Dimitriadis (2006), a single model assembly line allowing more than one worker work at each workstation and a heuristic method is proposed for minimizing the number of workstations in the line. Another study for grouping workers in mixed model assembly lines is due to Çevikcan (2009) suggesting a mathematical model for setting up the worker teams in each station, and a heuristic solution method. Kellegöz (2010) has handled the balancing problem of single model assembly lines with parallel multi-manned workstations, and they proposed a branch and bound algorithm for finding their optimal solutions.

Mixed model assembly lines are used by the firms to maintain its competitive power in daily production environment. Therefore, there is a need to solve these types of problems better by using realistic approaches.

1.2 MODEL SEQUENCING LITERATURE

Determining production sequence of model variations in mixed model lines an important decision should be made. The work overloads are eliminated by utility workers (Boysen et al., 2009), who are highly qualified workers that can handle each type of job (Scholl, 1999).

1.3 WORKFORCE SCHEDULING LITERATURE

According to Figure 1, after assembly line balancing problem is solved (design) and the model sequence (tactical) is determined, the last (operational) decision for mixed model assembly lines is to "schedule" the workers or worker teams. A feasible schedule is the assignment of tasks to workers at different zones of a workstation so that precedence relationships and restrictions (cycle time) are not violated. We should note that each model on a certain station in the previous cycle is transferred to the next workstation in the current cycle. In this way, tasks are performed while the workpiece moves along the line. It makes the problem more complicated if constraints about worker qualifications, walking times between each task, worker requirements of tasks, and even sharing a worker between consecutive stations are introduced.

To the best of our knowledge, this operational problem has not been studied yet in the assembly line design literature. However, one should also consider to look at at parallel machine scheduling literature. Workers can be thought as parallel machines in a workstation. Furthermore, workers have different qualifications for defined tasks. Here, machine eligibility approach is appropriate. Moreover, tasks may have precedence relation. Because of the size of the product, walking time in between operations is considerable forcing the problem to be treated as sequence dependent setup times could be considered. Worker requirements are thought as multi-worker tasks. Hence, the underlying problem in terms of scheduling literature is defined as, "workforce assignment with precedence and machine eligibility constraints, sequence dependent setup times and multi-worker tasks", given line balancing results and model sequencing.

Herrman et al. (1997) proposed heuristics for unrelated parallel machine scheduling with precedence constraints. Liu and Wu proposed an evolutionary algorithm for minimizing the number of tardy jobs on identical parallel machines. Gualtieri et al. (2009) presented heuristic algorithms on identical parallel machine scheduling environment to minimize the makespan. Rabadi et al. (2006) proposed heuristics for the unrelated parallel machine scheduling problem by considering setup times. Hu et al. (2010) developed a heuristic algorithm to minimize makespan for the block erection in a shipyard by considering precedence constraints and machine eligibility constraints in parallel machine environment. The proposed algorithm was tested by using the real life data from the shipyard industry. Gacias et al. (2010) proposed exact method and heuristic method to solve parallel machine scheduling with precedence relations and setup times between the jobs. Kim and Posner (2010) suggested a list scheduling heuristic method for makespan minimization for parallel machines with s-type precedence constraints. Guo and Liu (2010) presented a heuristic algorithm based on local search on each machine with machine eligibility constraints to minimize total weighted tardiness in parallel machine environment. Kim et al. (2003) dealt with search heuristics for unrelated parallel machine environment with setup times with the objective of total weighted tardiness. Finally, Senniappan (2006) provided workload-balancing methodology while minimizing total completion time on non-identical parallel machine scheduling with sequence dependent setups. He developed a genetic algorithm and some simple heuristics to get efficient results on scheduling. Also, it is helpful to look at the study on workforce planning in synchronous production systems by Vairaktarakis et al. (2002). In this study, workforce planning problem was formulated and solved. Moreover, Camm et al. (2008) proposed an integer programming and heuristic methods to minimize workforce size on scheduling parallel assembly workstations. The literature review on the parallel machine scheduling is summarized in Table 1. Our study is added as the last row in the table. In the scope of this thesis, by following the flow of operational planning in mixed model assembly lines as given in Figure 1, the workforce scheduling problem as short term planning is considered when the task assignment of all models to all workstations and model sequences are given. Table 1 locates this study among at the studies from parallel machine scheduling literature.

		Problei	n Characteri	stics				Solution Methodology
	M/C type	Precedence	Eligibility	Setup	Multi Worker	Data	Objective	
Guo and Liu (2010)	Unrelated	No precedence	Exists	No setup	No	They have generated their own data	Minimize weighted total tardiness	Local search based heuristic algorithm
Gualtieri et al. (2009)	Identical	No precedence	No Eligibility	No setup	No	They have generated their own data	Minimize makespan	Constructive heuristic algorithms
Liu and Wu (2003)	Identical	No precedence	No Eligibility	No setup	No	They have generated their own data	Minimize the number of tardy jobs	Evolutionary algortihm
Rabadi et al. (2006)	Unrelated	No precedence	No Eligibility	Sequence dependent	No	They have generated their own data	Minimize makespan	Meta-Raps
Hu et al.(2010)	Identical	Exists	Exist	No setup	No	Real life data	Minimize makespan	Special heuristic algorithm
Our Study	Unrelated	Exists	Exists	Exists	Exists	Generated, real	Minimize # of workers/ Minimize makespan	Heuristic Algorithms

 Table 1 Comparison of properties of our study and other studies in the scheduling literature

CHAPTER II

In this chapter problem definition and model formulation are explained in detail. First problem is defined in Section 3.1 by considering the literature review in Chapter 2. Then model formulations are presented in Section 3.2. In Section 3.3 lower bounds related to the problem are developed.

2. PROBLEM DEFINITON & MODEL FORMULATION

As mentioned before, assembly line balancing is the primary line design decision to be made for the manufacturing firms that perform mass production. After solving this long term decision making problem, model sequencing to smoothen workload among various models on mixed assembly line is conducted based on the assignment results of the balancing problem. After all these steps are performed, that is all tasks are assigned to workstations and the sequence of all the models is determined. Then workforce scheduling problem arises as illustrated in Figure 1. We are dealing with this last stage in this study.

The defined problem in this thesis is motivated by the real life problem occurred in production line of MAN Türkiye A.Ş. which produces busses, where product families include travel buses, public transportation buses and middle distance buses (NAG). The products in any of the product families have many sub models with different variations, approximately twenty different bus types in total. The production of these twenty different products is a good example for mixed model assembly line problems defined in the literature. In the company, five cost centers are defined. The production system of the company is assembly flow line with all together 62 active workstations. The cycle time for each station is fixed and the assembly line is synchronized. The operations that are assigned to the workstations have to be completed within the given cycle time. Because of the large dimension

of the workpieces, more than one worker or worker teams are allowed to work simultaneously at different locations of the bus. Moreover, the workforce management is difficult and complex in mixed assembly lines under multi-worker situation. Here, the problem studied in the scope of this thesis for MAN Türkiye A.Ş. is not exactly pure balancing problem in mixed model assembly lines. MAN Türkiye A.Ş. has determined all its tasks assignments for each defined workstations. However, as stated before, it manages its production line with the manner of mixed model assembly lines. It means that at the beginning of each day, production list has various types of products that may require different tasks at different workstations. Moreover, because of the large size of workpieces those are produced on the line, in a workstation, more than one workers work simultaneously in workplaces (zones). Figure 2 shows how the work performed on the assembly line and Figure 3 represents loads of worker teams during production of workpiece. Therefore, the problem is transformed from assembly line balancing problem into a scheduling problem solved for every period (cycle) for each workstation with properties of precedence relations between tasks, qualifications of workers for each tasks, multi-worker tasks and walking time of workers. The performance criteria of the problem are to minimize number of actively used workers in resulting schedule, and second to minimize the makespan value of this resulting schedule.

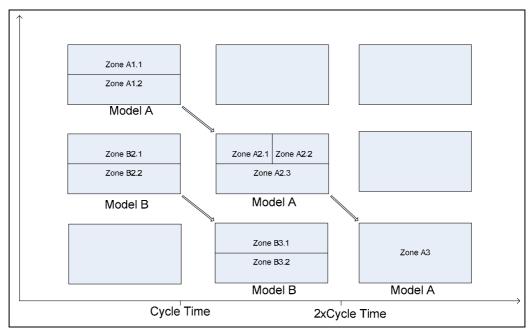


Figure 2 Illustration of the assembly line

w	orker				
1					
с	Task B 502 in zone B2.1		Task A 505 in zone A2.1		
b	Task A101 in zone A1.2	Task A205 in zone A1.1]		
а		Task A205 in zone A1.1	-		
			1		\rightarrow time
C	J	Cyc	le Time	2xCycle Time	

Figure 3 Worker teams during production of workpiece

2.1 PROBLEM DEFINITION

We define the problem undertaken in two stages. At first stage, there are a number of tasks that have precedence relations, walking times, qualification of workers and multi worker tasks to be scheduled without exceeding given cycle time with the use of minimum number of workers. Here, we do not assign tasks to workstations, but to worker (team)s. At second stage, we try to balance workload of actively used workers determined at the first stage subject to the same assignment constraints.

Assumptions of the problem are as follows:

A-1 Paced line with a given fixed cycle time. Production line contains no buffers between the fixed number of workstations.

A-2 Task assignments for all tasks to the workstations are known. All tasks required for a product are already assigned to the workstations.

A-3 Serial line without parallel elements.

A-4 Deterministic task times.

A-5 A task cannot be split among two or more workstations and worker teams. Each task starts in a workstation and completed in that workstation with the same set of workers in the given cycle.

2.2 MATHEMATICAL FORMULATION

Below, mathematical formulations seek the minimum number of workers and balanced workloads of each worker. The relationship between the mathematical formulations is shown in Figure 2. There are two different mathematical models for each of the stages defined in the previous section. In the next sub-sections these mathematical models are defined clearly.

Figure 4 Relationship between mathematical models

Here, periods are used to define the cycles in the assembly line.

Index sets:

 $R = \{1, 2, ..., N\}: real tasks$ $D = \{1, 2, ..., D\}: dummy tasks (note that dummy tasks are used to prevent sub tours in assignment of tasks to workers)$ $M = \{1, 2, ..., M\}: multi-worker tasks$ $K = \{1, 2, ..., K\}: workers$ $J = \{1, 2, ..., J\}: workstations$ $P = \{1, 2, ..., P\}: periods(cycles)$

Parameters:

*TIME*_{*i*}=task time for task i

 $PRE_{ih} = \begin{cases} 1, \text{ if task } i \text{ immediately performed before task } h \\ 0, \text{ otherwise} \end{cases}$

CT=cycle time

 $QUAL_{ki} = \begin{cases} 1, \text{ if worker } k \text{ is qualified for task } i \\ 0, \text{ otherwise} \end{cases}$

 $ATSP_{ijp} = \begin{cases} 1, \text{ if task } i \text{ is performed at workstation } j \text{ in period } p \\ 0, \text{ otherwise} \end{cases}$

 WT_{ih} =walking duration between task *i* and task *h*

V= sufficiently large number

Decision variables:

 $TASG_{kip} = \begin{cases} 1, \text{ if worker } k \text{ does task } i \text{ in period } p \\ 0, \text{ otherwise} \end{cases}$

 $USED_{kp} = \begin{cases} 1, \text{ if worker } k \text{ is ever used in period } p \\ 0, \text{ otherwise} \end{cases}$

 $IPS_{ihkp} = \begin{cases} 1, \text{ if task } i \text{ is assigned immediately before task } h \text{ to worker } k \text{ in period } p \\ 0, \text{ otherwise} \end{cases}$

 B_{ip} = start time of task *i* in period *p*

2.2.1 Mathematical Model 1 (MM1)

The below mathematical model which is used to minimize the number of used workers in each period.

MM1:

Minimize
$$\sum_{p \in P} \sum_{k \in K} USED_{kp}$$
 (1.0)

 $\sum_{i \in R \cup M} TIME_i TASG_{kip} + \sum_{i \in R \cup M} \sum_{h \in R \cup M \setminus \{i\}} WT_{ih} IPS_{ihkp} \le CT.USED_{kp} \quad \forall k \in K, \forall p \in P$ (1.1)

$$\sum_{k \in K} QUAL_{ki} TASG_{kip} = \sum_{j \in J} ATSP_{ijp} \qquad \forall p \in P, \forall i \in R$$
(1.2)

$$\sum_{k \in K} QUAL_{ki}.TASG_{kip} = 1 \qquad \forall p \in P, \forall i \in D$$
(1.3)

$$B_{hp} \ge B_{ip} + TIME_i + \sum_{k \in K} IPS_{ihkp} . WT_{ih}$$

$$\forall h \in R \cup M, \forall i \in R \cup M \setminus \{h\} \ni PRE_{ih} = 1, \forall p \in P \quad (1.4)$$

$$B_{hp} + V(1 - \sum_{k \in K} IPS_{ihkp}) \ge B_{ip} + TIME_i + WT_{ih}$$

$$\forall h \in R \cup M, \forall i \in R \cup M \setminus \{h\}, \forall p \in P$$
(1.5)

$$B_{ip} \le CT - TIME_i \qquad \forall i \in R \cup M \cup D, \forall p \in P$$
(1.6)

$$IPS_{ihkp} \leq TASG_{kip} \qquad \forall h \in R \cup M, \forall i \in R \cup M \cup D \setminus \{h\}, \forall p \in P, \forall k \in K (1.7)$$
$$IPS_{ihkp} \leq TASG_{khp} \qquad \forall h \in R \cup M, \forall i \in R \cup M \cup D \setminus \{h\}, \forall p \in P, \forall k \in K (1.8)$$

$$\sum_{i \in R \cup M \cup D \setminus \{h\}} IPS_{ihkp} = TASG_{khp} \qquad \forall h \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.9)

$$\sum_{h \in R \cup M \cup D \setminus \{i\}} IPS_{ihkp} \le 1 \qquad \forall i \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.10)

$$TASG_{kip} = 1 \qquad \forall i \in D, \forall k \in K, \forall p \in P$$
(1.11)

$$B_{ip} = 0 \qquad \forall i \in D, \forall p \in P \tag{1.12}$$

$$\sum_{k \in K} TASG_{kip} - \sum_{k \in K} TASG_{khp} = 0 \qquad \forall i \in M, \forall h \in M, \forall p \in P$$
(1.13)

$$TASG_{kip} + TASG_{khp} \le 1 \qquad \forall i \in M, \forall h \in M, \forall k \in K, \forall p \in P \qquad (1.14)$$

$$B_{ip} + B_{hp} = 0 \qquad \forall i \in M, \forall h \in M, \forall p \in P$$
(1.15)

$$TASG_{kip} \in \{0,1\} \qquad \forall i \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.16)

$$IPS_{ihkp} \in \{0,1\} \qquad \forall i \in R \cup M \cup D, \forall h \in R \cup M \cup D, \forall k \in K, \forall p \in P \ (1.17)$$

$$USED_{kp} \in \{0,1\} \qquad \forall k \in K, \forall p \in P$$
(1.18)

$$B_{ip} \ge 0 \qquad \qquad \forall i \in R \cup M \cup D, \forall p \in P \tag{1.19}$$

Equation 1.0 is the objective function that minimizes the total number of used workers in periods when the cycle time is given. Constraint 1.1 is the cycle time restriction. That is, if any worker is used, the total work content assigned plus the total walking duration must not exceed the cycle time. Constraint sets 1.2 and 1.3 indicate that each task should be assigned to only one worker in each period for real tasks and dummy tasks respectively. Constraints 1.4 ensure that if there is a precedence relation between task *i* and task *h*, the start time of task *h* is greater than or equal to the finish time of task *i* plus the walking duration between them. If the tasks *i* and *h* has been assigned to the same worker, inequality 1.5 restricts the start time of task *h*. Constraint sets 1.7 and 1.8 indicate that tasks do not need to precede each other if they are not assigned to a worker. Constraint set 1.10 regulates that at least one task should precede a task for each worker. Dummy tasks are assigned for

each worker at the beginning of the schedule before workers start to perform real tasks. Therefore, constraints 1.11 and 1.12 are assignment and start time constraints for the dummy tasks for each worker in each workstation. Equation 1.13 guarantees that multi worker tasks should be assigned in same period. 1.14 prevents tasks to be assigned to the same worker and 1.15 makes the start time of multi worker tasks same for each worker. For each period, the rest of the constraints are binary or non-negativity constraints. The MM1 has 1,390,000 binary and 260,000 nonlinear variables for the problem size 30 tasks for each of two models (in total 60 tasks).

Alternatively, one may suggest other objective functions. One of the possibilities is to minimize the maximum number of workers used in all periods. Then, the following modification can be made.

MM1-A:

Minimize U

$$U \ge \sum_{k \in K} USED_{kp} \qquad \forall p \in P$$
(1.1)-(1.19)

where U is the maximum number of workers used in all periods.

Another alternative is that want to minimize the total number of different individual workers used in the planning horizon. One should define the following decision variable to count respectively.

 $USE_{k} = \begin{cases} 1, \text{ if worker } k \text{ is ever used over the time horizon} \\ 0, \text{ otherwise} \end{cases}$

the following modification can be made on MM1.

MM1-B:

Minimize
$$\sum_{k \in K} USE_k$$
$$\sum_{p \in P} USED_{kp} \le P.USE_k \qquad \forall k \in K$$
$$(1.1)-(1.19)$$

2.2.2 Mathematical Model 2 (MM 2)

By using MM1, number of workers to be used in each period is set under the given constraints. MM2 takes the MM1 results as input and balances the workload of each worker by minimizing the maximum workload. First, new decision variables Com_{ip} that is completion time of task *i* in period *p* and *Cmax* that is maximum completion time value of all assigned tasks are introduced.

MM2:

Minimize C max

$$\sum_{k \in K} QUAL_{ki}.TASG_{kip} = \sum_{j \in J} ATSP_{ijp} \qquad \forall p \in P, \forall i \in R$$
(1.1)

$$\sum_{k \in K} QUAL_{ki} TASG_{kip} = 1 \qquad \forall p \in P, \forall i \in D$$
(1.2)

$$\begin{split} B_{hp} \geq B_{ip} + TIME_i + \sum_{k \in K} IPS_{ihkp} . WT_{ih} \\ \forall h \in R \cup M, \forall i \in R \cup M \setminus \{h\} \ni PRE_{ih} = 1, \forall p \in P \end{split}$$

$$B_{hp} + V(1 - \sum_{k \in K} IPS_{ihkp}) \ge B_{ip} + TIME_i + WT_{ih}$$

$$\forall h \in R \cup M, \forall i \in R \cup M \setminus \{h\}, \forall p \in P$$
(1.4)

$$Com_{ip} \ge B_{ip} + TIME_i \quad \forall i \in R \cup M \cup D, \forall p \in P$$
(1.5)

$$C \max \ge Com_{ip}$$
 $\forall i \in R \cup M \cup D, \forall p \in P$ (1.6)

$$IPS_{ihkp} \leq TASG_{kip} \qquad \forall h \in R \cup M, \forall i \in R \cup M \cup D \setminus \{h\}, \forall p \in P, \forall k \in K$$
(1.7)

$$IPS_{ihkp} \leq TASG_{khp} \qquad \forall h \in R \cup M, \forall i \in R \cup M \cup D \setminus \{h\}, \forall p \in P, \forall k \in K$$
(1.8)

$$\sum_{i \in R \cup M \cup D \setminus \{h\}} IPS_{ihkp} = TASG_{khp} \ \forall h \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.9)

$$\sum_{h \in R \cup M \cup D \setminus \{i\}} IPS_{ihkp} \le 1 \qquad \forall i \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.10)

$$TASG_{kip} = 1 \qquad \forall i \in D, \forall k \in K, \forall p \in P$$
(1.11)

$$B_{ip} = 0 \qquad \qquad \forall i \in D, \forall p \in P \qquad (1.12)$$

$$\sum_{k \in K} TASG_{kip} - \sum_{k \in K} TASG_{khp} = 0 \qquad \forall i \in M, \forall h \in M, \forall p \in P$$
(1.13)

$$TASG_{kip} + TASG_{khp} \le 1 \qquad \forall i \in M, \forall h \in M, \forall k \in K, \forall p \in P$$
(1.14)

(1.0)

(1.3)

$$B_{ip} + B_{hp} = 0 \qquad \forall i \in M, \forall h \in M, \forall p \in P \qquad (1.15)$$

$$TASG_{kip} \in \{0,1\} \qquad \forall i \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.16)

$$IPS_{ihkp} \in \{0,1\} \qquad \forall i \in R \cup M \cup D, \forall h \in R \cup M \cup D, \forall k \in K, \forall p \in P$$
(1.17)

$$C\max \ge 0 \tag{1.18}$$

$$Com_{ip} \ge 0 \qquad \qquad \forall i \in R \cup M \cup D, \forall p \in P \qquad (1.19)$$

$$B_{in} \ge 0 \qquad \qquad \forall i \in R \cup M \cup D, \forall p \in P \qquad (1.20)$$

Equation 1.0 is the objective function that minimizes the maximum completion time (Makespan). Constraint sets 1.1 and 1.2 indicate that each task should be assigned to only one worker in each period for real tasks and dummy tasks respectively. Constraints 1.3 ensure that if there is a precedence relation between task *i* and task *h*, the start time of task *h* is later than or equal to or greater than the finish time of task *i* plus the walking duration in between. If the tasks *i* and *h* has been assigned to the same worker, inequality 1.4 restricts the start time of task h. Constraint sets 1.5 and 1.6 guarantee finishing of all tasks within the completion time. Constraint sets 1.7 and 1.8 indicate that tasks do not need to precede each other if they are not assigned to the same worker. Constraint 1.9 lets only one task preceding any a task assigned to a worker. Constraint set 1.10 regulates that at least one task should precede a task for each worker. Dummy tasks are assigned for each worker at the beginning of the schedule before workers start to perform real tasks. Therefore, constraints 1.11 and 1.12 are assignment and start time constraints for the dummy tasks for each worker in each workstation. Equation 1.13 guarantees that multi manned tasks should be assigned in same period. 1.14 prevents tasks to be assigned to the same worker and 1.15 makes the start time of multi manned tasks same of each worker. For each period, the rest of the constraints are binary or nonnegativity constraints.

As expected from the combinatorial nature and NP-Hardness of the problem, getting exact solutions are impossible in reasonable computational times. Hence, we resort to a heuristic method presented in the following chapter for generating acceptable solutions for the operational real life problem in a reasonable time.

2.3 LOWER BOUNDS

Although our mathematical formulations represent the problems stated, getting acceptable solutions in a reasonable time is not possible for large sized problems. This makes commenting on good performance of our heuristic approaches for large sized problems be almost impossible. Therefore, lower bounding methods are developed in the following subsections.

2.3.1 Lower Bound 1 (LB1)

It is constructed for MM1 problem as modification of best known lower bound for simple assembly line balancing problem. It is calculated by dividing sum of total processing time by the given cycle time value. Modification is done on total processing time by considering multi worker tasks and walking times between each task. The steps of LB1 are presented below:

Step 1: Determine the number of multi worker tasks and get sum of all task times multiplied with the number of workers required. For example, let there are 5 tasks to be scheduled with processing times 10, 12, 5, 8, 9, respectively. Let the first task be the only multi worker task that requires 2 workers, then the sum of all tasks becomes 54.

Step 2: Add the minimum walking times from task to *i* to any other task *j* (MINWALK_{*i*} = min_{*j*} { *WALK*_{*ij*} }) to Step 1 results.

Step 3: Divide the value found in Step 2 by the cycle time and round the result up. The following formula summarizes the above steps and gives LB1. Let REQ_{*i*}=number of worker requirements of task i.

$$LB1 = \left[\frac{\sum_{i \in N \cup M} TIME_i REQ_i + \sum_{i \in N \cup M} MINWALK_i}{CT}\right]$$

2.3.2 Lower Bound 2 (LB2)

It is constructed for the problem of MM2 modifying the best known lower bound that is calculated by dividing the sum of total processing time to given number of used worker at a workstation. Modification is done on total processing time by considering multi worker tasks and walking times between each task. Therefore, steps of LB2 are presented as below:

Step 1: Determine the number of multi worker tasks and get sum of all task times including multi worker tasks.

Step 2: Add the minimum walking times from task to *i* to any other task *j* (MINWALK_{*i*} = min_{*j*} {*WALK*_{*ij*} }) to Step 1 results

Step 3: Divide the value found in Step 2 by the cycle time and round the result up.

$$LB2 = \left[\frac{\sum_{i \in R} TIME_i . REQ_i + \sum_{i \in R} MINWALK_i}{\text{Number of used workers}}\right]$$

In scope of this thesis, 320 different problem instances are solved for 2 workstations and 3 periods. (160 of them provided problem size 10 and 20). 157 of them give optimal solutions for the defined problem MM1, 152 of them give optimal solutions for the problem MM2. Values that are shown in Table-2 are presented for performances of lower bounds on optimal found solutions. Detailed analysis is given in computational results chapter.

 Table 2 Relation between problem size and optimal solutions

Size of the	MN	м1	MM2		
Problem	#Opt Success	#Opt =#LB1	#Opt Success	#Opt =#LB2	
10	77	64	72	57	
20	80	53	80	61	

CHAPTER III

In this chapter, a solution methodology for the defined problem is presented. In Section 4.1, construction algorithm (phase 1) is expressed in detail. In Section 4.2, makespan minimization (phase 2) is presented in detail.

3. SOLUTION METHODOLOGY

As mentioned in Chapter 2, the single model assembly line balancing problem is NP-Hard (Scholl, 1999). The studied problem includes workforce assignment in parallel multi worker mixed model assembly lines with precedence constraints, qualification of workers, sequence dependent walking times (setup times) between the tasks and worker requirements of each task. Therefore, the studied problem is much more complex and it is a member of NP-Hard problems class. In the meantime, our problem reduces to various parallel machine scheduling problems known to be NP-Hard (Garey and Jhonson, 1979).

It is not possible to get optimal results in a reasonable time for large sized problem instances by using the exact solution methods. Therefore, a heuristic algorithm is developed to obtain feasible solutions for large sized problem instances. We have investigated how far we can get an optimal solution by feeding our formulation into a general solver. We have used GAMS 22.6 with Cplex solver with a computer with 4GHz CPU and 8GB memory. We run 80 instances for each size. The results showing the relation between problem sizes and the number of optimal solutions found is given in Table-3.

Size of the Problem	#OPT Success
10	77
20	All 80 instances
40	With 3600 sec time limitation, none of them optimal

Table 3 Relation between problem size and number of optimal solutions found

The Figure 5 presents the relationship for each phases of heuristic algorithm. As seen, it firstly minimizes the number of actively used workers (Phase 1). Results of Phase 1 are used as an input for makespan minimization (Phase 2). Makespan minimization includes rescheduling (Phase 2-1) and transferring tasks (Phase 2-2). Phase 2's results are input for Phase 2-1 and input for Phase 2-2 comes from output of Phase 2-1. These heuristic algorithm phases explained below.

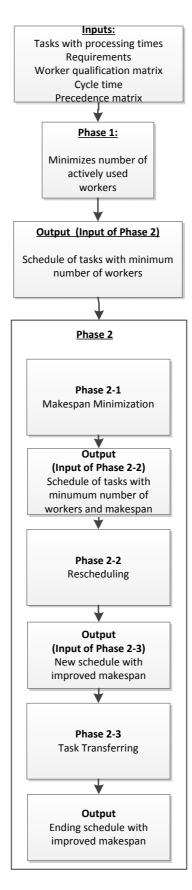


Figure 5 Relationship between phases of heuristic algorithm

3.1 CONSTRUCTION ALGORITHM (PHASE 1)

Inputs: Tasks to be scheduled with processing times, requirements information, workers with qualification matrix for each task, cycle time, precedence matrix for each task.

Outputs: Schedule of all unscheduled tasks to minimum number of workers.

Initialization: Initialization for processing times, requirements of tasks to be scheduled, cycle time, workers, precedence matrix, qualification matrix for all tasks for workers.

Step 1: Form candidate tasks list [CT] including eligible tasks at the current position.

Step 2: Apply the following operations for obtaining [CT]

Step 2.1: For each task in CT, calculate FOLLOWALK_{*i*} value by using the following equation:

FOLLOWALK_i = TIME_i +
$$\sum_{j \in F_i} TIME_j + \min_{h \in F_i} \{WT_{ih}\}$$
,

where F_i is the set of tasks following task *i*.

Step 2.2: Obtain [CT] by sorting CT according to FOLLOWALK_{*i*} values in descending order.

Step 3: Select the first task is from [CT].

Step 4: Assign the selected task to the worker who is able to perform this task in the current cycle and has the maximum workload.

Step 5: Repeat Step 1 to Step 4 until all tasks are scheduled in a given cycle time.

This phase uses a priority rule that includes ordering tasks based on values which include tasks' positional weight values and walking times.

Example:

Inputs for Construction Algorithm (Phase 1) are presented below. Figure 6 shows the precedence relations between tasks on precedence diagram.

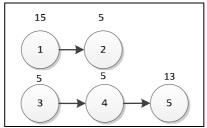


Figure 6 Precedence diagram of the example

Qualifications of workers are given in Table 4. For example, worker 1 is qualified to accomplish task 1, since the associated cell value is 1.

Worker/Task	orker/Task Task 1 Task 2		Task 3	Task 4	Task 5
Worker 1 1 1			1	0	1
Worker 2 0		1	1	1	1
Worker 3	1	1	0	1	1
Worker 4	1	1	1	1	0

Table 4 Worker-task qualification

Table 5 presents the walking times between tasks.

	Table 5 w	aiking tin	les betwee	II tasks			
Task/Task	Task 1Task 2Task 3		Task 4	Task 5			
Task 1	0	1	1	1	0		
Task 2 1 0		0	1	0			
Task 3	Task 3 0		0	3	1		
Task 4 1		1	3	0	1		
Task 5	0	1	1	1	0		

 Table 5 Walking times between tasks

The number of worker requirements is shown in Table 6. For example, to complete task 1, 2 workers are required.

Task	# Required Worker
Task 1	2
Task 2	1
Task 3	1
Task 4	1
Task 5	1

Table 6 Worker requirements of each task

Cycle Time : 45

To give an idea about phase-1 first two iterations are shown below.

Iteration 1:

Step 1: CT={1, 3}

Step 2:

Step 2.1: FOLLOWALK₁ =
$$15 + 5 + 0 = 20$$

FOLLOWALK₃ =
$$5 + 5 + 13 + 0 = 23$$

Step 2.2: [CT]={3,1}

Step 3: Select task 3 as from [CT].

Step 4: Assign task 3 to worker 1 that is able to perform task 3 and the most loaded worker.

Iteration 2:

Step 1: CT={1, 4}

Step 2:

Step 2.1: FOLLOWALK₁ = 15 + 5 + 0 = 20

FOLLOWALK₄ =
$$5 + 13 + 0 = 18$$

Step 2.2: [CT]= {1,4}

Step 3: Select task 1 from [CT].

Step 4: Because task 1 requires 2 workers to be accomplished, assign task 1 to worker 1 and worker 3 who are able to perform task 1 and the most loaded workers.

If continue in this way, the end result will be as shown in the diagram in Figure 7. At the beginning, there are four different workers with different qualifications. In the solution found only two of them are actively used.

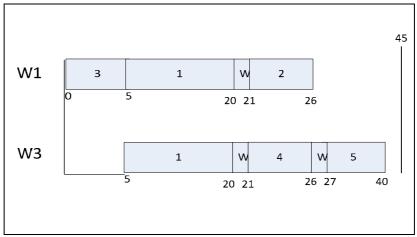


Figure 7 Resulting schedule of construction algorithm (Phase 1)

3.2 MAKESPAN MINIMIZATION (PHASE 2)

Here, makespan minimization is presented in three stages as Construction of Makespan Minimization (Phase 2-1), Rescheduling (Phase 2-2), Task Transferring (Phase 2-3).

3.2.1 Construction of Makespan Minimization (Phase 2-1)

Inputs: Output of the Phase 1 (Number of used workers with each worker's id). Outputs: A new schedule found by applying the following algorithm.

Initialization: Initialization for processing times, requirements of tasks to be scheduled, workers, precedence matrix, worker-task qualification matrix for all tasks for workers.

Step 1: Form candidate tasks (CT) list for tasks that are ready to be scheduled by using precedence relations between tasks.

Step 2: Sort CT and obtain [CT] as follows.

Step 2.1: For all tasks in CT, set FOLLOWALK= TIME_{*i*} +Total Task Times of Followers +min{ WT_{ih} } and obtain [CT]

Step 2.2: Sort [CT] in descending order.

This phase uses a priority rule that includes ordering tasks based on Largest Processing Time (LPT) but not only orders processing times , it orders sum of processing times of all follower tasks of task *i* and walking times as well

Step 3: The first task is selected from the [CT].

Step 4: The selected task is scheduled to a worker who is able to perform the task and the least loaded.

Step 5: Repeat Step 1 to Step 4 until all tasks are scheduled in a given cycle time.

Example:

Inputs for makespan minimization (precedence diagram, walking times, and processing times) are same as previous phase. Also the number of actively used workers comes from output of previous step as 2 workers (worker 1 and worker 3). To give an idea about phase-2, first two iterations are shown below.

Iteration 1:

Step 1: CT= {1, 3}

Step 2:

Step 2.1: FOLLOWALK₁ = 15 + 5 + 0 = 20

$$FOLLOWALK_3 = 5 + 5 + 13 = 23$$

Step 2.2: [CT]= {3,1}

Step 3: Select task 3 from [CT].

Step 4: Assign task 3 to worker 1 that is able to perform the task and the least loaded worker.

Iteration 2:

Step 1: CT= {1, 4} Step 2:

step 2.

Step 2.1: FOLLOWALK₁ = 15 + 5 + 0 = 20

FOLLOWALK₄ = 5 + 13 + 0 = 18

```
Step 2.2: [CT] = \{1, 4\}
```

Step 3: Select task 1 from [CT].

Step 4: Because task 1 requires 2 workers to be accomplished, assign task 1 to worker 1 and worker 3 who are able to perform the task and the least loaded workers.

Assignment of tasks to worker 1 and 3 is given in Figure 8. In this solution, the makespan value is 39.

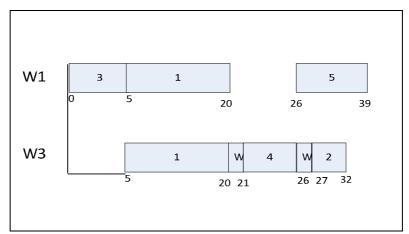


Figure 8 Resulting schedule of minimization of makespan

3.2.2 Rescheduling (Phase 2-2)

Inputs: Schedule of Phase 2.

Outputs: A new schedule found by aiming to minimize the makespan value in the input schedule. Makespan is the total time required to process all tasks. This time is the maximum completion time over all tasks.

Step 0: Consider the schedule of Phase 2.

Step 1: Find the worker *k* that creates Cmax.

Step 2: Select the last task *i* of that worker;

-Find ready time (RT) that is the earliest time that this task could be scheduled from the schedule of the Phase 2.

-From starting the ready time of this task find the best position by considering walking times between the tasks to be scheduled.

-If there is no gain (workload of this worker after rescheduling does not change) select the task that is in the last position of worker with lesser workload.

-If there is a gain, assign the task and reschedule (find new completion times) tasks that are performed by this worker and also reschedule the successors of the task based on the shift amount.

Step 3: Repeat these procedures until there is no more gain in rescheduling the workers.

Example:

Consider the schedule of a worker that creates the makespan value shown in Figure 9. Note that there is no precedence relationship between tasks t1, t2 and t3, and there is not walking time between t1 and t2, but between t1 and t3, as well as t2 and t3 walking times exist. In Rescheduling, it is expected to reduce makespan value by omitting walking times.

Step 1 and Step 2: Figure 9 presents the most loaded worker 1 (W1) that creates makespan with value of 41.

Step 3: Task t1 which is the last task of W1 is selected.

Ready time (RT) of t1 is 0. Because, there is no immediate predecessors of t1. Then starting from the first position of the schedule of W1, gain is calculated for all positions available on worker. In Figure 10, t1 is located in position 2. After this insert, the current workload becomes 40. Because, there is no walking time between t1 and t2.

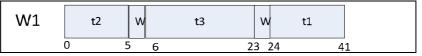


Figure 9 Schedule of the most loaded worker in resulting solution of Phase 2

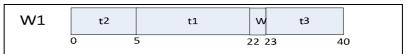


Figure 10 Result of the rescheduling phase applied to the Phase 2 solution

3.2.3 Task Transfer (Phase 2-3)

Here, the aim is to decrease makespan value by transferring a task from the most loaded worker to least loaded worker on the resulting schedule of Phase 2-1. Inputs: Schedule of Phase-2-1

Outputs: A new schedule found by aiming to decreasing Cmax

Step 0: Consider the schedule of Phase 2-1.

Step 1: Find the worker with maximum workload

Step 2: Select the last task of worker with maximum workload

Step 3:

-If there is no gain (workload of this worker after rescheduling does not change) select the task that is in the last position of worker with lesser workload.

-If there is a gain, assign the task and reschedule (Find new completion times) tasks that are performed by this worker and also reschedule the successors of the task based on the shift amount.

Step 4: Repeat these procedures until there is no more gain in transferring tasks between the workers.

Example:

The schedule in Figure 11 shows all task assignments to all workers. There are 6 tasks to be scheduled; t2 and t4 are immediate predecessors of t3, t6 respectively. The other remaining tasks neither have predecessor nor successor. The precedence diagram is shown in Figure 12. And it is known that between t1 and t5 there is no walking time.

W1	t	2	w	t3	w	t1	
W2	0 t4	W	5 6 t6	t5	23 24	41	
	0	34		18	21		

Figure 11 Tasks assignment before rescheduling

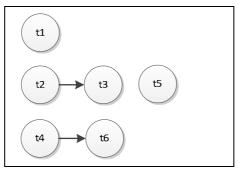


Figure 12 Precedence diagram for the example

Transferring t1 from worker 1 to worker 2 makes makespan value 38 as shown in Figure 13. Therefore, rescheduling algorithm provides decrease in makespan value.

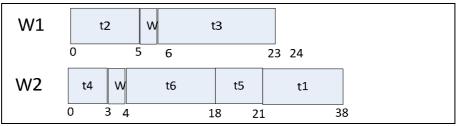


Figure 13 Task assignment after rescheduling

CHAPTER IV

In this chapter, our experimental study is explained. Test problems are constructed with real life data, since there are not any benchmarking problems in the literature.

4. EXPERIMENTAL STUDY

4.1 PROBLEM GENERATION AND EXPERIMENTAL DESIGN

For our problem, there is no test problem found in the literature. We have generated test problems by the following way:

- Model Sequence: 2 different types of product model for 3 periods (cycles) are selected.
- Number of Tasks (I): For the given model sequence, the number of tasks for each model in each period, are selected as 5, 10 and 20, 30 (10, 20, 40, 60 tasks in total).
- Processing times of tasks (TIME_i): Uniform distributed integer numbers are used in ranges of 5-15, 8-15, 5-20 and 8-20. These ranges are selected by analyzing the real life processing times. Ranges 5-15 and 8-15 represent low mean low variance and low mean high variance. 5-20 and 8-20 are high mean high variance and high mean low variance.
- Multi-worker tasks: For each period, 20% of all tasks are selected as multiworker tasks by taking real life multi worker task ratio into consideration.
- Qualification Matrix (QUAL): 80% of tasks have been performed by all workers and 80% of workers perform all tasks.
- Precedence Matrix (PRE): Flexibility Ratio (F-ratio) developed by Dar-El (1973) is used to construct a precedence matrix. The complementary density measure F-ratio measures the precedence relations between tasks as represented below:

 $F - ratio = \frac{2 \times B}{I(I-1)}$ where B is the number of 0's in the upper triangular matrix

The F-ratios used are %60 and %40.

- Walking Times (WT): Generated by a uniform distribution ranges by taking real life walking times from MAN Türkiye A.Ş. into consideration.
- Cycle Time (CT): 50 and 80 minutes are selected as cycle times.
- Maximum Number of Workers: 6 workers are used for the number of tasks 5, 10 and 9 workers are used for the number of tasks 20, 30 initially.

For each processing time range, 20 random instances are generated. For low mean processing time ranges, flexibility ratio is taken as 40% and CT is used as 50 minutes. For high mean processing time ranges, flexibility ratio is taken as 60% and CT is used as 80 minutes. Therefore, for each problem size, 80 instances are generated. Since there are 4 different sizes, 320 problem instances are generated in total and two solutions are obtained for each instance using two problems defined (MM1 and MM2).

4.2 RESULTS

Table-3 presents the number of optimal solution found by MM1, number of infeasible solutions if there is any. Moreover, number of cases that our heuristic solution catches the optimal solution found are reported. For the problem size 10, 3 instances out of 80 instances are infeasible. However, in remaining 77 instances, Phase 1 heuristic approach gives the optimal. For the problem size 20, for all the 80 instances, the results of Phase 1 are same as the optimal.

		MM1 Result	'S	Heuristic (Phase 1) Results							
Size of the Problem	#OPT Success	#Infeasible (MM1)	#Feasible (MM1)	#OPT (Phase 1)	#Infeasible (Phase1)	#Feasible (Phase1)					
10	77	3	77	77	0	77					
20	80	0	80	80	0	80					
40	0	0	80	0	0	80					
60	0	26	54	0	0	80					

 Table 7 Mathematical model MM1 and heuristic algorithm (Phase 1) results

It should be noted that for MM1, 3600 seconds of time limitation is used. It is observed that getting feasible solutions in a reasonable time is not possible. However, for all instances for the problem size 40, feasible solutions are obtained. For the problem size 60, MM1 yields feasible solutions for only 54 instances while remaining 26 instances are infeasible.

Table 8 represents the results of MM2 mathematical formulation that is used for minimization of makespan value and the performance of Phase 2, 2-1, 2-2 heuristic approaches.

According to Table 8, for problem size 10, 3 instances were infeasible: MM2 yields optimal solution in 77 instances in a given time interval. We were able to find 72 optimal solutions by our heuristic approach. For the problem size 20, 80 instances have optimal solutions, but results of only 61 instances optimally solved by using the heuristic.

		MM2		Heuristic (Phase 2)						
Problem Size	#OPT#Infeasible#FeasibleSuccess(MM2)(MM2)		#OPT (Phase 2)	#Infeasible (Phase 2)	#Feasible (Phase2)					
10	77	77 0		72	0	72				
20	80	0	80	61	0	61				
40	0	0	80	0	0	80				
60	0	26	54	0	0	54				

Table 8 MM2 and heuristic algorithm (Phase 2, 2-1, 2-2) results

In 3600 second time limitation, there are not any optimal solutions reported by MM2. However, there are feasible solutions.

Table 9 and Table 10 present the comparison of heuristic approaches' performances respectively. To evaluate the performance, Average Gap is calculated. Formulation of Gap1 is as follows for the problem MM1:

Gap1:
$$\frac{UB1 - LB1}{LB1}$$
.

where UB1 is the result of Phase 1, and LB1 comes from Chapter 5.

Max: Maximum difference of UB1-LB1.

Min: Minimum difference of UB1-LB1.

Formulation of Gap2 is as follows for the problem MM2:

$$Gap2 = \frac{UB2 - LB2}{LB2}$$

where UB2 is the result of Phase 2, 2-1, 2-2 and LB2 comes from Chapter 5.

Max2= Maximum of the difference UB2-LB2. Min 2= Minimum of difference of UB2-LB2.

	1 4 5 1 61	Ionnance eve	iluation (
Size of the	#Feasible	Phase 1					
Problem	Success	Average	Max	Min	Average	Max	Min
		Gap			Gap		
40	80	32.43%	8	2	37.21%	9	4
	1					1	

Table 9 Performance evaluation of Phase 1 and MM1

Table 10 Performance evaluation of Phase 2, 2-1, 2-2 and MM2

Size of the	#Feasible	Phase 2, 2-1,	MM2				
Problem	Success	Average	Max	Min	Average	Max	Min
		Gap			Gap		
40	80	18.21%	24	4	19.30%	27	6
60	54	26.10%	31	5	27.90%	33	3

Average Gap values given in Tables 9 and 10 might be seen high. The reason is that the difference in number of workers at low level result in high Gap values. For example, when optimal number of workers is 2 and lower bound is 1 for the same instance, Gap is 100%. Such instances cause the Gap to be high.

Table 11 shows the CPU time performance evaluation on the optimal solutions for the problem MM1. For the problem size 10, the average CPU time is 0.036 when the maximum one is 0.07 by using MM1. As Phase 1 is used average CPU time of 0.011 when the maximum CPU time is 0.028. And for the problem size 20, the average CPU time is calculated as 0.12 when the maximum one is 0.47 by using MM1. But, in Phase 1, the average CPU time is 0.016 while the maximum CPU time is 0.35. Then it can be said that, Phase 1 reaches optimal solutions in shorter times than MM1 reaches.

ſ	Size of the Problem	#OPT	,	IM1	Phase 1				
		Success	Average	Maximum	Average	Maximum			
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CPU	CPU	CPU	CPU			
	10	77	0.036	0.07	0.011	0.028			
	20	80	0.12	0.47	0.016	0.35			

Table 11 CPU times of Phase 1, 2-1, 2-2 and MM1 on optimal solutions

Table 12 shows the CPU time performance evaluation on the optimal found solutions for the problem MM2. For the problem size 10, the average CPU time is 0.027 when the maximum one is 0.063 by using MM2. As Phase 2 is used average

CPU time of 0.009 when the maximum CPU time is 0.015. And for the problem size 20, the average CPU time is calculated as 0.08 when the maximum one is 0.45 by using MM2. But, in Phase 2, the average CPU time is 0.013 while the maximum CPU time is 0.37. Then it can be said that, Phase 2 reaches optimal solutions in shorter times than MM2 reaches.

Size of the	#OPT	Μ	IM2	Phase 2, 2-1, 2-2				
Problem S	Success	Average CPU	Maximum CPU	Average CPU	Maximum CPU			
10	72	0.027	0.063	0.009	0.015			
20	61	0.080	0.450	0.013	0.370			

Table 12 CPU Times of Phase 2, 2-1, 2-2 and MM2 on optimal solutions

CHAPTER V

In this Chapter, a case study at MAN Türkiye A.Ş. is performed. In Section 6.1 general information about MAN Türkiye A.Ş. and the problem environment are described. In Section 6.2, a small-sized real life problem instance of MAN is explained in detail.

5. CASE STUDY AT MAN TÜRKİYE A.Ş.

As stated before, this thesis study is motivated by the problem occurred in MAN Türkiye A.Ş. Therefore, a small sized case study that represents the problem seen in MAN Türkiye A.Ş. with its all properties is solved.

5.1 PROBLEM ENVIRONMENT

MAN Türkiye A.Ş. has been established in 1966. In 1985, truck and motor production plants were opened in Ankara. Since 1995, MAN Türkiye A.Ş. has been producing large sized products such as busses where product families include travel buses, public transportation buses and middle distance buses (NAG). The main products in the product family have many submodels with different options, which reach to approximately twenty different bus types. In the company, there are five cost centers with 110 workstations but in the scope of this study 62 of them are considered. Relationship of these cost centers can be seen in Figure 11.

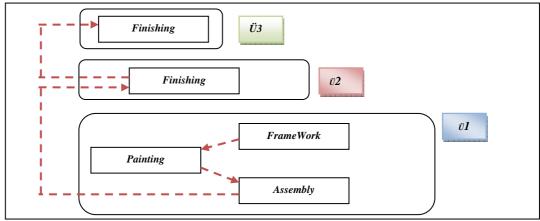


Figure 14 Cost centers of MAN Türkiye A.Ş.

For each main model, there are nearly hundred of processes to be performed and each process is included a number of tasks. Thus, each main product has nearly four thousands of tasks to be accomplished by workers on the production line. Also, a task has a number of jobs. The relationship between process, tasks and jobs can be seen in Figure 12. Here, in this study the term tasks are used.

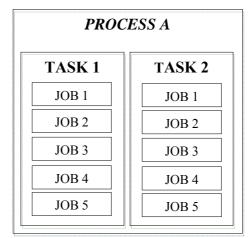


Figure 15 Relationship between process, task and job

MAN Türkiye A.Ş. manages its production line with the manner of mixed model assembly lines. It means that at the beginning of each day, production list is formed for various types of products that may require different tasks at different workstations. The predefined tasks are performed by the workers at these stations and final products are completed after the last station. The cycle time for each station is fixed. These operations that are assigned to the workstations have to be completed in the given cycle time. Because of the large dimensions of the product, more than one workers or worker teams work simultaneously at different locations

(zones) of the bus. The zones that are defined by MAN Türkiye A.S. can be seen in Appendix A in detail. Moreover, there are precedence relations between these predefined tasks, each task cannot be performed by each worker and again due to large dimension of the products some tasks require more than one worker to be completed. In all these complications, MAN Türkiye A.Ş. cannot perform the workforce. As the reader would understand, production of different types of products on a single assembly line of MAN Türkiye A.Ş. yields huge range on workloads of workers. Furthermore, the number of tasks is very large, performing assembly line balancing (Figure 1) is almost impossible due to the combinatorial nature of the problem. The model sequence that includes number of products model with its production sequence for a given planning horizon is known. Therefore, to prevent the work over loads of workers on the assembly line and to get efficient solution in a reasonable time, the solution methodology (first minimization of number of actively used workers, then minimization of makespan per period in planning horizon) mentioned in Chapter 4 is used. Thus, it is not exactly pure assembly line balancing problem in mixed model environment. MAN Türkiye A.Ş. has all its tasks assignments for each defined workstations. Therefore, the problem returns from static assembly line balancing problem to a scheduling problem solved for every period (cycle) for each workstation. Figure 13 presents the workpiece flow in MAN Türkiye A.Ş's assembly line.

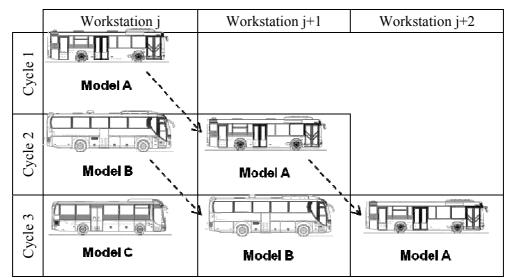


Figure 16 Workpiece flow in the line

It should be noted that this study is partially supported by Ministry of Science, Industry and Technology in the scope of SAN-TEZ project with project number 00695.2010-2. Every progress in this thesis is related with this SAN-TEZ project steps. The problem stated in Chapter 3 is formed by symptoms seen on the production line of MAN Türkiye A.Ş.

In the scope of SAN-TEZ project, macro and micro system analysis were made, the problem was defined. At the same time data gathering was performed. It can be said that data gathering part is the most tiring due to absence of most of the data or wrong data. Because the data are gathered by concrete forms called as standard operation form (SOF). Then, these concrete forms are transformed to a soft copy that provides easiness in data management. Reader can reach a sample of SOF and other used forms during the project in Appendix B. For example, there were not any precedence relations information up to this project. Most of the precedence relations for the products were obtained during the project. As a result of this situation, their representation of workerloads called as *yamazumi* by the firm does not represents the real workloads of workers. Thus, it was resulted in wrong planning operations. Besides precedence relations, data on processing times, walking times, and requirements of workers and qualifications of workers were gathered during this project. At last as a concrete result of this SAN-TEZ project, a decision support system was developed.

5.2 REAL LIFE PROBLEM INSTANCE

In this section, the proposed heuristic algorithm has been applied to the real life problem of MAN Türkiye A.Ş. Here, there are 27 tasks with cycle time 3600 seconds. Currently, 6 workers perform the tasks in a given cycle time.

Associated precedence diagram with processing times in seconds of 27 tasks are represented in Figure 11. Qualifications of workers and walking times between each task can be seen from Appendix C.

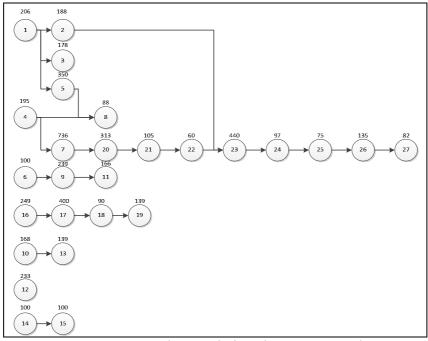


Figure 17 Precedence relations between 27 tasks

Construction Algorithm (Phase 1):

Here, the aim is to minimize the number of actively used 6 workers in production area. Construction sets the maximum priority for task *i* that has the maximum value of sum of processing time, minimum walking time and total processing times of successors. Therefore, at first the task 4 with FOLLOWALK = 1019 is assigned to worker 1 who is able to perform task 4 with start time 0 and finish time 195. Other assignments can be seen in Figure 12.

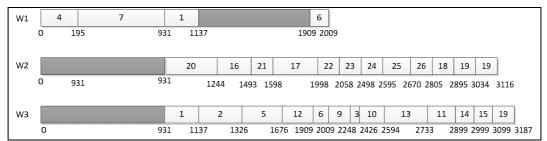


Figure 18 Resulting schedule of minimization of actively used workers (MM1)

As a result of Phase 1, the number of 6 actively used workers is decreased to 3 actively used workers.

It should be stated that our Construction Algorithm does not consider to minimize makespan value of the schedule. Its main concern is to minimize number of actively used workers without exceeding given cycle time.

Minimization of Makespan (Phase 2)

Here, as an input, numbers of workers found in the Construction Algorithm together with their qualifications are used. Aim is to get balanced workload of the workers by minimizing the makespan value. Again, we use the same priority rule that is the summation of processing time of the associated task, walking time and the sum of all successors processing times. Then, task 4 is the first task to be scheduled with FOLLOWALK =1019 to worker 1. The resulting schedule is presented in Figure 13. Makespan value is 3116.

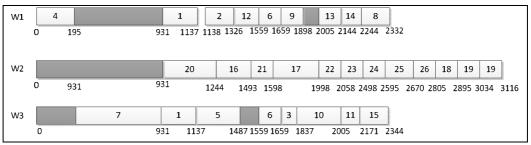


Figure 19 Resulting schedule of minimization of makespan (Phase 2, 2-1, 2-2)

It should be noted that the current schedule of the firm has 6 actively used workers. However, by using proposed algorithm only 3 workers are used and associated makespan value that will be used as cycle time is reduced to 3116.

Besides this small case study with 27 tasks, 3 different real life problems with larger sizes (more than 1,000 tasks for each) are solved by the proposed algorithm. These 3 different problems and performance measures (GAP 1 and GAP 2 calculated in chapter 4) are presented in Table 13.

Problem	# of tasks	# ofMakespanWorkers inValue inCurrentCurrent		Phase (numbe worker	r of	Phase 2, 2-1, 2-2 (makespan)		
	lasks	Application (MM1)			LB 1	Solution	LB 2	
Problem 1	1032	78	75	78	74	65	61	
Problem 2	997	78	74	77	70	65	58	
Problem 3	1000	78	70	78	72	65	60	

Table 13 Results for real life problem instances

*Problem 1's inputs (half of it) are given in Appendix D.

When the number of workers is compared, there is not much improvement using construction algorithm compared to the current values. Only one less worker is the improvement we get for problem 2. When makespan is considered, the improvement is significant. All the makespan values are found by the minimization of makespan algorithm as with a given cycle time 65. This means using the current amount of workers in the field, it is possible to catch the cycle time with better allocation of tasks to workers. In the current application, the tasks are not properly distributed to workers, and this results in makespan values which are much more than the cycle time. As a result, cycle time becomes more than 65 in the application which reduces production ratio.

Since these 3 problems are large-sized, all the input data cannot be supplied. But only for problem 1, an interested reader can find the input data in Appendix D.

CHAPTER VI

6. CONCLUSION AND DISCUSSIONS

In this thesis, we study workforce scheduling in parallel multi worker multi sided mixed model assembly line balancing problem. Our first aim is to find the minimum number of actively used workers by considering precedence relations, walking times between tasks, multi worker tasks, qualification of workers without exceeding the given cycle time. The second aim is to obtain balanced schedule of number of workers that is result of first aim by considering again precedence relations, walking times between tasks, multi worker tasks, qualification of workers that is result of first aim by considering again precedence relations, walking times between tasks, multi worker tasks, qualification of workers. Most of the study was performed at MAN Türkiye A.Ş.

To the best of our knowledge, there is not any work in the literature directly applicable to the situation. Two mixed integer linear mathematical formulations are developed. However, due to the combinatorial nature of the problem, the mathematical formulations do not give even any feasible solution in a reasonable time. Therefore, priority based heuristic approaches are developed. To test those algorithms, lower bounds by modifying existing lower bounds are constructed. To make performance analysis on our heuristic, new test problems are generated based on the data of MAN Türkiye A.Ş. Then, comparison results for the test problems are presented. As well as a case study at MAN Türkiye A.Ş. presented. Three realistic problem instances are generated by using real life data from the company. These instances are actually in moderate size compared to the overall problem. Using our two phase heuristic algorithm, significant improvements in makespan (therefore in realized cycle time and production ratio) are observed, but workforce amount does not improve much. With better qualification of workers, workforce

planning is also expected to improve. In overall, our two phase algorithm brings significant benefits to the company.

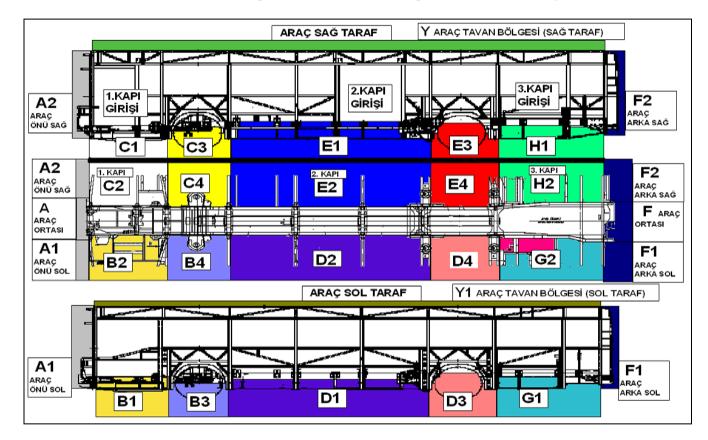
As further research directions, new problem characteristics can be included. One possibility is to consider more detailed qualifications information. In this study, qualification of workers is thought as workers are capable or not. However, degrees of qualifications such 1 (means expert at the task), 0.5 (means worker cannot perform the task alone) and 0 (means cannot capable of doing the task) can be considered. Range in degree of qualification can provide different performance measures.

For another further research direction, problem can be considered with pre-assigned tasks. Workers' available times will be different in this context. This approach will bring a smaller sized problem with less tasks to be allocated, but requires extra effort to model this new situation. Although taking available times results in extra effort for the model, it might provide to give a quick response in adding new tasks to be performed by the planning horizon.

As another further research direction, the problems given in Figure-1 can be solved by integrated approach. It means that the result of workforce scheduling problem can be an input for model sequencing and assembly line balancing problems.

REFERENCES

- 1. Akagi, F., Osaki, H., Kikuchi, S., 1983, A method for assembly line balancing with more than one worker in each station. International Journal of Production Research 21, 755-770.
- 2. **Bartholdi, J.J.,** 1993, Balancing Two Sided Assembly Lines: A Case Study, International Journal of Production Research, Vol.31, Pages 2447-2461.
- 3. **Baybars, I.,** 1986., A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem, Management Science, Vol. 32, Pages 909-932.
- 4. Becker, C., Scholl, A., 2006. A Survey on Problems and Methods in Generalized Assembly Line Balancing. European Journal of Advanced Manufacturing Technology, Vol. 36, Pages 582-588.
- Becker, C., Scholl, A., 2009. Balancing Assembly Lines with Variable Parallel Workplaces: Problem Definition and Effective Solution Procedure, European Journal of Operations Research, Vol.199, Pages 359-374.
- Boysen, N., Fliedner, M., Scholl, A., 2009. Sequencing Mixed-Model Assembly Lines: Survey, Classification and Model Critique, European Journal of Operations Research, Vol. 192/2, Pages 349-373.
- Boysen, N., Fliedner, M., Scholl, A., 2007. A Classification of Assembly Line Balancing Problems, European Journal of Operational Research, Vol. 183/2, Pages 674-693.
- 8. Cevikcan, E., Durmusoglu, M.B., Unal, M.E., 2009, A Team-Oriented Design Methodology for Mixed Model Assembly Systems, Computers and Industrial Engineering, Vol.56, Pages, 576-599.
- 9. **Dar-El, E. M.**, 1973 MALB-A Heuristic Technique For Balancing Large Single Model Assembly Lines, AIEE Transactions, 5(4), Pages, 343-356.
- Dimitriadis, S.G., 2006, Assembly Line Balancing and Group Working: A Heuristic Procedure for Workers'Groups Operating on the Same Product and Workstation, Computers and Operations Research, Vol.33, Pages 2757-2774.


- Emde, S., Boysen, N., Scholl, A., 2008, Balancing Mixed Model Assembly Lines: A Computational Evaluation of Objectives to Smoothen Workload, International Journal of Production Research, Vol.17.
- 12. Gacias B., Artigues C., Lopez P., 2010, Parallel machine scheduling with precedence constraints and setup times, Computers & Operations Research, Vol.37, 2141–215.
- 13. **M.R. Garey and D.S. Johnson.**, 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freemann, San Francisco.
- 14. Guo Y., Liu X., 2010, Scheduling Uniform Parallel Machines with Machine Eligibility Restrictions to Minimize Total Weighted Tardiness, International Conference on Computer Application and System Modeling.
- 15. Herrman J., Proth J-M., Sauer N., 1997, Heuristics For Unrelated Machine Scheduling With Precedence Constraints, European Journal of Operational Research, Vol.102, Pages 528-537.
- Jeffrey D. Camm, Michael J. Magazine, George G. Polak & Gregory S. Zaric, 2008: Scheduling paralel assembly workstations to minimize a shared pool of labor, IIE Transactions, 40:8, 749-758
- Karabati, S., Sayin, S., 2003, Assembly Line Balancing in a Mixed Model Sequencing Environment with Synchronous Transfers, European Journal of Operational Research, Vol. 149, Pages 417-429.
- Talip Kellegöz, Bilal Toklu, 2012 An efficient branch and bound algorithm for assembly line balancing problems with parallel multi-manned workstations, Computers & Operations Research, Volume 39, Issue 12, Pages 3344-3360
- 19. Kim, Y.K., Kim, J.Y., Kim, Y., 2000b, A Coevolutionary Algorithm for Balancing and Sequencing in Mixed Model Assembly Lines, Applied Intelligence, Vol. 13, Pages 247-258.
- Kim, D.W., Na, D.G., Chen, F.F., 2003, Unrelated Parallel Machine Scheduling With Setup Times and Total Weighted Tardiness Objective, Robotics and Computer Integrated Manufacturing, Vol.19, Pages 173–18
- LIU Min, WU Cheng., 2003, Scheduling Algorithm Based on Evolutionary Computing in Identical Parallel Machine Production Line, Robotics and Computer Integrated Manufacturing, 19(5):401-407
- 22. Merengo, C., Nava, F., Pozetti, A., 1999, Balancing and Sequencing Manual Mixed-Model Assembly Lines, International Journal of Production Research, Vol.37, Pages 2835-2860.

- M.Gualtieri- P.Pietramala- F. Rossi, 2009, Heuristic algorithms for scheduling jobs on identical parallel machines via measures of spread, IAENG Int. J. Appl. Math., 39, 2, 2009, 100-107
- 24. Özcan, U., Toklu, B., 2009. Balancing of Mixed Model Two Sided Assembly Lines, Computers and Industrial Engineering, Vol.57, Pages 217-227.
- 25. Özcan, U., Gökçen, H., Toklu, B. (2010). Balancing parallel two-sided assembly lines. International Journal of Production Research, 48(16)(4767-4784).
- 26. Özcan, U., Toklu, B., 2010, Balancing Two-Sided Assembly Lines with Sequence-Dependent Task Times, International Journal of Production Research, 48(18)(5363-5383).
- 27. Özcan, U., 2010, Balancing Stochastic Two-Sided Assembly Lines: A Chance-Constrained, Piecewise-Linear, Mixed Integer Program and a Simulated Annealing Algorithm, European Journal of Operational Research, 205(81-97).
- 28. Pastor, R., Andres, C., Dura, A., Perez, M., 2002, Tabu Search Algorithms for An Industrial MultiProduct and Multi Objective Assembly Line Balancing Problem with Reduction of Task Dispersion, Journal of the Operational Research Society, Vol.53, Pages 1317-1323.
- 29. **Rabadi, G., Moraga, R., and Al-Salem, A.,** 2006, Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times, Journal of Intelligent Manufacturing, Vol. 17, p. 85 97.
- 30. Salveson, M.E., 1955, The Assembly Line Balancing Problem. Journal of Industrial Engineering, Vol. 6(3), 18-25.
- Scholl, A., 1999. Balancing and Sequencing of Assembly Lines, Physica-Verlag.
- 32. Senniappan K., 2006, Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups, Master Thesis, Wichita State University, USA.
- 33. **Thompoulos, N.T.,** 1967, Line Balancing-Sequencing for Mixed-Model Assembly. Management Science, Vol.41, Pages B59-B75.
- 34. **Thompoulos, N.T.,** 1970, Mixed Model Line Balancing with Smoothed Station Assignments. Management Science, Vol.16, Pages 593-603.
- 35. Vairaktarakis G L, Cai X, Lee C-Y, 2002, Workforce planning in synchronous production systems, pp.551 571

- 36. Vilarinho, P.M., Simaria, A.S., 2002. A Two Stage Heuristic Method for Balancing Mixed Model Assembly Lines with Parallel Workstations, International Journal of Production Research, Vol. 40, Pages 1405-1420.
- 37. Xiaofeng Hu, Jin-Song Bao, Ye Jin, 2010, Minimizing Makespan On Parallel Machines with Precedence Constraints and Machine Eligibility Restrictions, International Journal of Production Research, 48:6, 1639 -1651.

APPENDICES

APPENDIX A-Workplaces (Zones) of Workpiece at MAN Türkiye A.Ş.

APPENDIX B-Sample Forms Used in Man Türkiye A.Ş.

Sample Standard Operation Form (SOF)

6			Operasyon	Formu		ton (B)		0.22	101110			Hazirlayan A < E	n: Tipyb	REK		12/20	011
n H	azirlik	$\frac{ etasyon:}{D11} \frac{7Gkm}{6/2} Rog-$		Prosesier.	€K.	KILI	TYE	AB	SIYES			Takt	1		Çevrim Sü		
OF No:	Basri !	Dogn' (GEVE'MI)		1		MONT	ILAI					10	65+5		69	30	
			Opsiyon	Takım Hazırlık	Parça Alma	Parça Hazırlık	Araç Hazırlık	Yürüme	Alıştıma	Isiem	Ayar	Kontrol	Beideme	Diğer	Toplam	Kişi Sayısı	Diğ
1	4	Melsemelerin alignas de kunt and kiliterin joine atmaler								1.30							
2	2	Sa 2 hopen kurt 2021 kilitlerin sikilmen.								5-05							-
3	3	is used interesting the second second second	Kis pakati							10 50							
	4	II II II electric distribusion monto adilmesi. II II II Electrico monto adilmesi II II II Electrico monto adilmesi II II II Telve Electrico monto yapunosi	VCSIZ							01 50							
3	5	IL IL IL Bladler manta edilmest	we li							01 00							-
6	6	IL A IL Telve Elephonin mental year was								06.00							1
5	7	11 11 11 - Electrick regisation Septenmosi								25 00							-
6	8	hu hu held arma analone mailman								06.00							-
7	3	11 11 11 Aprila berta martan								2 00							1
0	10	We have seen martage	Kis aikati se							01' 02							-
3	11	See ? Legal killering sabitenie sikilmen								0200							-
	12	Dep J. Kapak Killtiaring SJONTEOLE SIKILMED	Kis paketi							1500				-			1
9	13	I I i elegin atudu men	FIS PARETY	1						0100							-
10	16	Telue Electronica moder un luce								04.00					· ·		-
1	15	11 11 Tel ve Ebellerinn menter yophresi								02.00							-
0	16	11 11 11 isden acroe ver mantaj								0.00							-
17	17	11 11 11 Kild Scrie your Mantas								0500							-
14	1.8	n i vint zone uppi marter								15 20							
14	19	Bit 4. By the kind approximation manda					_			~ -							-
	20	11 11 11 in indertor talerman	Kis paketi							10 00							-
12.		11 11 11 elegen Apleilmon								02 00							_
16.	21	11 11 11 Tellie Elect findusaria begennes!								05 00							
3	22	11 11 11 - Electrik tesisotian Toplanmesi								2.00							-
2	22	IL IL LE KILL DEME DUP LOUDIN MEDILING,								2800							
٦	24	IL IL IL KILL SOME SUPTOIN UP PINO,								05 00							
		U U															
				I.I.													
				A													
				12													-
																	-
																	-
				1													-
			Toplam:	-						69 20							-
STEK	S'		, opiani.	-						07 -							-
																	-
																	-
																	-
																	_
-																	
				-													
			Genel Toplam	13						6920							

Sample Qualification Form

				_				0		-	-	-				0			-	-	-	-	-	-	-	-	
1							KA										_	_						H	ma	len.	
	istasyon		606	605	605	60	5 605	202	302	605	605	605	605	605	605	05	606	21/2 1	1/2 1	1/1	506	606	31/2	31/2	606	31/1	A
	Takım →	-	\$1/2	31/1	SI/1	-	18/1	13//	131/1	Si in	1	SILL	541	· · · ·		R.	-	幸	1		-	1 almale	58	1×1	1 th	13	1
	Bölüm: MONTAT		pen montaj	ar Montaji	a Fren Land Ondaji	ir Bağlantıla	Yani Çöp sepet hitucusu	attor ve kapan montaji	Kaş Hazırlığı v Montajı	lamba çıtası Mi çıta monta	ak kenar, şi e dikme çıtı ontalı	pta montaj	pon Hazit	nal Orta Ge asan Lamb ual ki Sens	Pozisyon La Montaji	ayan ayan	nar kapam	Sensor Mo	Direk Monta	Ray Monta	Direk monte	B-Direk Mortal	Uzeri mikrol	piston elekt	piston ekk	glamme magnet ver	- indiantina
	Birim: MO3		Afte tam	Yanduvar	Adka Cama Fren L Montaji	Õn manité	WC Yan	On monity m	Arka Kaş M	Basamak la arka begli	On basam arkasi v	Plask	On Tair	Have Kanal Yen Floras Have kanal	Arka Üst P	Ôn tamp	WC Kenst	Konvektör	Cam	Perde Ray	Sal) B-Direk	Sol B-I	B-Direk (On kapi	Arks kapr	An Yapi	cilektrik
	Proses Durumu>	K		K	4	14	H	H	K	H	H	H	K	H	H	K	H	H	E	E	H	H					H
t	Proses No	2.	1		2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.12	2.1	9 2.2	0 23	1 2	22 1	2.23	2.24
I	Unit YILMAZ	e) (D		9	\odot	\oplus	0	0	0	9	Ð	D		9		-		1	45		10	PI	R	P
1	Hoten ORELIDELL	Ð		DE			\bigcirc	\bigcirc	0	\bigcirc	0	0	9	0	\bigcirc	-	\oplus	C	J	1e	00	20	26	DI	D	0	Ð
	Mehmet A. NARIAI	0	6						0	0	0	0	0	0	0	9	Θ	e	e	E)6	DE	DIE	DI	D	0	E
	MARAH ASAMOZEU		B	96	0	D				0	0	0	0		0	0		e						3		e	e
1	mustafs KAMAN	0	B	96		D		Ð		0	0	0	0		0	0		e	90	DE	06	DE		D	0	E) e
1	Özkan ÖNBILEK	0	Q	A	96	-		D				0	0		0		1	e				DI	D	0	C	B	96
1	and the second se		A	A	F		3				A	0	0			P	A) A)6	DE	De	D		0	P	16	36
	ugrul GUNDOZAN			10	0			A			T	0		A	à	a	Ĭ	A						1	P	36	A
	Laaddin GUNHAN			H		2	D	R	Y	0	2	2		R	X	X	H	14	22			X	A	Y		ala	51
4	lanifi BABEL	P	0	E			RE	D	P	P	P	D	P	-		U.	1 d	2			R	R	BA				
	E	Ð	D	E	H)6	ÐE	ÐK		\oplus	\oplus	\bigcirc	\oplus	\oplus	Ð	E) (f)()(Ð	D	\oplus	U	U	15	P	P
	E	ĐE	Ð	Ð	H	E	DE	Ðe	Ð	\oplus	\oplus	\oplus	Ð	Œ	Œ	$) \in$	Ð	316	ÐIE	Ð	\oplus	\oplus	Ð	H)6	Ð	Ð
	E	ÐE	D	\oplus	A)(DE	ĐE	Ð	Ð	0	0	A	Æ	A	A	A)(ĐE	Ð	0	\oplus	Æ	He	916	Ð	0
	Z	DR	D	A	a	10	DIC	57	D	T	T	A	0	TA	T	A	10	SIC	DI	T	A	A	A	SIE	AI	A	A
		1	K	R	K	1	XX	X	K	X	X	R	A	Y	X			21	K	X	A	A	TA	50	B	T	T
-		フヒ	D	U	t	10	JE	ナモ	Ð	D	Ð	\oplus	U	U	U) (t	ナヒ	DI	D	D	D	U	D	25	R	R	H
_		96	Ð	\oplus	Œ	He	96	96	ÐI	\oplus	\oplus	\oplus	I	Œ		Ð	E	ÐIG	Ð	\oplus	Œ	HE	96)(D	\oplus	U
Anna an	n de promos adresiande K Dest um facta konatmie K Sistr	ek lik pros	ien nür	HAINSE	-	LI De	alet de pro aleta yez	ette siten	inde	6) Monte	hakkeste	AC	yesh	el trigici v	ar. 1	0	Orta	dizey bit	gist var,	C	Ko	nuya haki ndisi yileli	m.	D	00	pertartes m

Sample Task Requirement Form

Dusunn als ani nn haglannan s arkasi inn haglannan es Beli en baglannan es Beli es Beli es Beli ksa	A78	Opsiyon	Parça Numaralan	Montaj Resmi No	Kisitlar	Oncetik sonratik	Araçta yapıldığı bölge	Kaç kişi ile yapılıyor	listasyon Numarasi	Birim Yöneticisi Hurof	Operatör
als and als and nin haglonness s arkass ren haglonness re Babl rin haglonness	W M						62	1	tol		
nn haglannar s arkası min hağlasında nı bağlasında nın bağlasında	м								Con a	TOJUN	135
ren hogilosmos re Batil ren bogilosmosi							ч	4		1	
rin başlarmakl	u						4	¥	u		
es Ess tasa	1						64	4	4	4	
rin boglanmett	4						B 2		4	4	
hortumanum logenozi	v						82	¥	- 14	4	
Aldmen	4						82	4	v	10000	
borunun ge bogionmosi	4						B2	4	*	*	
de atilmest							02	*	1	*	124
ik 1210 nekorları Imosi	N Y						B2	*	×	-	
						1				1	
					10-31						
	-		SOL		1				1		
	prise Atulmesu berunaun rige beglenmesu r alth totaeuge de atulmesu rk Euro reformer	prée atilinesi -1 berunun -1 raih totucuga de atilinesi + rik wis reform	prée	prée	prée	prée atlanosi at la la la la la la la la la la la la la	prie Addresi -1 -1	infe Atlansis -1 B2 B2 Consuma Constraint Constrain	prée attances -1 B2 4 borunum (1 B2 4 r outr tuticongo (1 B2 4 r outr tuticongo (1 B2 4 B2 4 B2 4 B2 4 B2 4 B2 4	infé Atlanosi -1 borunun re bogionnosi -1 r out tutucago de atlanosi tututo reforioria tututo reforiera tututo reforioria tututo reforialita tututo reforioria tututo reforia tututo reforioria tututo reforio	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CODE	WORK STATION	BUS MODEL	PROCESS CODE	PROCESS	TASK CODE	TASK	PREDECESSOR	ZONE	WORKER REQUIREMENT	PROCESSING TIME
P1ISF1	G01	R07	P1	BAGAJ İÇİ ÖN DAVLUMBAZ FİLE MONTAJI	ISF1	File Montaj Deliklerinin Markalanması		D2 BAĞAJ	1	3,07
P1ISF2	G01	R07	P1	BAGAJ İÇİ ÖN DAVLUMBAZ FİLE MONTAJI	ISF2	File Montaj Deliklerinin Delinmesi		D2 BAĞAJ	1	1,40
P1ISF3	G01	R07	P1	BAGAJ İÇİ ÖN DAVLUMBAZ FİLE MONTAJI	ISF3	Filenin Yerine Vidalanması		D2 BAĞAJ	1	3,60
P2ISF1	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF1	Büyük Üçgen Tahta Hazırlığı		ARAÇ DIŞI	1	3,08
P2ISF2	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF2	Küçük Üçgen Tahta Hazırlığı		ARAÇ DIŞI	1	3,58
P2ISF3	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF3	Büyük Ve Wc Arkası Tahta Hazırlığı		ARAÇ DIŞI	1	4,62
P2ISF4	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF4	Büyük Üçgen Tahta Montajı	1	C2	1	7,00
P2ISF5	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF5	Küçük Üçgen Tahta Montajı	2	C2	1	6,33
P2ISF6	G01	R07	P2	BÜYÜK ÜÇGEN TAHTA HAZIRLIĞI	ISF6	Büyük Ve Wc Arkası Tahta Montajı	3	C2	1	4,43
P3ISF1	G01	R07	P3	DAVLUMBAZ ÇITA HAZIRLIĞI	ISF1	Sağ Davlumbaz Çıtasının Yapılması		E2 (BAGAJ)	1	2,63
P3ISF2	G01	R07	P3	DAVLUMBAZ ÇITA HAZIRLIĞI	ISF2	Sol Davlumbaz Çıtasının Yapılması		D2 (BAGAJ)	1	2,58
P4ISF1	G01	R07	P4	ESP KAPAMA MONTAJI	ISF1	Esp Kapama Montajının Yapılması		E2 (BAGAJ)	1	2,27
P4ISF2	G01	R07	P4	ESP KAPAMA MONTAJI	ISF2	Para Dolabı Montajı		E2 (BAGAJ)	1	4,37

Sample Data Form Used in the Scope of the Project

APPENDIX C- Inputs of Case Study at MAN Türkiye A.Ş.

Qualification of Workers

TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0

Walking Times Between Tasks

TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX D – Input Data of Problem 1

Processing Times

#	Code	Time	#	Code	Time	#	Code	Time	F	#	Code	Time
1	P1ISF1	3,07		P11ISF8	3,93	# 101	P15ISF27	4,10		# 151	P22ISF4	1,23
2	P1ISF2	1,40	52	P11ISF9	2,53	101	P15ISF28	2,23		152	P22ISF4	1,47
3	P1ISF3	3,60	53	P11ISF10	1,60	102	P15ISF30	3,70		152	P22ISF4	3,08
4	P2ISF1	3,00 3,08	54	P11ISF11	4,32	103	P15ISF31	1,03		154	P22ISF4	0,50
5	P2ISF2	3,08 3,58	55	P11ISF12	4,32 10,50	104	P16ISF1	7,10		154	P22ISF5	0,50 0,50
6	P2ISF3	3,58 4,62	56	P12ISF1	1,43	105	P17ISF1	17,02		155	P22ISF6	0,30 2,40
7	P2ISF4	4,02 7,00	57	P12ISF2	2,08	100	P17ISF2	6,13		150	P22ISF6	2,40 4,07
8	P2ISF5	7,00 6,33	58	P12ISF3	2,00 3,47	107	P18ISF1	0,13 1,25		157	P22ISF6	4,07 4,83
9	P2ISF6	-	50	P13ISF1	3,47 2,30	108	P18ISF2	2,62		158	P22ISF6	
9 10	P3ISF1	4,43 2,63	59 60	P13ISF2	2,30 0,50	109	P18ISF3	2,62 3,90		160	P22ISF7	3,35
11	P3ISF2	-	61	P13ISF3	-		P18ISF4				P22ISF7	5,67
12	P4ISF1	2,58	62	P13ISF4	0,50	111	P18ISF5	1,98 1,55		161 162	P22ISF7	5,95
	P4ISF1 P4ISF2	2,27		P14ISF1	22,85	112	P18ISF6	1,55			P22ISF7 P22ISF8	1,95
13	P5ISF1	4,37	63	P14ISF1	8,27	113	P19ISF1	15,75		163		4,20
14		6,00	64		7,20	114		6,98		164	P22ISF8	3,68
15	P5ISF2 P6ISF1	6,50	65	P14ISF3	2,75	115	P19ISF2	1,00		165	P22ISF9	6,08
16		1,33	66	P14ISF4	4,90	116	P19ISF3 P19ISF4	1,12		166	P22ISF9	7,83
17	P6ISF2	6,13	67	P14ISF5	2,92	117		3,52		167	P22ISF9	1,80
18	P6ISF3	1,98	68	P14ISF6	4,82	118	P19ISF5	0,62		168	P22ISF10	2,23
19	P7ISF1	7,42	69	P14ISF7	7,43	119	P19ISF6	6,07		169	P22ISF10	2,60
20	P7ISF2	1,18	70	P14ISF8	4,30	120	P20ISF1	0,50		170	P22ISF11	6,43
21	P7ISF3	1,38	71	P14ISF9	1,67	121	P21ISF1	1,18		171	P22ISF12	8,33
22	P7ISF4	1,88	72	P14ISF10	2,87	122	P21ISF1	1,20		172	P22ISF13	1,53
23	P7ISF5	2,12	73	P14ISF11	5,63	123	P21ISF2	0,50		173	P22ISF14	2,83
24	P7ISF6	1,78	74	P14ISF12	3,57	124	P21ISF2	2,25		174	P22ISF15	0,80
25	P7ISF7	2,12	75	P14ISF19	3,13	125	P21ISF3	1,55		175	P22ISF16	0,43
26	P7ISF8	2,32	76	P14ISF20	3,80	126	P21ISF3	1,00		176	P22ISF17	0,87
27	P7ISF9	1,52	77	P14ISF21	1,83	127	P21ISF4	3,47		177	P22ISF18	4,37
28	P7ISF10	3,60	78	P14ISF22	6,02	128	P21ISF4	1,20		178	P22ISF18	3,10
29	P7ISF11	2,77	79	P14ISF23	1,37	129	P21ISF5	4,13		179	P22ISF18	3,10
30	P7ISF12	8,67	80	P14ISF24	2,93	130	P21ISF5	2,77		180	P22ISF19	5,90
31	P7ISF13	4,60	81	P14ISF24	3,83	131	P21ISF7	1,57		181	P22ISF20	3,70
32	P7ISF14	3,30	82	P14ISF25	1,38	132	P21ISF7	1,57		182	P22ISF20	3,67
33	P7ISF15	4,47	83	P14ISF25	1,08	133	P21ISF8	2,95		183	P22ISF20	3,67
34	P7ISF16	1,53	84	P14ISF26	2,80	134	P21ISF9	2,65		184	P22ISF20	3,67
35	P7ISF17	2,52	85	P14ISF27	4,52	135	P21ISF10	2,07		185	P22ISF20	1,03
36	P7ISF18	5,90	86	P14ISF28	5,08	136	P21ISF10	2,07		186	P22ISF21	5,33
37	P8ISF1	3,30	87	P14ISF29	12,93	137	P21ISF11	1,73		187	P22ISF21	4,03
38	P8ISF2	3,90	88	P14ISF	0,50	138	P21ISF11	2,35		188	P22ISF21	4,03
39	P8ISF3	4,40	89	P15ISF2	6,98	139	P21ISF12	1,45		189	P22ISF21	2,70
40	P9ISF1	1,68	90	P15ISF3	2,78	140	P21ISF12	0,73		190	P22ISF22	4,72
41	P9ISF2	4,40	91	P15ISF4	4,90	141	P21ISF13	4,92		191	P22ISF22	3,02
42	P10ISF1	4,70	92	P15ISF5	2,92	142	P21ISF13	2,35		192	P22ISF23	1,92
43	P10ISF2	1,73	93	P15ISF13	0,72	143	P22ISF1	0,67		193	P22ISF23	4,00
44	P11ISF1	3,30	94	P15ISF14	1,37	144	P22ISF1	0,67		194	P22ISF24	5,20
45	P11ISF2	2,17	95	P15ISF15	0,70	145	P22ISF2	12,70		195	P22ISF25	8,40
46	P11ISF3	3,78	96	P15ISF16	2,23	146	P22ISF3	7,30		196	P22ISF26	5,88
47	P11ISF4	2,08	97	P15ISF17	2,20	147	P22ISF3	2,35		197	P22ISF27	3,08
48	P11ISF5	1,25	98	P15ISF18	1,07	148	P22ISF3	2,35		198	P22ISF28	4,72
49	P11ISF6	2,05	99	P15ISF23	1,03	149	P22ISF3	7,07		199	P22ISF28	4,72
50	P11ISF7	1,80	100	P15ISF26	2,18	150	P22ISF3	1,17	L	200	P22ISF28	2,92

#	Code	Time	#	Code	Time	#	Code	Time	#	Code	Time
201	P22ISF29	0.50	0.54	P33ISF-	0.50	201	P40ISF5	5.00	254	P47ISF1	10.00
201	P22ISF30	0,50	251		0,50	301	P40ISF6	5,93	351	P47ISF1	16,00
202	P22ISF30 P22ISF30	1,18	252		2,65	302		4,65	352		10,18
203		2,53	253		5,00	303	P40ISF7	3,42	353	P47ISF2 P47ISF2	18,02
204	P22ISF31	1,53	254		1,68	304	P40ISF8	2,05	354		16,08
205	P22ISF33	3,88	255		2,88	305	P40ISF9	5,02	355	P47ISF3	14,88
206	P22ISF34	7,15	256		5,75	306	P40ISF10	5,05	356	P47ISF4	15,35
207	P22ISF35	8,37	257		5,75	307	P40ISF11	10,90	357	P48ISF1	7,60
208	P22ISF36	7,15	258		15,80	308	P41ISF1	5,87	358	P49ISF1	6,00
209	P22ISF37	8,37	259		0,55	309	P41ISF2	5,62	359	P50ISF1	2,10
210	P22ISF38	7,12	260		1,97	310	P41ISF3	3,83	360	P50ISF2	0,50
211	P22ISF39	12,20	261		2,75	311	P41ISF4	5,00	361	P50ISF3	2,72
212	P22ISF40	4,60	262		11,12	312	P41ISF5	6,00	362	P50ISF4	1,80
213	P22ISF41	3,55	263		0,50	313	P41ISF6	5,17	363	P50ISF5	2,77
214	P22ISF	11,77	264		5,78	314	P42ISF1	7,38	364	P50ISF6	4,35
215	P23ISF1	1,85	265		7,12	315	P42ISF2	4,42	365	P50ISF7	3,60
216	P23ISF2	1,98	266		8,00	316	P42ISF2	5,07	366	P50ISF8	0,50
217	P24ISF1	4,75	267		4,55	317	P42ISF3	3,00	367	P50ISF9	1,68
218	P25ISF1	3,30	268		4,78	318	P42ISF4	3,12	368	P50ISF10	0,50
219	P25ISF2	1,65	269	P37ISF2	2,00	319	P42ISF4	5,88	369	P50ISF11	5,48
220	P25ISF3	7,98	270	P37ISF3	3,57	320	P42ISF5	3,58	370	P50ISFOT	0,50
221	P25ISF4	6,35	271	P37ISF4	3,50	321	P42ISF6	4,33	371	P50ISFOT	0,50
222	P25ISF5	0,50	272	P37ISF5	5,30	322	P42ISF7	3,68	372	P50ISFOT	0,50
223	P26ISF1	8,62	273	P37ISF6	5,55	323	P42ISF8	4,00	373	P50ISFOT	0,50
224	P26ISF2	3,08	274	P37ISF7	3,82	324	P43ISF9	4,28	374	P50ISFOT	0,50
225	P27ISF1	3,07	275	P37ISF8	0,50	325	P43ISF10	8,88	375	P50ISFOT	0,50
226	P27ISF2	4,08	276	P37ISF9	9,27	326	P43ISF10	7,67	376	P51ISF6	2,10
227	P27ISF3	12,08	277	P37ISF10	7,03	327	P43ISF11	6,43	377	P52ISF1	6,15
228	P28ISF1	3,80	278	P37ISF11	2,73	328	P43ISF11	6,48	378	P52ISF2	6,57
229	P29ISF1	10,85	279	P38ISF8	14,57	329	P44ISF1	5,55	379	P53ISF1	2,33
230	P29ISF2	0,50	280	P39ISF2	7,67	330	P44ISF2	11,93	380	P53ISF2	8,82
231	P30ISF1	1,85	281	P39ISF2	8,70	331	P44ISF3	3,33	381	P53ISF3	6,38
232	P30ISF2	1,53	282	P39ISF3	3,87	332	P44ISF4	4,88	382	P53ISF4	7,07
233	P30ISF3	1,00	283	P39ISF3	9,42	333	P44ISF5	13,00	383	P53ISF5	7,50
234	P30ISF4	3,27	284	P39ISF4	5,50	334	P44ISF6	29,63	384	P54ISF1	7,78
235	P31ISF2	1,88	285	P39ISF5	5,58	335	P45ISF1	5,85	385	P54ISF2	4,33
236	P31ISF3	6,10	286	P39ISF6	4,00	336	P45ISF2	8,75	386	P54ISF3	3,57
237	P31ISF4	6,90	287	P39ISF7	12,58	337	P45ISF3	3,42	387	P54ISF4	4,17
238	P32ISF1	0,50	288		9,55	338	P45ISF4	9,90	388	P54ISF5	5,60
239	P32ISF2	7,53	289		3,83	339	P46ISF1	6,33	389	P55ISF1	5,47
240	P32ISF	3,77	290		3,70	340	P46ISF2	2,42	390	P55ISF2	3,23
241	P32ISF	2,00	291		5,55	341	P46ISF3	0,50	391	P55ISF3	3,75
242	P33ISF1	1,60	292		2,72	342	P46ISF4	1,42	392	P55ISF4	3,63
243	P33ISF2	5,40	293		9,33	343	P46ISF5	2,83	393	P55ISF5	7,02
244	P33ISF3	2,18	294		4,12	344	P46ISF6	5,52	394	P55ISF5	3,72
245	P33ISF4	7,57	295		0,50	345	P46ISF7	0,25	395	P55ISF6	12,53
246	P33ISF5	7,85	296		3,92	346	P46ISF8	0,20	396	P55ISF7	1,12
240	P33ISF6	6,07	297		3,88	347	P46ISF9	5,02	397	P55ISF8	1,82
248	P33ISF7	11,23	298		3,00 4,37	348	P46ISF10	1,92	398	P55ISF9	1,20
240	P33ISF8	3,93	290		4,37 6,52	349	P46ISF11	3,00	399	P55ISF10	3,35
	P33ISF9		300			350	P46ISF12		400	P55ISF11	0,50
250	1 00101 9	2,50	300		5,18	330		2,78	400	1 00101 11	0,50

щ	Codo	Time	1	щ	Codo	Time
#	Code P55ISFOT	Time		#		Time
401		6,23		451	P60ISF28	2,37
402	P56ISF1	3,97		452	P60ISF29	2,37
403	P56ISF2 P56ISF3	2,00		453	P60ISF30	0,93
404		7,63		454	P60ISF31	3,00
405	P56ISF4	4,07		455	P60ISF31	0,70
406	P57ISF1	0,83		456	P60ISF32	2,00
407	P57ISF2	1,33		457	P60ISF33	3,83
408	P57ISF3	7,33		458	P61ISF1	7,20
409	P58ISF1	10,45		459	P61ISF2	3,67
410	P58ISF2	2,50		460	P61ISF3	3,03
411	P58ISF3	3,50		461	P61ISF4	3,50
412	P58ISF4	5,13		462	P62ISF1	4,62
413	P58ISF5	3,17		463	P62ISF2	2,28
414	P58ISF6	2,50		464	P62ISF3	9,25
415	P58ISF7	1,33		465	P62ISF4	3,80
416	P58ISF8	8,83		466	P63ISF1	2,72
417	P58ISF9	11,73		467	P63ISF2	9,53
418	P59ISF1	8,22		468	P63ISF3	3,87
419	P60ISF1	4,42		469	P63ISF4	4,42
420	P60ISF2	3,12		470	P63ISF5	6,00
421	P60ISF3	6,12		471	P63ISF6	4,98
422	P60ISF4	5,97		472	P63ISF7	5,17
423	P60ISF5	4,47		473	P63ISF8	5,20
424	P60ISF6	3,57		474	P63ISF9	2,52
425	P60ISF7	3,75		475	P63ISF10	1,43
426	P60ISF8	2,40		476	P63ISF11	0,97
427	P60ISF9	4,40		477	P63ISF12	1,62
428	P60ISF10	3,45		478	P63ISF13	5,77
429	P60ISF11	6,33		479	P63ISF14	12,70
430	P60ISF11	4,75		480	P63ISF15	5,52
431	P60ISF12	4,85		481	P63ISF16	1,38
432	P60ISF12	7,23		482	P63ISFOT	9,18
433	P60ISF13	5,78		483	P63ISFOT	10,03
434	P60ISF13	2,13		484	P64ISF1	7,38
435	P60ISF14	1,05		485	P64ISF2	7,30 5,82
435	P60ISF15	1,33		485	P64ISF3	3,20
430	P60ISF15	2,38		480	P64ISF4	2,82
437	P60ISF16	2,50		488	P64ISF5	2,02
430	P60ISF18	2,50		400 489	P64ISF6	2,02 13,38
439	P60ISF19	2,00		489 490	P64ISF7	12,42
440	P60ISF20			490 491	P64ISF8	2,42
	P60ISF20	2,33			P64ISF9	
442	P60ISF21	13,60		492	P64ISF10	4,67
443	P60ISF22 P60ISF23	13,60		493	P64ISF10	2,53
444		5,20		494	P64ISF11 P64ISF12	1,40
445	P60ISF23	5,20		495		5,93
446	P60ISF24	2,27		496	P64ISF13	4,22
447	P60ISF25	3,43		497	P65ISF1	17,83
448	P60ISF26	3,43		498	P65ISF2	1,70
449	P60ISF27	4,58		499	P65ISF3	3,85
450	P60ISF27	4,58		500	P65ISF4	2,97

Precedence Relations

#	Code	Predecessor	#	Code	Predecessor	1	#	Code	Predecessor
1	P1ISF1		51	P11ISF8				P15ISF27	
2	P1ISF2		52	P11ISF9				P15ISF28	
3	P1ISF3		53	P11ISF10			-	P15ISF30	
4	P2ISF1		54	P11ISF11			104		P15ISF30 - 26 - 27 - 28
5	P2ISF2		55	P11ISF12			105	P16ISF1	P16ISF
6	P2ISF3		56	P12ISF1			106	P17ISF1	P17ISF
7	P2ISF4	P2ISF1	57	P12ISF2	P12ISE1		107	P17ISF2	P17ISF
8	P2ISF5	P2ISF2	58	P12ISF3			108	P18ISF1	
9	P2ISF6	P2ISF3	59	P13ISF1	1 12101 2		109	P18ISF2	
10	P3ISF1	1 2101 3	60	P13ISF2			110	P18ISF3	
11	P3ISF2		61	P13ISF3			111	P18ISF4	P18ISF3
12	P4ISF1		62	P13ISF4			112	P18ISF5	
13	P4ISF		63	P14ISF1			113	P18ISF6	P18ISF1,2,3,4,5
14	P5ISF1		64	P14ISF2			114	P19ISF1	1 10101 1,2,3,4,5
14	P5ISF2	P5ISF1	65	P14ISF3			115	P19ISF1	P19ISF1
16	P6ISF1	F 5151 T	66	P14ISF4			116	P19ISF3	
10	P6ISF2	P6ISF1	67	P14ISF5			117	P19ISF4	P19ISF1
18	P6ISF3		68	P14ISF6			118	P19ISF5	P19ISF1
10	P7ISF1	P6ISF2	69	P14ISF0			119	P19ISF6	
20	P7ISF2	P7ISF1	70	P14ISF8			120	P20ISF1	F 19101 1
20	P7ISF2	P7ISF1	70	P14ISF0			120	P20ISF1 P21ISF1	
21	P7ISF4	P7ISF2 P7ISF3		P14ISF10			121	P21ISF1 P21ISF1	
22	P7ISF5	P7ISF4	72 73	P14ISF10			122	P21ISF1 P21ISF2	D2118E1
23 24	P7ISF6	P7ISF5		P14ISF11			123	P21ISF2	-
24 25	P7ISF7	P7ISF6	74	P14ISF12			124	P21ISF2	P21ISF1 P21ISF2
25	P7ISF8	P7ISF0 P7ISF7	75 76	P14ISF19			125	P21ISF3	
20	P7ISF9	P7ISF8	70	P14ISF20			120	P21ISF4	
28		P7ISF9	78	P14ISF22	F 1413F 10		127	P21ISF4	P21ISF3
20	P7ISF11	P7ISF10	79		P14ISF19 - 22		120	P21ISF5	P21ISF4
30	P7ISF12		80		P14ISF20 - 22		129	P21ISF5	P21ISF4
31	P7ISF13		81		P14ISF20 - 22		131	P21ISF7	P21ISF5
32		P7ISF12	82		P14ISF21 - 22		132	P21ISF7	P21ISF5
33	P7ISF15		83		P14ISF21 - 22		133	P21ISF8	P21ISF7
34		P7ISF15	84		P14ISF23		134	P21ISF9	P21ISF7
35		P7ISF16	85		P14ISF24			P21ISF10	
36		P7ISF17	86		P14ISF25			P21ISF10	
37	P8ISF1	1 / 101 17	87		P14ISF26 - 27 - 28			P21ISF10	
38	P8ISF2	P8ISF1	88	P14ISF	1 14131 20 - 21 - 20			P21ISF11	
39	P8ISF3	P8ISF2	89	P15ISF2	P15ISE1			P21ISF12	
40	P9ISF1	1 0101 2	90	P15ISF3				P21ISF12	
40	P9ISF2	P9ISF1	91	P15ISF4				P21ISF13	P211SE12
41	P10ISF1		92	P15ISF5				P21ISF13	
42		P10ISF1	92		P15ISF10		142	P22ISF1	
44	P11ISF1		94		P15ISF11		144	P22ISF1	
44	P11ISF2		94		P15ISF12		144	P22ISF1	P22ISF1
45	P11ISF3		96		P15ISF13		145	P22ISF2	P22ISF2
40	P111SF3		90 97		P15ISF14		140	P22ISF3	P22ISF2 P22ISF2
47	P111SF4		97 98		P15ISF14		147	P22ISF3	P22ISF2 P22ISF2
40 49	P111SF5		90 99		P15ISF19 - 22		140	P22ISF3 P22ISF3	P22ISF2 P22ISF2
49 50	P111SF0		100	P15ISF25			149	P22ISF3	P22ISF2 P22ISF2
50	FIIIOF/		100	11010520	1 1010120	ונ	150	F2213F3	1 22101 2

#	Code	Predecessor	#	Code	Predecessor] [#	Code	Predecessor
15 1	P22ISF4	P22ISF3	20 1	P22ISF2 9	P22ISF27- 28		25 1	P33ISF- 2.5	
15 2		P22ISF3	20 2	P22ISF3 0	P22ISF28		25 2	P34ISF1	
15 3	P22ISF4	P22ISF3	20 3	P22ISF3 0	P22ISF28		25 3	P34ISF2	
15 4		P22ISF3	20 4	P22ISF3 1	P22ISF14- 27		25 4	P34ISF3	P34ISF1-2
15			20	P22ISF3	21		25		
5 15	P22ISF5	P22ISF3	5 20	3 P22ISF3	50010500		5 25	P34ISF4	P34ISF1-2-3
6 15	P22ISF6	P22ISF5	6 20	4 P22ISF3	P22ISF32		6 25	P34ISF5	P34ISF1-2-3
7 15	P22ISF6	P22ISF5	7 20	5 P22ISF3	P22ISF32		7 25	P34ISF6	P34ISF1-2-3-4-5
8 15	P22ISF6	P22ISF5	8 20	6 P22ISF3	P22ISF34		8 25	P34ISF7	P34ISF6
9 16	P22ISF6	P22ISF5	9 21	7 P22ISF3	P22ISF35		9 26	P34ISF8	P34ISF7
0	P22ISF7	P22ISF6	0	8 P22ISF3	P22ISF36		0 26	P34ISF9	P34ISF7-8
10 1 16	P22ISF7	P22ISF6	21 1 21	9 P22ISF4	P22ISF37		20 1 26	P34ISF10	P34ISF7-8 P34ISF1-2-3-4-5-6-7-8-9-
2	P22ISF7	P22ISF6	2	0	P22ISF38		2	P34ISF11	10
16 3	P22ISF8	P22ISF7	21 3	P22ISF4 1	P22ISF39	$\left \right $	26 3	P34ISF	
16 4	P22ISF8	P22ISF7	21 4	P22ISF			26 4	P35ISF4	P35ISF0
16 5	P22ISF9	P22ISF8	21 5	P23ISF1			26 5	P35ISF5	P35ISF4
16 6	P22ISF9	P22ISF8	21 6	P23ISF2			26 6	P35ISF6	P35ISF5
16 7	P22ISF9	P22ISF8	21 7	P24ISF1			26 7	P36ISF2	
16 8	P22ISF1 0	P22ISF8	21 8	P25ISF1			26 8	P37ISF1	
16 9	P22ISF1 0	P22ISF8	21 9	P25ISF2			26 9	P37ISF2	P37ISF1
17 0	P22ISF1 1	P22ISF10	22 0	P25ISF3			27 0	P37ISF3	P37ISF2
17 1	P22ISF1 2	P22ISF11	22 1	P25ISF4			27 1	P37ISF4	P37ISF3
17 2	P22ISF1 3	P22ISF12	22 2	P25ISF5			27 2	P37ISF5	P37ISF4
17	P22ISF1	-	22				27		
3 17	4 P22ISF1	P22ISF13	3 22	P26ISF1			3 27	P37ISF6	P37ISF5
4 17	5 P22ISF1	P22ISF14	4 22	P26ISF2			4 27	P37ISF7	P37ISF6
5 17	6 P22ISF1	P22ISF14	5 22	P27ISF1			5 27	P37ISF8	P37ISF7
6 17	7 P22ISF1	P22ISF4 P22ISF16-	6 22	P27ISF2			6 27	P37ISF9	P37ISF8
7 17	8 P22ISF1	17 P22ISF16-	7 22	P27ISF3			7 27	P37ISF10	P37ISF9
8 17	8 P22ISF1	17 P22ISF16-	8 22	P28ISF1			8 27	P37ISF11	P37ISF10
9 18	8 P22ISF1	17	9 23	P29ISF1			9 28	P38ISF8	
0	9 9 P22ISF2	P22ISF18	0 23	P29ISF2			20 0 28	P39ISF2	P39ISF1
1	0	P22ISF18	1	P30ISF1			1	P39ISF2	P39ISF1
18 2	P22ISF2 0	P22ISF18	23 2	P30ISF2	P30ISF1	$\left \right $	28 2	P39ISF3	P39ISF2
18 3	P22ISF2 0	P22ISF18	23 3	P30ISF3	P30ISF2		28 3	P39ISF3	P39ISF2
18 4	P22ISF2 0	P22ISF18	23 4	P30ISF4	P30ISF3		28 4	P39ISF4	P39ISF3
18 5	P22ISF2 0	P22ISF18	23 5	P31ISF2	P31ISF1		28 5	P39ISF5	P39ISF4
		·	·			• •			

18	P22ISF2		23			28		
6	1	P22ISF20	6	P31ISF3	P31ISF2	6	P39ISF6	P39ISF5
18	P22ISF2		23			28		
7	1	P22ISF20	7	P31ISF4	P31ISF3	7	P39ISF7	P39ISF6
18	P22ISF2		23			28		
8	1	P22ISF20	8	P32ISF1		8	P39ISF8	P39ISF7
18	P22ISF2		23			28		
9	1	P22ISF20	9	P32ISF2		9	P39ISF9	P39ISF3
19	P22ISF2		24			29		
0	2	P22ISF21	0	P32ISF		0	P39ISF10	P39ISF9
19	P22ISF2		24			29		
1	2	P22ISF21	1	P32ISF		1	P39ISF11	P39ISF10
19	P22ISF2		24			29		
2	3	P22ISF22	2	P33ISF1		2	P39ISF12	P39ISF3
19	P22ISF2		24			29		
3	3	P22ISF22	3	P33ISF2	P33ISF1	3	P39ISF13	P39ISF12
19	P22ISF2		24			29		
4	4	P22ISF23	4	P33ISF3	P33ISF2	4	P39ISF14	P39ISF13
19	P22ISF2		24			29		
5	5	P22ISF24	5	P33ISF4	P33ISF3	5	P39ISF15	P39ISF13
19	P22ISF2		24			29		
6	6	P22ISF25	6	P33ISF5	P33ISF4	6	P39ISF16	P39ISF14-15
19	P22ISF2	50010500	24		B	29	5.005.	
7	7	P22ISF26	7	P33ISF6	P33ISF5	7	P40ISF1	
19	P22ISF2	5001050/	24			29	5 4 4 4 5 5 4	
8	8	P22ISF21	8	P33ISF7	P33ISF6	8	P40ISF2	
19	P22ISF2		24	DODIOFO		29		D401054 0
9	8	P22ISF21	9	P33ISF8	P33ISF7	9	P40ISF3	P40ISF1-2
20	P22ISF2		25			30		D4018E1 2 2
0	8	P22ISF21	0	P33ISF9	P33ISF8	0	P40ISF4	P40ISF1-2-3

#	Code	Predecessor	#	Code	Predecessor	#	Code	Predecessor
30 1	P40ISF5	P40ISF1-2-3	35 1	P47ISF1	P47ISF0	40 1	P55ISFO T	
30 2	P40ISF6	P40ISF1-2-3-4-5	35 2	P47ISF1	P47ISF0	40 2	P56ISF1	P56ISF0
30 3	P40ISF7	P40ISF6	35 3	P47ISF2	P47ISF1	40 3	P56ISF2	P56ISF1
30 4	P40ISF8	P40ISF7	35 4	P47ISF2	P47ISF1	40 4	P56ISF3	P56ISF2
30 5	P40ISF9	P40ISF7-8	35 5	P47ISF3	P47ISF1	40 5	P56ISF4	P56ISF3
30 6 30	P40ISF1 0 P40ISF1	P40ISF7-8 P40ISF1-2-3-4-5-6-7-8-9-	35 6 35	P47ISF4	P47ISF1	40 6 40	P57ISF1	P57ISF0
30 7 30	1	10	35 7 35	P48ISF1		40 7 40	P57ISF2	P57ISF1
8 30	P41ISF1	P41ISF0	35 8 35	P49ISF1	P49ISF0	40 8 40	P57ISF3	P57ISF2
9 31	P41ISF2	P41ISF0	9 36	P50ISF1		9 41	P58ISF1	P58ISF0
0	P41ISF3		0 36	P50ISF2	P50ISF1	0	P58ISF2	P58ISF0
1 31	P41ISF4		1 36	P50ISF3		1 41	P58ISF3	P58ISF0
2 31	P41ISF5	P41ISF0	2 36	P50ISF4		2 41	P58ISF4	P58ISF0
3 31	P41ISF6		3 36	P50ISF5	P50ISF2-3	3 41	P58ISF5	P58ISF0
4 31	P42ISF1	P42ISF0	4 36	P50ISF6	P50ISF5	4 41	P58ISF6	P58ISF0
5 31	P42ISF2	P42ISF1	5 36	P50ISF7	P50ISF6	5 41	P58ISF7	P58ISF0
6 31	P42ISF2	P42ISF1	6 36	P50ISF8	P50ISF6	6 41	P58ISF8	P58ISF0
7 31	P42ISF3	P42ISF2	7 36	P50ISF9	P50ISF6	7 41	P58ISF9	P58ISF0
8 31	P42ISF4	P42ISF3	8 36	P50ISF10	P50ISF7	8 41	P59ISF1	
9 32	P42ISF4	P42ISF3	9 37	P50ISF11 P50ISFO	P50ISF8	9 42	P60ISF1	
0 32	P42ISF5	P42ISF2-4	0 37	T P50ISFO		0 42	P60ISF2	
1 32	P42ISF6	P42ISF5	1 37	T P50ISFO		1 42	P60ISF3	
2 32	P42ISF7	P42ISF6	2 37	T P50ISFO		2 42	P60ISF4	
3 32	P42ISF8	P42ISF6-7	3 37	T P50ISFO		3 42	P60ISF5	P60ISF1
4 32	P43ISF9 P43ISF1		4 37	T P50ISFO		4 42	P60ISF6	
5 32	0 P43ISF1		5 37	Т		5 42	P60ISF7	
6 32	0 P43ISF1		6 37	P51ISF6	P51ISF5	6 42	P60ISF8	
7 32	1 P43ISF1		7 37	P52ISF1	P52ISF0	7 42	P60ISF9	
8 32	1		8 37	P52ISF2	P52ISF0	8 42	P60ISF10	
9 33	P44ISF1	P44ISF0	9 38	P53ISF1	P53ISF0	9 43	P60ISF11	
0 33		P44ISF0	0 38	P53ISF2	P53ISF1	0 43	P60ISF11	
1 33	P44ISF3		1 38	P53ISF3	P53ISF2	1 43	P60ISF12	
2 33		P44ISF1,2,3	2 38	P53ISF4	P53ISF3	2 43	P60ISF12	
3 33	P44ISF5		3 38	P53ISF5	P53ISF0	3 43	P60ISF13	
4 33	P44ISF6	P44ISF5	4 38	P54ISF1	P54ISF0	4 43	P60ISF13	
5	P45ISF1	P45ISF0	5	P54ISF2	P54ISF0	5	P60ISF14	

33			38			43		
6	P45ISF2	P45ISF1	6	P54ISF3		6	P60ISF15	
33	D / - 10 - 0		38			43		5001051
7	P45ISF3	P45ISF2	7	P54ISF4		7	P60ISF15	P60ISF1
33 8		P45ISF3	38 8			43 8	P60ISF16	
° 33	P4015F4	P4515F3	о 38	P54ISF5		o 43	P0015F10	
9	P46ISF1		9	P55ISF1	P55ISF0	43 9	P60ISF18	
34	F4013F1		39	F 55151 1	F 33131 U	44	F00131 10	
0	P46ISF2	P46ISF1	0	P55ISF2	P55ISF1	0	P60ISF19	
34			39			44		
1	P46ISF3	P46ISF2	1	P55ISF3	P55ISF0	1	P60ISF20	
34			39			44		
2	P46ISF4	P46ISF3	2	P55ISF4	P55ISF3	2	P60ISF21	
34			39			44		
3	P46ISF5	P46ISF4	3	P55ISF5	P55ISF2,4	3	P60ISF22	
34	D 4010 E 0	D (0)055	39	DEFICE		44	50010500	
4	P46ISF6	P46ISF5	4	P55ISF5	P55ISF2,4	4	P60ISF23	
34 5	P46ISF7		39 5	P55ISF6	P55ISF2,4,5	44 5	P60ISF23	
34	F4013F7		39	F3513F0	F0018F2,4,0	44	F0013F23	
6	P46ISF8	P46ISF7	6	P55ISF7	P55ISF0	6	P60ISF24	
34	1 10101 0		39	1 00101 1	1 00101 0	44	1 00101 21	
7	P46ISF9	P46ISF8	7	P55ISF8	P55ISF7	7	P60ISF25	
34	P46ISF1		39			44		
8	0	P46ISF9	8	P55ISF9	P55ISF0	8	P60ISF26	
34	P46ISF1		39			44		
9	1	P46ISF10	9	P55ISF10	P55ISF8,9	9	P60ISF27	
35	P46ISF1		40			45		
0	2	P46ISF11	0	P55ISF11	P55ISF0	0	P60ISF27	

#	Code	Predecessor
451	P60ISF28	
452	P60ISF29	
453	P60ISF30	
454	P60ISF31	
455	P60ISF31	
456	P60ISF32	
457	P60ISF	
458	P61ISF1	
459	P61ISF2	
460	P61ISF3	
461	P61ISF4	
462	P62ISF1	
463	P62ISF2	
464	P62ISF3	
465	P62ISF4	
466	P63ISF1	P63ISF0
467	P63ISF2	P63ISF1
468	P63ISF3	P63ISF2
469	P63ISF4	P63ISF3
470	P63ISF5	P63ISF4
471	P63ISF6	P63ISF5
472	P63ISE7	P63ISF6
473	P63ISF8	P63ISF0
474	P63ISF9	P63ISF8
475	P63ISF10	P63ISF7,9
476	P63ISF11	P63ISF10
477	P63ISF12	P63ISF11
478	P63ISF13	P63ISF11
479	P63ISF14	P63ISF12
480	P63ISF15	P63ISF12
481	P63ISF16	P63ISF15
482	P63ISFOT	
483	P63ISFOT	
484	P64ISF1	
485	P64ISF2	
486	P64ISF3	
487	P64ISF4	
488	P64ISF5	
489	P64ISF6	
490	P64ISF7	
490	P64ISF8	
491	P64ISF9	
492	P64ISF10	
493 494	P64ISF10	
494	P64ISF11	
495 496	P64ISF12 P64ISF13	
496 497	P64ISF13 P65ISF1	
498	P65ISF2	
499	P65ISF3	
500	P65ISF4	

Qualifications of Workers

	ĺ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
		HASAN ÖZDEMIR	MEHMET DEMIREL	ALAATTİN CİNGÖZ	UĞUR SARIYARLIOĞLU	MUSTAFA ÖZ	ŠENOL YILMAZ	AYHAN ÜNAL	AHMET METIN	YASİN ÖZÖNAL	CAFER ÇİÇEK	YAKUP YILMAZ	SEDAT BAYRAM	HÜSEYİN OZAN	A. SITKI YILDIRIM	HAYDAR GÜLTEKİN	HASAN KOÇ	CAHIT ERDEN	BAYRAM ARSLAN	M.SEDAT KEMİKSİZ	NURULLAH YAVUZ	HASAN TÜRK	AHMET DEMIRCI	ERTUĞRUL YALINKILIÇ	MUSTAFA DEDEOĞLU	MİKAİL TARLABÖLEN	AHMET INCEKARA	RECEP ÖZMEN	SATILMIŞ KARABİBER	HARUN CAN	MURAT KOÇAK	BAHRİ ÖNAL	SADULLAH TÜRKEN	MEHMET MERT	NAİL BABAOĞLAN	MUSTAFA ÇELEBİ	MUHARREM ADIGÜZEL
1	P1ISF1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	P1ISF2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	P1ISF3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	P2ISF1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	P2ISF2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	P2ISF3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	P2ISF4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	P2ISF5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	P2ISF6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	P3ISF1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	P3ISF2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	P4ISF1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	P4ISF2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	P5ISF1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	P5ISF2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	P6ISF1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	P6ISF2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	P6ISF3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	P7ISF1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	P7ISF2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	P7ISF3	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	P7ISF4	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	P7ISF5	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	P7ISF6	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	P7ISF7	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	P7ISF8	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	P7ISF9	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28	P7ISF10	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29	P7ISF11	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	P7ISF12	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
31	P7ISF13	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	P7ISF14	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33	P7ISF15	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	P7ISF16	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	P7ISF17	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
36	P7ISF18	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
37	P8ISF1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38	P8ISF2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
39	P8ISF3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40	P9ISF1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
41	P9ISF2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
42	P10ISF1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
43	P10ISF2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
44	P11ISF1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45	P11ISF2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
46	P11ISF3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
47	P11ISF4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	P11ISF5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49	P11ISF6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50	P11ISF7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
51	P11ISF8	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
52	P11ISF9	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53	P11ISF10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
54	P11ISF11	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55	P11ISF12	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
56	P12ISF1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
57	P12ISF2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
58	P12ISF3	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
59	P13ISF1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
60	P13ISF2	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
61	P13ISF3	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
62	P13ISF4	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
63	P14ISF1	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	P14ISF2	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
65	P14ISF3	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
66	P14ISF4	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
67	P14ISF5	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
68	P14ISF6	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
69	P14ISF7	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70	P14ISF8	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
71	P14ISF9	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
72	P14ISF10	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
73	P14ISF11	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
74	P14ISF12	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
75	P14ISF19	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
76	P14ISF20	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
77	P14ISF21	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
78	P14ISF22	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
79	P14ISF23	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	P14ISF24	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
81	P14ISF24	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
82	P14ISF25	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
83	P14ISF25	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
84	P14ISF26	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
85	P14ISF27	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
86	P14ISF28	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
87	P14ISF29	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
88	P14ISF	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
89	P15ISF2	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
90	P15ISF3	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
91	P15ISF4	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
92	P15ISF5	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
93	P15ISF13	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
94	P15ISF14	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95	P15ISF15	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96	P15ISF16	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
97	P15ISF17	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
98	P15ISF18	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
99	P15ISF23	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	P15ISF26	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
101	P15ISF27	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
102	P15ISF28	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
103	P15ISF30	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
104	P15ISF31	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
105	P16ISF1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
106	P17ISF1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
107	P17ISF2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
108	P18ISF1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
109	P18ISF2	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
110	P18ISF3	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
111	P18ISF4	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
112	P18ISF5	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
113	P18ISF6	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
114	P19ISF1	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
115	P19ISF2	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
116	P19ISF3	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
117	P19ISF4	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
118	P19ISF5	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
119	P19ISF6	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	P20ISF1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
121	P21ISF1	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
122	P21ISF1	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
123	P21ISF2	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
124	P21ISF2	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
125	P21ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
126	P21ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
127	P21ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
128	P21ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
129	P21ISF5	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
130	P21ISF5	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
131	P21ISF7	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
132	P21ISF7	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
133	P21ISF8	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
134	P21ISF9	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
135	P21ISF10	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
136	P21ISF10	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
137	P21ISF11	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
138	P21ISF11	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
139	P21ISF12	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
140	P21ISF12	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
141	P21ISF13	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
142	P21ISF13	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
143	P22ISF1	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
144	P22ISF1	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
145	P22ISF2	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
146	P22ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
147	P22ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
148	P22ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
149	P22ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	P22ISF3	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
151	P22ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
152	P22ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
153	P22ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
154	P22ISF4	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
155	P22ISF5	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
156	P22ISF6	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
157	P22ISF6	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
158	P22ISF6	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
159	P22ISF6	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	P22ISF7	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
161	P22ISF7	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
162	P22ISF7	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
163	P22ISF8	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
164	P22ISF8	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
165	P22ISF9	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
166	P22ISF9	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
167	P22ISF9	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
168	P22ISF10	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
169	P22ISF10	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
170	P22ISF11	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
171	P22ISF12	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
172	P22ISF13	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
173	P22ISF14	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
174	P22ISF15	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
175	P22ISF16	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
176	P22ISF17	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
177	P22ISF18	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
178	P22ISF18	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
179	P22ISF18	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	P22ISF19	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
181	P22ISF20	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
182	P22ISF20	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
183	P22ISF20	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
184	P22ISF20	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
185	P22ISF20	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
186	P22ISF21	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
187	P22ISF21	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
188	P22ISF21	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
189	P22ISF21	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
190	P22ISF22	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
191	P22ISF22	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	P22ISF23	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
193	P22ISF23	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
194	P22ISF24	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
195	P22ISF25	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
196	P22ISF26	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
197	P22ISF27	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
198	P22ISF28	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199	P22ISF28	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	P22ISF28	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
201	P22ISF29	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
202	P22ISF30	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
203	P22ISF30	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
204	P22ISF31	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
205	P22ISF33	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
206	P22ISF34	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
207	P22ISF35	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
208	P22ISF36	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
209	P22ISF37	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	P22ISF38	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
211	P22ISF39	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
212	P22ISF40	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
213	P22ISF41	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
214	P22ISF	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
215	P23ISF1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
216	P23ISF2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
217	P24ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
218	P25ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
219	P25ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	P25ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
221	P25ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
222	P25ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
223	P26ISF1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
224	P26ISF2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
225	P27ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
226	P27ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
227	P27ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
228	P28ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
229	P29ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	P29ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
231	P30ISF1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
232	P30ISF2	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
233	P30ISF3	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
234	P30ISF4	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
235	P31ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
236	P31ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
237	P31ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
238	P32ISF1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
239	P32ISF2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	P32ISF	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
241	P32ISF	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
242	P33ISF1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
243	P33ISF2	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
244	P33ISF3	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
245	P33ISF4	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
246	P33ISF5	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
247	P33ISF6	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
248	P33ISF7	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
249	P33ISF8	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
250	P33ISF9	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
251	P33ISF-2.5	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
252	P34ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
253	P34ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
254	P34ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
255	P34ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
256	P34ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
257	P34ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
258	P34ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
259	P34ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
260	P34ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
261	P34ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
262	P34ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
263	P34ISF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
264	P35ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
265	P35ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
266	P35ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
267	P36ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
268	P37ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
269	P37ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	P37ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
271	P37ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
272	P37ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
273	P37ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
274	P37ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
275	P37ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
276	P37ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
277	P37ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
278	P37ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
279	P38ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
280	P39ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
281	P39ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
282	P39ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
283	P39ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
284	P39ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
285	P39ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
286	P39ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
287	P39ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
288	P39ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
289	P39ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
290	P39ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
291	P39ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
292	P39ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
293	P39ISF13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
294	P39ISF14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
295	P39ISF15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
296	P39ISF16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
297	P40ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
298	P40ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
299	P40ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
300	P40ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
301	P40ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
302	P40ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
303	P40ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
304	P40ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
305	P40ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
306	P40ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
307	P40ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
308	P41ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
309	P41ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
310	P41ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
311	P41ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
312	P41ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
313	P41ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
314	P42ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
315	P42ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
316	P42ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
317	P42ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
318	P42ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
319	P42ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
320	P42ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
321	P42ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
322	P42ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
323	P42ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
324	P43ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
325	P43ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
326	P43ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
327	P43ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
328	P43ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
329	P44ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
330	P44ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
331	P44ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
332	P44ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
333	P44ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
334	P44ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
335	P45ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
336	P45ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
337	P45ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
338	P45ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
339	P46ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
340	P46ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
341	P46ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
342	P46ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
343	P46ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
344	P46ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
345	P46ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
346	P46ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
347	P46ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
348	P46ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
349	P46ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
350	P46ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
351	P47ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
352	P47ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
353	P47ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
354	P47ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
355	P47ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
356	P47ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0
357	P48ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
358	P49ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
359	P50ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
360	P50ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
361	P50ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
362	P50ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
363	P50ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
364	P50ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
365	P50ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
366	P50ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
367	P50ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
368	P50ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
369	P50ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
370	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
371	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
372	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
373	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
374	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
375	P50ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
376	P51ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
377	P52ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
378	P52ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
379	P53ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
380	P53ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
381	P53ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
382	P53ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
383	P53ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
384	P54ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
385	P54ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
386	P54ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
387	P54ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
388	P54ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
389	P55ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
390	P55ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
391	P55ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
392	P55ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
393	P55ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
394	P55ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
395	P55ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
396	P55ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
397	P55ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
398	P55ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
399	P55ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
400	P55ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
401	P55ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
402	P56ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
403	P56ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
404	P56ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
405	P56ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
406	P57ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
407	P57ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
408	P57ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
409	P58ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
410	P58ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
411	P58ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
412	P58ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
413	P58ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
414	P58ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
415	P58ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
416	P58ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
417	P58ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
418	P59ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
419	P60ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
420	P60ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
421	P60ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
422	P60ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
423	P60ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
424	P60ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
425	P60ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
426	P60ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
427	P60ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
428	P60ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
429	P60ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
430	P60ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
431	P60ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
432	P60ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
433	P60ISF13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
434	P60ISF13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
435	P60ISF14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
436	P60ISF15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
437	P60ISF15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
438	P60ISF16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
439	P60ISF18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
440	P60ISF19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
441	P60ISF20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
442	P60ISF21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
443	P60ISF22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
444	P60ISF23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
445	P60ISF23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
446	P60ISF24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
447	P60ISF25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
448	P60ISF26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
449	P60ISF27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
450	P60ISF27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
451	P60ISF28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
452	P60ISF29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
453	P60ISF30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
454	P60ISF31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
455	P60ISF31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
456	P60ISF32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
457	P60ISF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
458	P61ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
459	P61ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
460	P61ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
461	P61ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
462	P62ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
463	P62ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
464	P62ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
465	P62ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
466	P63ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
467	P63ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
468	P63ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
469	P63ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
470	P63ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
471	P63ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
472	P63ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
473	P63ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
474	P63ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
475	P63ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
476	P63ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
477	P63ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
478	P63ISF13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
479	P63ISF14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
480	P63ISF15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
481	P63ISF16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
482	P63ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
483	P63ISFOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
484	P64ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
485	P64ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
486	P64ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
487	P64ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
488	P64ISF5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
489	P64ISF6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
490	P64ISF7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
491	P64ISF8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
492	P64ISF9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
493	P64ISF10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
494	P64ISF11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
495	P64ISF12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
496	P64ISF13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
497	P65ISF1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
498	P65ISF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
499	P65ISF3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
500	P65ISF4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Worker Requirements of Tasks

2 F 3 F 4 F 5 F 6 F	P1ISF1 P1ISF2 P1ISF3	2	51		Req.								
3 F 4 F 5 F 6 F			01	P11ISF8	1	1	101	P15ISF27	1	1	51	P22ISF4	1
4 F 5 F 6 F		1	52	P11ISF9	1	1	102	P15ISF28	1	1	52	P22ISF4	1
5 F 6 F	гного	1	53	P11ISF10	2	1	103	P15ISF30	1	1	53	P22ISF4	1
6 I	P2ISF1	1	54	P11ISF11	1	1	104	P15ISF31	1	1	54	P22ISF4	1
	P2ISF2	1	55	P11ISF12	1	1	105	P16ISF1	1	1	55	P22ISF5	1
	P2ISF3	1	56	P12ISF1	1		106	P17ISF1	1		56	P22ISF6	1
7 6	P2ISF4	2	57	P12ISF2	1		107	P17ISF2	1		57	P22ISF6	1
	P2ISF5	1	58	P12ISF3	1		108	P18ISF1	1		58	P22ISF6	1
	P2ISF6	2	59	P13ISF1	1		109	P18ISF2	1		59	P22ISF6	1
	P3ISF1	1	60	P13ISF2	1		110	P18ISF3	1		60	P22ISF7	1
	P3ISF2	1	61	P13ISF3	1		111	P18ISF4	1		61	P22ISF7	1
	P4ISF1	1	62	P13ISF4	2		112	P18ISF5	1		62	P22ISF7	1
	P4ISF	1	63	P14ISF1	2		113	P18ISF6	1		63	P22ISF8	1
	P5ISF1	1	64	P14ISF2	1		114	P19ISF1	1		64	P22ISF8	1
	P5ISF2	1	65	P14ISF3	1		115	P19ISF2	1		65	P22ISF9	1
	P6ISF1	1	66	P14ISF3	1			P19ISF3	1		66	P22ISF9	1
		1	67	P14ISF4 P14ISF5			116		1				
	P6ISF2 P6ISF3		-	P14ISF5 P14ISF6	1		117	P19ISF4 P19ISF5			67 68	P22ISF9 P22ISF10	1
-		1	68		1		118		1		68 60		1
	P7ISF1	1	69	P14ISF7	1		119	P19ISF6	1		69 70	P22ISF10	1
	P7ISF2	1	70	P14ISF8	1		120	P20ISF1	1		70	P22ISF11	1
	P7ISF3	1	71	P14ISF9	1		121	P21ISF1	1		71	P22ISF12	1
	P7ISF4	1	72	P14ISF10	1		122	P21ISF1	1		72	P22ISF13	1
	P7ISF5	1	73	P14ISF11	1		123	P21ISF2	1		73	P22ISF14	1
	P7ISF6	1	74	P14ISF12	1		124	P21ISF2	1		74	P22ISF15	1
	P7ISF7	1	75	P14ISF19	1		125	P21ISF3	2		75	P22ISF16	1
	P7ISF8	1	76	P14ISF20	1		126	P21ISF3	1		76	P22ISF17	1
	P7ISF9	1	77	P14ISF21	2		127	P21ISF4	1		77	P22ISF18	1
	P7ISF10	1	78	P14ISF22	1		128	P21ISF4	1		78	P22ISF18	1
	P7ISF11	1	79	P14ISF23	1	1	129	P21ISF5	1		79	P22ISF18	1
	P7ISF12	1	80	P14ISF24	1		130	P21ISF5	1		80	P22ISF19	1
31 F	P7ISF13	1	81	P14ISF24	1	1	131	P21ISF7	1	1	81	P22ISF20	1
32 F	P7ISF14	1	82	P14ISF25	1	1	132	P21ISF7	1	1	82	P22ISF20	1
33 F	P7ISF15	1	83	P14ISF25	1	1	133	P21ISF8	1	1	83	P22ISF20	1
34 F	P7ISF16	1	84	P14ISF26	1	1	134	P21ISF9	1	1	84	P22ISF20	1
35 F	P7ISF17	1	85	P14ISF27	1	1	135	P21ISF10	1	1	85	P22ISF20	1
36 F	P7ISF18	1	86	P14ISF28	1	1	136	P21ISF10	1	1	86	P22ISF21	1
37 F	P8ISF1	1	87	P14ISF29	1	1	137	P21ISF11	1	1	87	P22ISF21	1
38 F	P8ISF2	1	88	P14ISF	1	1	138	P21ISF11	1	1	88	P22ISF21	1
39 F	P8ISF3	1	89	P15ISF2	2	1	139	P21ISF12	1	1	89	P22ISF21	1
40 F	P9ISF1	1	90	P15ISF3	1	1	140	P21ISF12	1	1	90	P22ISF22	1
41 F	P9ISF2	1	91	P15ISF4	1	1	141	P21ISF13	1	1	91	P22ISF22	1
42 F	P10ISF1	1	92	P15ISF5	1	1	142	P21ISF13	1	1	92	P22ISF23	1
43 F	P10ISF2	1	93	P15ISF13	1	1	143	P22ISF1	1	1	93	P22ISF23	1
44 F	P11ISF1	1	94	P15ISF14	1	1	44	P22ISF1	1	1	94	P22ISF24	1
45 F	P11ISF2	1	95	P15ISF15	1	1	145	P22ISF2	1	1	95	P22ISF25	1
	P11ISF3	1	96	P15ISF16	1		146	P22ISF3	1		96	P22ISF26	1
	P11ISF4	2	97	P15ISF17	1		147	P22ISF3	1		97	P22ISF27	1
	P11ISF5	1	98	P15ISF18	1		148	P22ISF3	1		98	P22ISF28	1
	P11ISF6	1	99	P15ISF23	1		149	P22ISF3	1		99	P22ISF28	1
	P11ISF7	1	100	P15ISF26	1		150	P22ISF3	1		00	P22ISF28	1

#	Code	Req.	#	Code	Req.	#	Code	Req.	#	Code	Req.
201	P22ISF29	1	251	P33ISF- 2.5	1	301	P40ISF5	1	351	P47ISF1	1
201	P22ISF30	1	252		2	302	P40ISF6	1	352	P47ISF1	1
202	P22ISF30	1	253		1	303	P40ISF7	1	353	P47ISF2	1
200	P22ISF31	1	254	P34ISF3	1	304	P40ISF8	1	354	P47ISF2	1
204	P22ISF33	1	255		1	305	P40ISF9	1	355	P47ISF3	1
200	P22ISF34	1	256		1	306	P40ISF10	1	356	P47ISF4	1
200	P22ISF35	1	257	P34ISF6	1	307	P40ISF11	1	357	P48ISF1	1
208	P22ISF36	1	258		1	308	P41ISF1	1	358	P49ISF1	1
200	P22ISF37	1	259		1	309	P41ISF2	1	359	P50ISF1	2
210	P22ISF38	1	260		1	310	P41ISF3	1	360	P50ISF2	1
211	P22ISF39	1	261	P34ISF10	1	311	P41ISF4	2	361	P50ISF3	1
212	P22ISF40	1	262		1	312	P41ISF5	1	362	P50ISF4	1
213	P22ISF41	2	263	P34ISF	1	313	P41ISF6	1	363	P50ISF5	1
214	P22ISF	1	264	P35ISF4	1	314	P42ISF1	1	364	P50ISF6	1
215	P23ISF1	1	265		1	315	P42ISF2	1	365	P50ISF7	1
216	P23ISF2	1	266		1	316	P42ISF2	1	366	P50ISF8	1
217	P24ISF1	1	267	P36ISF2	1	317	P42ISF3	1	367	P50ISF9	1
217	P25ISF1	1	268		1	318	P42ISF4	1	368	P50ISF10	1
210	P25ISF2	1	269		1	319	P42ISF4	1	369	P50ISF11	1
219	P25ISF3	1	209		1	320	P42ISF5	1	370	P50ISFOT	1
220	P25ISF4	2	270	P37ISF4	1	321	P42ISF6	1	371	P50ISFOT	1
221	P25ISF5	2	271		1	322	P42ISF7	1	371	P50ISFOT	1
222	P26ISF1	1	272	P37ISF6	1	323	P42ISF8	1	372	P50ISFOT	1
223	P26ISF2	1	273	P37ISF7	1	323 324	P42ISF9	1	373	P50ISFOT	1
224	P27ISF1	1	274		1	324 325	P43ISF10	1	374	P50ISFOT	1
225	P27ISF2	1	275		1	326	P43ISF10	1	375	P51ISF6	1
220	P27ISF3	1	270	P37ISF10	1	320 327	P43ISF10	1	370	P52ISF1	1
227	P28ISF1	1	278	P37ISF11	1	328	P43ISF11	1	378	P52ISF1	1
229	P29ISF1	1	279	P38ISF8	1	329	P44ISF1	1	379	P53ISF1	1
230	P29ISF2	1	280	P39ISF2	1	330	P44ISF2	1	380	P53ISF2	1
231	P30ISF1	1	281	P39ISF2	1	331	P44ISF3	1	381	P53ISF3	1
232	P30ISF2	1	282		1	332	P44ISF4	1	382	P53ISF4	1
233	P30ISF3	1	283	P39ISF3	2	333	P44ISF5	1	383	P53ISF5	1
234	P30ISF4	1	284	P39ISF4	1	334	P44ISF6	2	384	P54ISF1	1
235	P31ISF2	1	285	P39ISF5	1	335	P45ISF1	1	385	P54ISF2	1
235	P31ISF3	1	286		1	336	P45ISF2	1	386	P54ISF3	1
230	P31ISF4	1	287		1	337	P45ISF3	1	387	P54ISF4	1
238	P32ISF1	1	288		1	338	P45ISF4	1	388	P54ISF5	1
239	P32ISF2	1	289		1	339	P46ISF1	1	389	P55ISF1	1
240	P32ISF	1	200		1	340	P46ISF2	1	390	P55ISF2	1
240	P32ISF	1	291		1	341	P46ISF3	1	391	P55ISF3	1
242	P33ISF1	1	291		1	342	P46ISF4	2	392	P55ISF4	1
242	P33ISF2	1	292		1	343	P46ISF5	1	393	P55ISF5	1
243	P33ISF2	1	293		1	343 344	P46ISF6	1	393 394	P55ISF5	1
244	P33ISF4	1	294		1	345	P46ISF7	1	394	P55ISF6	1
245	P33ISF5	1	295		1	345 346	P46ISF8	1	395 396	P55ISF0 P55ISF7	1
240	P33ISF5 P33ISF6		290			340 347	P46ISF6 P46ISF9		396 397	P55ISF7 P55ISF8	
247	P33ISF6 P33ISF7	1	297		1	348	P46ISF9 P46ISF10	1		P55ISF6 P55ISF9	1
240 249	P33ISF7 P33ISF8	1	290		1	340 349	P46ISF10 P46ISF11	1	398 399	P55ISF9 P55ISF10	1
		1			1			1			1
250	P33ISF9	1	300	P40ISF4	1	350	P46ISF12	1	400	P55ISF11	1

#	Code	Req.	#	Code	Req.
401	P55ISFOT	1	451	P60ISF28	1
402	P56ISF1	1	452	P60ISF29	1
403	P56ISF2	1	453	P60ISF30	1
404	P56ISF3	1	454	P60ISF31	1
405	P56ISF4	1	455	P60ISF31	1
406	P57ISF1	1	456	P60ISF32	1
407	P57ISF2	1	457	P60ISF	2
408	P57ISF3	1	458	P61ISF1	1
409	P58ISF1	1	459	P61ISF2	1
410	P58ISF2	1	460	P61ISF3	1
411	P58ISF3	1	461	P61ISF4	1
412	P58ISF4	1	462	P62ISF1	1
413	P58ISF5	1	463	P62ISF2	1
414	P58ISF6	2	464	P62ISF3	1
415	P58ISF7	2 1	465	P62ISF4	1
_	P58ISF8	1			1
416		-	466	P63ISF1	
417	P58ISF9	1	467	P63ISF2	1
418	P59ISF1	1	468	P63ISF3	2
419	P60ISF1	1	469	P63ISF4	1
420	P60ISF2	1	470	P63ISF5	1
421	P60ISF3	1	471	P63ISF6	1
422	P60ISF4	1	472	P63ISF7	1
423	P60ISF5	1	473	P63ISF8	1
424	P60ISF6	1	474	P63ISF9	1
425	P60ISF7	1	475	P63ISF10	1
426	P60ISF8	1	476	P63ISF11	1
427	P60ISF9	1	477	P63ISF12	1
428	P60ISF10	1	478	P63ISF13	1
429	P60ISF11	1	479	P63ISF14	1
430	P60ISF11	1	480	P63ISF15	1
431	P60ISF12	1	481	P63ISF16	1
432	P60ISF12	1	482	P63ISFOT	1
433	P60ISF13	1	483	P63ISFOT	1
434	P60ISF13	1	484	P64ISF1	1
435	P60ISF14	1	485	P64ISF2	1
436	P60ISF15	1	486	P64ISF3	1
437	P60ISF15	1	487	P64ISF4	1
438	P60ISF16	1	488	P64ISF5	1
439	P60ISF18	1	489	P64ISF6	1
440	P60ISF19	1	490	P64ISF7	1
441	P60ISF20	1	491	P64ISF8	1
442	P60ISF21	1	492	P64ISF9	1
443	P60ISF22	1	493	P64ISF10	1
444	P60ISF23	1	494	P64ISF11	1
445	P60ISF23	1	495	P64ISF12	1
446	P60ISF24	1	496	P64ISF13	1
447	P60ISF25	1	497	P65ISF1	1
448	P60ISF26	1	498	P65ISF2	1
449	P60ISF27	1	499	P65ISF3	1
450	P60ISF27	1	500	P65ISF4	1

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Karabak, Funda Nationality: Turkish (TC) Date and Place of Birth: 04.01.1987 / Zonguldak Maritual Status: Single Phone: 0 (534) 669 80 37 E-mail: <u>fkarabak@cankaya.edu.tr</u>

EDUCATION

Degree	Institution	Year of Graduate
MS	Çankaya University/Industrial Engineering	2012
BS	Çankaya University/Industrial Engineering	2009
High School	Zonguldak Atatürk Anadolu High School	2004

WORK EXPERIENCE

Year	Place	Enrollment
2009-present	Çankaya University/Deparment of Industrial Engineering	Expert
2008 July	Alfa Kazan A.Ş.	Intern Engineering Student
2007 July	MKE Gazi Fişek Fabrikası	Intern Engineering Student

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

 Karabak F., Güner N.D., Satır B., Kandiller L. and Gürsoy İ. "An Optimization Model for Worker Assignment of a Mixed Model Vehicle Production Assembly Line Under Worker Mobility", Proceedings of the 41st International Conference on Computers & Industrial Engineering, 483-490, 2011.