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Abstract: The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations
about the Friedmann-Robertson-Walker (FRW) metric. The gauge conditions are determined
from the consistency conditions. The physical degrees of freedom of the model are obtained by
the symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge
variables in the Hamilton-Jacobi formalism is discussed.
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1 Introduction

The cosmological models which include the theory of a scalar field coupled to gravity have

recently played an important role. A transformation from a reparametrization-invariant

system to an ordinary gauge system was applied for deparametrizing cosmological mod-

els. In the path integral approach to false vacuum decay with the effect of gravity, there

remains an unsolved problem, called the negative mode problem. A conjecture was pro-

posed that there should be no supercritical supercurvature mode.This conjecture was

verified for a wide variety of tunneling potentials [1]. For the monotonic potential no
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negative modes were found about the Hawking-Turok instanton. For a potential with

a false vacuum the Hawking-Turok instanton was shown to have a negative mode for

certain initial data [2]

It was shown that the cosmological perturbations in the Lorentzian regime are related

to the cosmic microwave background radiation and large scale structure formation [3–5].

The unconstrained reduced action corresponding to the dynamics of scalar fluctuations

about the FRW background was obtained by applying Dirac’s method of singular La-

grangian systems [6, 7]. The results were applied to the negative mode problem in the

description of tunneling transitions with gravity [8]. There are several known methods

in obtaining and dealing with unconstrained quadratic action in terms of the physical

variables [4, 5, 9] in the theory of scalar field coupled to gravity in non-spatially flat FRW

Universe but the main problem appears at the quantum level [8]. For these reasons new

quantization methods as Hamilton-Jacobi method and the symplectic projector method

[10–13] should be applied on the theory mentioned above. By adding a surface term to

the action functional the gauge invariance of the systems whose Hamilton-Jacobi equation

is separable was improved [14].

The Hamilton-Jacobi formalism (HJ) based on Carathéodory’s idea [15] has gained a

considerable importance during the last decade due to its various applications to quanti-

zation of constrained systems [16].

However, some difficulties may occur for HJ in dealing with linear dependent con-

straints. The main problem comes from the construction of the canonical Hamiltonian.

Let us assume that the canonical Hamiltonian is a linear combination of two terms and

the second one is proportional to a given field having its momentum zero. After imposing

the integrability condition for that momentum we obtain a new constraint, therefore the

canonical Hamiltonian is a linear combination of two constraints. Therefore an interesting

and as yet unsolved question is how to deal with the total differential equations within

HJ in the above mentioned case. Another issue is related to the gauge fixing procedure

within HJ formalism. Can we find inside of HJ a mechanism to obtain the gauge fixing

condition? In order to analyze the above mentioned open problems we have to apply

the HJ formalism to a constrained system possessing linearly dependent constraints. For

these reasons the application of HJ formalism to cosmological perturbations in FRW

model with scalar field is an interesting issue.

The paper is organized as follows:

Section 2 briefly presents the HJ formalism. In Section 3 the gauge fixing conditions

of the investigated model are discussed inside the HJ formalism and the true degrees

of freedom are obtained within the symplectic projector method. Finally, Section 4 is

dedicated to our conclusions.

2 Hamilton-Jacobi formalism

HJ formalism presented in this paper is based on Carathéodory’s idea of equivalent La-

grangians [15]. This approach can be considered an alternative method of quantization
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of constrained systems and it was subjected to an intense debate during the last decade

(see Refs.[16–23] and the references therein). The starting point of this method is a sin-

gular Lagrangian L. In this approach we use the initial canonical Hamiltonian H0 and

all primary constraints denoted by H
′
α. Namely, the corresponding “Hamiltonians” are

H
′
α = pα + Hα(tβ, qa, pa), (1)

where α, β = n − r + 1, · · · , na = 1, · · · , n − r and the canonical one is given by

H0 = pawa + q̇μpμ |pν=Hν −L(t, qi, q̇ν , q̇a = wa), ν = 0, n − r + 1, · · · , n. (2)

Using (1) and (2) a set of total differential equations is obtained [15]

dqa =
∂H

′
α

∂pa
dtα, dpa = −∂H

′
α

∂qa
dtα, dpμ = −∂H

′
α

∂tμ
dtα, μ = 1, · · · , r (3)

together with the HJ function z, which is defined by

dz =

(
−Hα + pα

∂H
′
α

∂pα

)
dtα, (4)

where tα are gauge variables [15]. The next step is to investigate the integrability of the

system (3). On the surface of constraints the system of differential equations is integrable

if and only if the“Hamiltonians”H
′
α are in involution. If this condition is not fulfilled, then

another set of “Hamiltonians” arises and we subject them to the integrability conditions.

The process ends when no new “Hamiltonian” appears.

3 Gauge fixing conditions within HJ formalism

3.1 The model

The action of the system of scalar matter field coupled to gravity is given by

S =
∫

d4x
√−g

[
R

2k
− 1

2
∇μφ∇μφ − V (φ)

]
. (5)

Here k = 8πG represents the reduced Newton’s constant and the scalar potential field

is denoted by V (φ). By making an expansion of both the metric and the scalar field in

terms of a FRW type background we obtain [8]

ds2 = a(η)2
[
−(1 + 2A(η)Y )dη2 + 2B(η)Y|idηdxi

+{γij(1 − 2Ψ(η)Y ) + 2E(η)Y|ijdxidxj}
]
,

φ = ϕ(η) + Φ(η)Y. (6)

In (6) γij represents the three-dimensional metric on the constant curvature space sec-

tions, the background field values are denoted by a and φ respectively as well as A, Ψ, Φ,B.
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E represents small perturbations. In addition, Y denotes a normalized function of three

dimensional Laplacian, ΔY = −k2Y , and vertical line as a subscript denotes the co-

variant derivative with respect to γij. The Lagrangian corresponding to the total action

containing only the second order terms (see for more details Ref.[8]) is

L=
a2√γ

2k

[
−6Ψ

′2 + 2(k2 − 3K)Ψ2 + k
{
Φ

′2 − (a2 δ2V

δφδφ
+ k2)Φ2 + 6φ

′
Ψ

′
Φ
}

−
{
2kφ

′
Φ

′
+ 2ka2 δV

δφ
Φ + 12HΦ

′
+ 4(k2 − 3K)Ψ

}
A

−2(H′
+ 2H2 −K)A2

]
, (7)

where the prime denotes a derivative with respect to conformal time η, H = a
′

a
and

K denotes the curvature parameter taking the values 1,0,-1, for closed, flat and open

universes, respectively [8].

3.2 Hamilton-Jacobi analysis

From the Lagrangian density (7) we obtain the primary constraint as

ΠA = 0. (8)

From (8) we conclude that A is a gauge variable and that H
′
1 = ΠA represents a“Hamilto-

nian”. In the HJ formalism the starting point for this model involves two “Hamiltonians”,

namely H
′
1 and H

′
0 = p0 + HC which is given below

H
′
0 = p0 − k

12a2√γ
Π2

Ψ +
1

2a2√γ
Π2

Φ +
k

2
φ

′
ΠΨΦ

+ a2√γ[−k2 − 3K
k

Ψ2 +
1

2
(a2 δ2V

δφδφ
− 3

2
kφ

′2 + k2)Φ2]

+ A{φ′
ΠΦ −HΠΨ + a2√γ[(a2 δV

δφ
+ 3φ

′H)Φ +
2(k2 − 3K)

k
Ψ]}, (9)

where HC is the canonical Hamiltonian presented in [8].

The next step in HJ formalism is to obtain the total differential equations by using

(8) and (9). In our case we obtain the following set of total differential equations

dΨ = −kΠΨdτ

6a2√γ
+

k

2
φ

′
Φdτ − AHdτ, (10)

dΦ = (
Πφ

a2√γ
+ Aφ

′
)dτ, (11)

dΠΨ = 2a2√γ
k2 − 3K

k
Ψdτ − 2a2√γA(k2 − 3K)

k
dτ, (12)

dΠΦ = − ΠΦ

a2√γ
dτ − Aa2√γ(

a2δV

δφ
+ 3φ

′H)dτ

−a2(
δ2V

δφδφ
− 3

2
kφ

′2 + k2)Φdτ. (13)
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Taking into account (9) and the consistency condition

dΠA = 0, (14)

we get a new “Hamiltonian” denoted by H2. Namely, the form of H2 is given by

H2 = φ
′
ΠΦ −HΠΨ + a2√γ[(a2 δV

δφ
+ 3φ

′H)Φ +
2(k2 − 3K)

k
Ψ]. (15)

In order to close the chain the variation of H2 must be zero, otherwise a new constraint

will appear. By using (10), (11), (12) and (13), and after tedious calculations, we find

that if

A − Ψ = 0, ΠΨ = 0, (16)

then dH2 = 0 provided that A is given as a function of background fields,Φ and ΠΦ. We

mention that (16) is in agreement with the results presented in [8].

3.3 Physical Hamiltonian

For a system admitting only second class constraints φm(ζM) = 0, where ζM = (xa, pa),

M = 1, 2, . . . , 2N are the coordinates, the action of the symplectic projector (see Refs.

[10–13] and the references therein) defined as follows

ΛMN = δMN − JML δφm
δζL

Δ−1
mn

δφn
δζN

(17)

is to project ζM onto local variables on the constraint surface defined as

ζ�M = ΛMNζN . (18)

Here the matrix Δ−1
mn is the inverse of the matrix Δmn = {φm, φn} and JMN denotes

the symplectic two form.

The set of second class constraints corresponding to our model is given by

C1 = φ
′
ΠΦ + a2√γ[(a2 δV

δφ
+ 3φ

′H)Φ +
2(k2 − 3K)

k
Ψ]

C2 = ΠA, C3 = Πψ, C4 = A − Ψ. (19)

By using (19) we obtain the form of the matrix Δ as follows

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2
a2√γ(k2−3K)

k
0

0 0 0 −1

−2
a2√γ(k2−3K)

k
0 0 1

0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ(�x − �y). (20)
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The form of the matrix projector becomes

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −k
a2 δV

δφ
+3φ

′H
2(k2−3K)

0 0 − kφ
′

2a2√γ(k2−3K)
0

0 1 0 kφ
′

2a2√γ(k2−3K)
0 kφ

′

2a2√γ(k2−3K)

0 −k
a2 δV

δφ
+3φ

′H
2(k2−3K)

0 0 − kφ
′

2a2√γ(k2−3K)
0

0 0 0 0 0 0

0 0 0 −k
a2 δV

δφ
+3φ

′H
2(k2−3K)

1 −k
a2 δV

δφ
+3φ

′H
2(k2−3K)

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ(�x − �y). (21)

We observed that TrΛ = 2, therefore we have only two true physical degrees of freedom.

Let us introduce the phase space vector ξ with the following components

(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (A, Φ, Ψ, ΠA, ΠΦ, ΠΨ). (22)

By using (18) we obtain

ζ�1 = −k
(a2 δV

δφ
+ 3φ

′H)

2(k2 − 3K)
ξ2 − kφ

′

2a2√γ(k2 − 3K)
ξ5,

ζ�2 = ξ2 +
kφ

′

2a2√γ(k2 − 3K)
(ξ4 + ξ6),

ζ�3 = −k
(a2 δV

δφ
+ 3φ

′H)

2(k2 − 3K)
ξ2 − kφ

′

2a2√γ(k2 − 3K)
ξ5,

ζ�4 = 0,

ζ�5 = −k
(a2 δV

δφ
+ 3φ

′H)

2(k2 − 3K)
(ξ4 + ξ6) + ξ5,

ζ�6 = 0 . (23)

We observed that

ξ�1 = ξ�3 (24)

and

ζ�5 = −a2√γ

ϕ′ {ζ�2 (a2 δV

δφ
+ 3φ

′H) +
1

2(k2 − 3K)
ζ�1}, (25)

therefore only two physical variables ζ�1 , ζ
�
5 can be used as a starting point for the quan-

tization of the system. As it can be seen from (24) and (25) we obtain the same degrees

of freedom as in [8].

4 Conclusions

The integrability of HJ total differential equations is an open and attractive issue. In our

study we obtained the gauge conditions directly from the consistency conditions within
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the HJ formalism. This result is based on the fact that if the canonical Hamiltonian

represents a sum of two terms, the second one becomes another “Hamiltonian” in the HJ

formalism. In other words the canonical Hamiltonian represents a case of an irregular

Hamiltonian. If we set H3 = A − Ψ and H4 = ΠΨ we obtain four “Hamiltonians” in our

case. As it can be seen, the obtained “Hamiltonians” are not in involution, therefore the

systems corresponding to these“Hamiltonians” is not integrable. To make it integrable we

work on the surface of constraints and this way leads us to the same canonical Hamiltonian

from up to a constant.

The above result can be generalized to the case when the canonical Hamiltonian has

the form Hc = H0 + φ1H1 + · · · , φnHn, where the fields φ1, · · · , φn do not appear in any

“Hamiltonians” H1, · · · , Hn. In this case all φ1, · · · , φn are gauge variables and they can

be fixed after imposing the integrability conditions. In order to calculate the action we

have to find the linearly independent “Hamiltonians” possessing the physical significance

from the HJ point of view.

Since the set of four “Hamiltonians” is a second class typed in Dirac classifications the

symplectic projector method was used to obtain the true degrees of freedom of the model

under investigation. The results were found to be in agreement with those from [8].
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