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Abstract
We present a set of restrictions on the fractional differential equation x(α)(t) = g(x(t)),
t ≥ 0, where α ∈ (0, 1) and g(0) = 0, that leads to the existence of an infinity of
solutions (a continuum of solutions) starting from x(0) = 0. The operator x(α) is the
Caputo differential operator.
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1 Introduction
The issue of multiplicity for solutions of an initial value problem that is associated to some
nonlinear differential equation is essential in the modeling of complex phenomena.
Typically, when the nonlinearity of an equation is not of Lipschitz type [], there are only

a few techniques to help us decide whether an initial value problem has more than one
solution. As an example, the equation x′ = f (x) =

√
x ·χ(,+∞)(x) has an infinity of solutions

(a continuum of solutions [, p.]) xT (t) = (t–T)
 · χ(T ,+∞)(t) defined on the nonnegative

half-line which start from x() = . Here, by χ we denote the characteristic function of a
Lebesgue-measurable set.
An interesting classical result [, ], which generalizes the example, asserts that the

initial value problem

⎧⎨
⎩
x′(t) = g(x(t)), t ≥ ,

x() = x, x ∈R,
()

where the continuous function g :R →R has a zero at x and is positive everywhere else,
possesses an infinity of solutions if and only if

∫
x+

du
g(u) < +∞.

Recently, variants of this result have been employed in establishing various facts regard-
ing some mathematical models [, ]. In particular, if the function g is allowed to have
two zeros x < x while remaining positive everywhere else and

∫
x+

du
g(u)

< +∞,
∫ x– du

g(u)
= +∞,

then the problem () has an infinity of solutions (xT )T> such that limt→+∞ xT (t) = x.
Our intention in the following is to discuss a particular case of the above non-uniqueness

theorem in the framework of fractional differential equations. To the best of our knowl-
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edge, the result has not been established in its full generality yet for any generalized dif-
ferential equation. We mention at this point the closely connected investigation [].
In the last number of years, it became evident that differential equations of non-integer

order, also called fractionals (FDE’s), can capture better in models many of the relevant
features of complex phenomena fromengineering, physics or chemistry, see the references
in [–, , , , , , ].
Let us consider a function h ∈ C(I,R) ∩ C(I,R) with limt↘[t–αh′(t)] ∈ R for some

α ∈ (, ), where I = (, ]. The Caputo derivative of order α of h is defined as

h(α)(t) =


�( – α)
·
∫ t



h′(s)
(t – s)α

ds, t ∈ I,

where � is Euler’s function Gamma, cf. [, p.]. To have an idea about the eventual
smoothness of this quantity, we mention that by letting the function h′ be at least abso-
lutely continuous [, Chapter ] the (usual) derivative of h(α) will exist almost everywhere
with respect to the Lebesgue measurem onR, see [, p., Lemma .]. Further, we have
that

h(t) = h() +


�(α)

∫ t



h(α)(s)
(t – s)–α

ds, t ∈ I, ()

provided that h(α) is in L∞(m).
The initial value problem we investigate in this paper is

⎧⎨
⎩
x(α)(t) = g(x(t)), t ∈ I,

x() = ,
()

where the function g :R →R is continuous, g() =  and g(u) >  when u ∈ (, ]. Further
restrictions will be imposed on g to ensure that

∫
+

du
g(u) < +∞.

By means of (), we deduce that

x(t) =
∫ t


x′(s)ds

=


�(α)

∫ t




(t – s)–α

[


�( – α)

∫ s



x′(τ )
(s – τ )α

dτ

]
ds

and so the problem () can be recast as

⎧⎨
⎩
y(t) = g(

∫ t


y(s)
(t–s)β ds), t ∈ [, ],

y() = ,
()

where y = x(α), β =  – α and the (general) function g has absorbed the constant 
�(α) .

In the next section, we look for a family (yT )T>, with yT ∈ C([, ],R), of (non-trivial)
solutions to ().
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2 Infinitely many solutions to (4)
We start by noticing that the function f : [, ] → (, ) with the formula f (x) = +x

+x–β
=

 – –β

+x–β
is increasing. Introduce now the numbers δ and δ such that

f () =


 – β
> δ ≥ δ > f () =


 – β

. ()

Obviously, δ, δ ∈ (, ).
Set c ≤ c in (,+∞) and assume that

c · yδ ≤ g(y) ≤ c · yδ , y ∈ [, ]. ()

As a by-product,
∫ 
+

dy
g(y) ≤ c–

–δ
< +∞. Further, suppose that there exists c >  such that

∣∣g(y) – g(y)
∣∣ ≤ c

(min{y, y})–δ
· |y – y|, y, y ∈ (, ]. ()

The latter condition has been inspired by the analysis in [].
Introduce now the numbers Y,Y ≥  and T ∈ (, ) with

(Y + Y)( – T)–β <  – β ()

and

Y ≤ c ≤ c ≤ ( – β)Y –δ
 ()

and

k =
c

( – β)δ
·
(


Y

)–δ

< . ()

These will be used in the following for describing the solution yT .
Several simple estimates, of much help in the proof of our result, are established next.

Notice first that, via the change of variables s = T + u(t – T), we get

∫ t

T

(s – T)+ε

(t – s)β
ds = (t – T)+ε–β ·

∫ 



u+ε

( – u)β
du

= B( + ε,  – β)(t – T)+ε–β , ()

where ε ∈ (, ) and B represents Euler’s function Beta []. Also,

B( + ε,  – β) ≥
∫ 




u+ε

( – u)β
du ≥ 

+ε
·
∫ 




du
( – u)β

=
–(+ε–β)

 – β
≥ 

( – β)
()

and

B( + ε,  – β)≤
∫ 



du
( – u)β

=


 – β
. ()
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Now, returning to (), there exist ε, ε ∈ (, ), with ε ≥ ε, such that

f (ε) = δ ≥ δ = f (ε). ()

In particular,  – δ = –β

+ε–β
and, by means of (),

YB( + ε,  – β)( – T)+ε–β

+ YB( + ε,  – β)( – T)+ε–β < . ()

Taking into account () and (), we deduce that

Y –δ
 ≤ c

[


( – β)

]δ

≤ cB( + ε,  – β)δ ,

which leads to

Y ≤ c
[
YB( + ε,  – β)

]δ , ()

and, via (),

cB( + ε,  – β)δ ≤ c
( – β)δ

≤ c
 – β

,

which implies that

c
[
YB( + ε,  – β)

]δ ≤ Y. ()

Let the set Y ⊂ C([T , ],R) be given by the double inequality

Y(t – T)+ε ≤ y(t) ≤ Y(t – T)+ε , t ∈ [T , ], y ∈ Y . ()

Observe that, by means of (), (), (),

YB( + ε,  – β)(t – T)+ε–β ≤
∫ t

T

y(s)
(t – s)β

ds ()

and

Y(t – T)+ε ≤ c
[
YB( + ε,  – β)

]δ · (t – T)+ε

= c
[
YB( + ε,  – β)(t – T)+ε–β

]δ

≤ g
(∫ t

T

y(s)
(t – s)β

ds
)
. ()

Similarly, via (),

∫ t

T

y(s)
(t – s)β

ds≤ YB( + ε,  – β)(t – T)+ε–β ()
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and

g
(∫ t

T

y(s)
(t – s)β

ds
)

≤ c
[
YB( + ε,  – β)

]δ · (t – T)+ε

≤ Y(t – T)+ε .

In conclusion, the mapping t �→ g(
∫ t
T

y(s)
(t–s)β ds) is a member of Y whenever y ∈ Y . Also,

taking into account (), we deduce that the quantities y = YB( + ε,  – β)(t – T)+ε–β

from () and y = YB(+ε, –β)(t–T)+ε–β from () belong to [, ] as imposed in ().
We are now ready to state and prove our main result.

Theorem Assume that the nonlinearity g of () satisfies the restrictions (), (), (). Given
the numbers Y, Y, T subject to (), (), () and the set Y = Y(Y,Y,T) from (), the
problem () has a unique solution yT in Y .

Proof The operator O : Y → Y with the formula

O(y)(t) = g
(∫ t

T

y(s)
(t – s)β

ds
)
, y ∈ Y , t ∈ [T , ],

is well defined.
The typical sup-metric d(y, y) = supt∈[T ,] |y(t) – y(t)| provides the set Y with the

structure of a complete metric space.
Taking into account (), () and (), we get

∣∣O(y)(t) –O(y)(t)
∣∣

≤ c
[YB( + ε,  – β)(t – T)+ε–β ]–δ

·
∫ t

T

|y(s) – y(s)|
(t – s)β

≤ c
[
( – β)

Y

]–δ

· 
(t – T)–β

· d(y, y)
∫ t

T

ds
(t – s)β

= k · d(y, y), y, y ∈ Y .

The operator O being thus a contraction, its fixed point yT in Y is the solution we are
looking for. Notice that yT is identically null in [,T]. �

As an easily computed example, consider the initial value problem

⎧⎨
⎩
y(t) = c(

∫ t
T

y(s)√
t–s ds)

δ , t ∈ [T , ],

y(T) = ,
()

where c >  and δ ∈ (  ,

 ). Then, introducing Y >  such that c ·B(  , –δ–δ )

δ ·Y δ– = , the

problem () has the solution y(t) = Y (t–T)
δ

(–δ) throughout [T , ] which can be extended
as a C-function downward to .
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6. Bhalekar, S, Daftardar-Gejji, V, Băleanu, D, Magin, RL: Transient chaos in fractional Bloch equations. Comput. Math.

Appl. (2012). doi:10.1016/j.camwa.2012.01.069
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