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1Abstract—DWT-SVD is a frequency domain based
eigenanalysis watermarking technique. In this work, we
improve this method by exploring the relationship between the
cover image’s DWT singular values and those of the
watermark. We show that, via the usage of curve fitting and
robust regression, it is possible to achieve accurate results. We
also demonstrate that the improved scheme is suitable for the
watermarking of astronomy images. In addition to encoding
and decoding examples, statistical results on stealth and
robustness are deduced from the experiments so that the clear
advance can be observed. Quality of the watermark is
measured by testing against various attack types.

Index Terms—Watermarking; discrete wavelet transforms;
eigenvalues and eigenfunctions; curve fitting.

I. INTRODUCTION

Digital watermarking has a wide area of application. The
most important one of these is copyright security; a secret
message is embedded into the media so that the owner
knows it stands as a signature. For the battle against piracy
and for the management of media tracking, it is impossible
to neglect the benefit of information hiding [1]–[5].

The domain of visual watermarking is classified into two
types. The first one is the obvious one where the pixels
reside; spatial domain. The second one is the frequency
domain, where we embed the secret message into the
frequency coefficients obtained via an analysis of the cover
image. Discrete Wavelet Transform (DWT) and Discrete
Cosine Transform (DCT) are examples of the state-of-the-
art frequency domain analysis. In basic DWT embedding,
the visual watermark is hidden into the wavelet coefficients
of the cover image [6]–[10]. That is, coefficients are
modified by using the intensity values of the watermark. In
DWT-SVD embedding, singular values of the frequency
coefficients are modified by using the singular values of the
visual watermark. In this work, we focus on the
improvement of DWT-SVD technique [11].

Although the central technique DWT is somehow old, its
modified and upgraded versions, that is, strengthened ways
of frequency domain analysis via SVD or other
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transformations, are still in the field of active research [12],
[13]. Moreover, even DWT itself is engineered in more
articulated techniques [14], which is a proof of the solid
state of this classical algorithm. Variants such as DCT are
also up-to-date base selections for implementations of
watermarking [15].

Influenced by [10], we have derived a technique which
will be explained as follows: in II.A base theoretical tools,
in II.B and II.C extensions such as curve fitting are noted.
Overall scheme development and experiment details are
given in II.D, II.E, respectively.

II. IMPROVEMENT OF DWT-SVD
Our aim at this work was to establish an improvement of

DWT-SVD [10], [11], [14] via an additional analysis on
singular values. For this, we utilized curve fitting and robust
regression. Thus, the derived technique can be summarized
as DWT-SVD-CF-RR (DSCR). The ideal advance of a
watermarking scheme must be in both robustness and
stealth. Robustness is the ’strength’ measure of the encoding
to a range of attacks. Stealth, on the other hand, is the
transparency of the hidden message; this is essential for the
overall commercial quality of the modified image.

Before carrying out the experiments, our main idea was
this: what if one embeds an approximation of watermark
singular values as a function of the cover DWT singular
values rather than directly using the initial (original) ones?
This corresponds to a more consistent modification since the
same function is used for the band’s all singular values; the
resulting sequence is retrieved by a well-defined single
variable function. On the other hand, since an approximation
is used, the connection to the watermark is almost retained.
Hence, our initial guess was that the final PSNR value of the
encoded image should be higher than that of the standard
DWT-SVD’s output and the correlation values of the
decoded singular values should have a tolerable distance to
those of the standard strategy. After experiments, we have
seen that, both PSNR values and correlation measurements
were better.

A. DWT-SVD
Assume that we have a 2n × 2n cover and an n × n
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watermark image.
1) Embedding

1. Apply DWT and get subbands LL, LH, HL and HH.
2. Apply SVD to the watermark image and get

T
w w wU Σ V . wΣ is a diagonal matrix containing the

singular values
1w ,

2w ,  ...,
nw . wU and wV are

orthogonal matrices.
3. For i-th sub band apply SVD and get the
decomposition T

i i iU Σ V . Make this for all i = 1, 2, 3, 4,
where i =1, 2, 3, 4 corresponds to indices of LL, LH, HL
and HH respectively.
4. Modify the subbands as  i  α T

i i w iU Σ Σ V , where αi
is a scaling factor. That is, modify the singular values of i-
th subband as

1 1 2 2
  ,    ,  ...,    

n ni i w i i w i i w          

and apply inverse SVD transform.
5. Apply inverse transform to the subbands to get the
watermarked image.
2) Extraction

1. Apply DWT to the input image *I and get subbands
LL, LH, HL and HH.
2. For i-th subband apply SVD and get the decomposition
U Σ* * * T

i i i  V   . Make this for all i = 1, 2, 3, 4, where i = 1,
2, 3, 4 corresponds to LL, LH, HL and HH respectively.  

3. Find the constructed singular values  *    /
j ji w i  

for j = 1, 2, ..., n.  
4. Output the visual watermark as T

w wU Σ Vc
w where Σc

w
is a diagonal matrix containing the values

 *    /
j ji w i   for j=1, 2, ..., n.   

B. Curve Fitting
Assume that we have m points
      1 1 2 2, ,  , ,  ,  ,  m mx y x y x y . What we do at (least-

squares) curve fitting is to find a d degree polynomial

  1
1 1 1 0    , d d

d df x a x a x a x a
    (1)

such that   2
1

1
     ( )  

m
i i

i
f x y


 is minimized. We formulated

curve fitting for the LL band as follows: for a given degree

d , find  1f x such that    2
1 1

1
(   )  

i i

n
w

i
f  


 is

minimized. Hence, we fit a polynomial of LL band singular
values to approximate the singular values of the watermark.

C. Robust Linear Regression
Ordinary Least Squares (OLS) is formulized as follows:

given X , y matrices where the dimensions are n × D and

n × 1 respectively, find D × 1 dimensional matrix β = β̂
such that

Xβ  y, (2)

is minimized. That is, we model the relationship between an

input vector x and a target value y in the form of a linear
function characterized by β, where the prediction ŷ is
evaluated as


1 1 2 2        ,   D Dy x x x     (3)

so that the total distance of the estimated values to the actual
ones are minimized.

While modeling via OLS, we do not take the weights of
the samples into account. If we do it, the result is a new
formulation which contains the analysis of outliers and
leverage points; Weighted Least Squares (WLS). Outliers
are points that are not fitted very well by the linear model
(i.e. points having large residuals), whereas leverage points
are those outlying in the x-space [3]. Since the weight
assigning procedure is dependent to residuals and residuals
are calculated at each iteration, weighting is done iteratively.
Robust Regression can be summarized as solving

1 21 2
1

   (     )  ,   
D

n j
i i i i Di

i
argmin w y x x x  


  β (4)

at each j-th iteration. Weighting is done according to the
residuals of the last fit

1 1 1ˆ ,     j j jr y  y y Xβ (5)

and the leverage matrix

  1
.


 T TH X X X X (6)

D. Scheme
Assume that we have a 2n×2n cover and an n×n

watermark image.
1) Embedding

Given  1 2 3 4,  ,  ,  , t      , s = ” 1 2 3 4s s s s ”, d 
where i are the scaling factors of DWT- SVD, t is the
tuning constant of robust regression, s is a binary string (i.e.

'  { 0 , '1'}is  and 1d  is the degree of the curve fitting
polynomial.

1. Apply DWT and get subbands LL, LH, HL and HH.
2. Apply SVD to the watermark image and get

T
w w wU Σ V . wΣ is a diagonal matrix containing the

singular values
1w ,

2w , ...,
nw , wU and wV are

orthogonal matrices.
3. For i-th subband apply SVD and get the decomposition

T
i i iU Σ V . Make this for all i = 1, 2, 3, 4, where i = 1, 2,

3, 4 corresponds to indices of LL, LH, HL and HH
respectively.
4. Find the polynomial fitting function f1 of degree d,
where the input set is

      1 1 2 21 1 1  ,  ,  ,  ,  ,   , 
n nw w w      , i.e. fit a function

of singular values of the LL band with the output values
of the watermark’s singular values.
5. For  2, 3, 4i if '1'is  , use robust regression to find

a least-squares approximation if on
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      1 1 2 2
  ,  ,  ,  ,  ,   , 

n ni w i w i w      . i.e. if 2 '1's  ,

utilize robust regression on the singular values 2 j
 of the

LH band to find  2 2  
j jwf   . Similarly, if 3 '1's  ,

utilize robust regression on the singular values 3 j
 of the

HL band to find  3 3 j jwf   . If 4 '1's  , follow the

same route for the HH band.
6. Fit a fusion model F based on multi-dimensional
robust regression to exploit the relationship between input

vectors         1 1 2 2 3 3 4 4,  ,  ,     
j j j j

f f f f    and the

output values
jw Of course, this is for the case

"1111"s  . If, for instance, "1011"s  , we would use

      1 1 3 3 4 4,   ,    
j j j

f f f   .

7. If '0 'is  , modify the corresponding subband as

 iα T
i i w iU Σ Σ V , (as in II.A.1). Otherwise modify it

as  iα T
i i iU Σ Σ Vif

w   where  Σ ifw  stands for the the

diagonal matrix consisting the singular value

approximations       1 2
,   ,  , 

nI i I i i if f f   .

8. Apply inverse DWT transform to the subbands to get
the watermarked image.
2) Extraction

Extraction is almost the same as in II.A.2. An additional
step of fusion via F (II.D.1) is added. Say, we have

"1111"s  . (i.e. we utilize robust regression for all LH, HL,
HH bands). If reconstructed singular values are

1 2 3 4,  ,  , 
j j j j

c c c c     
 

then we use F to find F
j (for j = 1, 2,

..., n). This means that, we have an alternative fusion

sequence of singular values  1 2,  ,  , F F F
n   .

3) Summary
Given the details of the embedding and extraction

routines, the overall algorithm can be summarized as
follows:

1. Given the input and watermark images, calculate DWT
transformations.
2. For input and watermark images:

a. Calculate SVD of each subband.
3. Express the input singular values in terms of the
watermark singular values via a curve fitting or a robust
regression analysis.
4. Follow the regular DWT-SVD steps except the direct
embedding of the cover eigenvalues.
5. Strengthen the stealth and the robustness by switching
the on-off status of subband eigenvalue modification.

E. Experiments
1) Implementation

All code for experiments are written in MATLAB. Given
an image and DWT scaling factors  1 2 3 4,  ,  ,     , we

found optimal d , t and s . Optimality is calculated in

terms of PSNR (stealth) and mean Pearson correlation value
(robustness) under a range of attacks. We started with

"1111"s  , tried several values for t and d , only if an
improvement – a greater PSNR of the encoded image and a
higher mean correlation value – couldn’t be found, we
modified s gradually; we first tried "1110"s  , later

"1101"s  . and so on. Here, s is of length 4 for the sake of
convenience; we never omitted curve fitting –
approximation embedded in LL band – modification.
Choosing the high- PSNR values of the original DWT-SVD
algorithm, we set 1 0.05  , 2 = 3 = 4 = 0.005. We
used bisquare weighting and the same t for all robust
regression steps.

Reported mean correlation and PSNR values are obtained
when DSCR got a better result compared to DWT-SVD, i.e.
these are not the best values, albeit the superior outcome.

2) Astronomy Images
This work started with an application-driven idea of

implementing a visual watermark algorithm to the domain
of astrophotography. We used Hubble Site [4] for the
dataset of images.

Examples of deep sky images are shown in Fig. 1.
 Messier 101: a spiral galaxy (Fig. 1(a)). Estimated
number of stars it consists is about one trillion.  
 NGC 290: a star cluster in the Small Magellanic Cloud
(Fig. 1(b)).  
 Messier 74: also known as NGC 628, a spiral galaxy
slightly smaller than Milky Way (Fig. 1(c)). 
 LH 95: a star forming region of glowing hydrogen in the
Large Magellanic Cloud [3] (Fig. 1(d)).  
Using these images and performing a sequence of 10

attacks:  JPEG 75 (JPEG compression with quality 75),
JPEG 50 (JPEG compression with quality 50), JPEG 25
(JPEG compression with quality 25), Gaussian Noise (with
0 mean and 0.001 variance), Mean Filter (2-D filter mean
filter), Resize (512x512  256x256  512x512 bilinear
resizing), Rotation (20 degrees), Histogram Equalization
(Contrast enhancement via histogram equalization),
Intensity Adjustment (Intensity interval [0, 0.8] mapped to
[0, 1]), Gamma Correction (Intensity adjustment with
gamma = 1).

On the encoded image, we measured PSNR and mean
correlation. Each correlation value is recorded as in [9], i.e.
by taking the highest of all bands (including the fusion result
2.4.1). Differing from [1], we used mean correlation as a
final robustness metric

1

1 ( , ),
N

i
corr

N 
 i wλ λ (7)

where iλ and wλ  are the i-th reconstructed singular value
vector (from the i-th attacked image) and the visual water-
mark’s singular value vector, respectively. corr is Pearson
correlation function.

For NGC 290, the original, encoded and decoded images
can be seen in Fig. 2. Detailed results for M101, NGC 290,
M74 and LH 95 can be seen in Table I.
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(a) (b)

(c) (d)
Fig. 1. Deep sky images [4]: a) M101; b) NGC 290; c) M74; d) LH 95.

(a) (b)

4
(c)                                                    (d)

Fig. 2. Embedding & Extraction for NGC 290: (a) NGC 290; (b) encoded
(PSNR =37.6242); (c) watermark; (d) decoded.

TABLE I.  DEEP SKY RESULTS

Image DSCR
PSNR

DSCR
MC d t s DS

PSNR
DS
MC

M101 37.5286 0.9614 9 0.1 11 00 37.4955 0.9613

NGC
290 37.6242 0.8511 9 2.0 11 11 37.4955 0.7988

M74 37.5769 0.9219 8 0.7 11 10 37.4956 0.9219

LH 95 37.5996 0.8890 8 0.1 11 11 37.4955 0.8640

Note: DS: Original DWT-SVD; DSCR: DWT-SVD with Curve-Fitting and Robust
Regression; MC: Mean correlation; d: Degree of the DSCR polynomial-fitting; t:
Tuning constant for DSCR robust regression; s: Binary string of DSCR (2.D.1).

Hence, we have an improvement of DWT-SVD via curve-
fitting and robust regression for each astronomy image. The

most striking result is obtained on NGC 290, where we have
an obvious advance especially in terms of robustness: a
boosted mean correlation value of 0.8511.

3) Classical Images
From the following results, one can easily see that, the

proposed technique is not a specialized- for-deep-sky
strategy. In this section we demonstrate DSCR embedding
on well-known image processing data
(https://homepages.cae.wisc.edu/~ece533/images/).

(a) (b)

(c)                                                    (d)
Fig. 3. Embedding & extraction for Goldhill: (a) goldhill; (b) encoded
(PSNR = 37.6144); (c) watermark; (d) decoded.

For Goldhill, the original, encoded and decoded images
can be seen in Fig. 4.  Detailed results for Airplane,
Baboon, Boat, Goldhill, Barbara, Lenna and Watch are
shown in the Table II.

TABLE II. RESULTS.

Image DSCR
PSNR

DSCR
MC d t s DS PSNR DS

MC
Airplane 37.6101 0.8589 9 0.1 11 11 37.4955 0.8129
Baboon 37.6234 0.8035 9 0.1 11 11 37.4955 0.7621

Boat 37.6221 0.8331 9 0.4 11 11 37.4955 0.7930
Goldhill 37.6244 0.8932 8 0.1 11 11 37.4956 0.8331
Barbara 37.6217 0.8210 8 0.4 11 11 37.4955 0.8050
Lenna 37.6230 0.8801 9 3.5 11 11 37.4956 0.8712
Watch 37.6229 0.8815 9 1.7 11 11 37.4955 0.8550

III. CONCLUSIONS

In this work, an idea based on  expressing the set of
watermark singular values by functions of the cover image’s
DWT domain singular values is implemented. Since such an
approximation enforces a more consistent transform on the
cover image’s DWT singular values, a higher PSNR value is
obtained. Moreover, together with the utilization of a two-
level robust regression, a boosting of the mean correlation
value is achieved. Obviously, one can find more
sophisticated ways of fusing the components, e.g. through
Support Vector Regression, albeit the thematic
concentration on iterative reweighted least-squares of this
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scheme.
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