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We investigate the existence and multiplicity of positive solutions for the nonlinear fractional dif-
ferential equation initial value problem Dα

0+u(t) + D
β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, where
0 < β < α < 1, Dα

0+ is the standard Riemann-Liouville differentiation and f : [0, 1]×[0,∞) → [0,∞)
is continuous. By using some fixed-point results on cones, some existence and multiplicity results
of positive solutions are obtained.

1. Introduction

Fractional differential equations have been subjected to an intense debate during the last few
years (see, e.g., [1–5] and the references therein). This trend is due to the intensive develop-
ment of the theory of fractional calculus itself and by the applications of such constructions
in various sciences such as physics, mechanics, chemistry, and engineering [5–15]. The frac-
tional differential equations started to be used extensively in studying the dynamical systems
possessing memory effect. Comprehensive treatment of the fractional equations techniques
such as Laplace and Fourier transform method, method of Green function, Mellin transform,
and some numerical techniques are given in [5, 7, 9] and the references therein. In classical
approach, linear initial fractional differential equations are solved by special functions [9, 16].
In some papers, for nonlinear problems, techniques of functional analysis such as fixed point
theory, the Banach contraction principle, and Leray-Schauder theory are applied for solving
such kind of the problems (see, e.g., [17–19] and the references therein). The existence of
nonlinear fractional differential equations of one time fractional derivative is considered
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in [6, 7, 9, 20]. Also, the existence and multiplicity of positive solutions to nonlinear Dirichlet
problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u(1) = 0, 1 < α ≤ 2, α ∈ R, (1.1)

where f : [0, 1] × [0,∞) → [0,∞) is continuous and Dα
0+ is the Riemann-Liouville differen-

tiation, have been reviewed by some authors (see e.g., [18–21] and the references therein).
In this paper, by using some fixed-point results, we investigate the existence and

multiplicity of positive solutions for the nonlinear fractional differential equation initial value
problem

Dα
0+u(t) +D

β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, (1.2)

where 0 < β < α < 1, Dα
0+ is the standard Riemann-Liouville differentiation, and f : [0, 1] ×

[0,∞) → [0,∞) is continuous. Now, we present some necessary notions. The Riemann-
Liouville fractional integral of order α > 0 is defined by Iαf(t) := (1/Γ(α))

∫ t
0(t − τ)α−1f(τ)dτ

[20]. Also, the Riemann-Liouville fractional derivative of order α > 0 is defined by Dαf(t) :=
(1/Γ(n − α))(d/dt)n

∫ t
0(t − τ)n−α−1f(τ)dτ , where n = [α] + 1 and the right side is pointwise

defined on (0,∞) ([20]). The formula of Laplace transform for the Riemann-Liouville deriva-
tive is defined by

L
{
Dαf(t); s

}
= sαf̃(s)

m−1∑

k=0

[
DkIm−α

]
f(0+)sm−k−1 (1.3)

when the limiting values f (k)(0+) are finite and m − 1 < α < m. This formula simplifies
to L{Dαf(t); s} = sαf̃(s) [21]. Also, two-parametric Mittag-Leffler function is defined by
E(α,β)(z) =

∑∞
k=0 z

k/Γ(kα + β) for α > 0 and β > 0 [21]. Analytic properties and asymptotical
expansion of this function are given in [9]. For example, if α < 2, πα/2 < μ < min(π,πα), β ∈
R and c3 is a real constant, then |Eα,β(z)| ≤ c3/(1 + |z|), whenever |z| ≥ 0 and μ ≤ | arg z| ≤ π .
Also, by using the formula for integration of the Mittag-Leffler function term by term, we
have (see [9])

∫z

0
tβ−1Eα,β(λtα)dt = zβEα,β+1(λtα). (∗)

Let P be a cone in a Banach spaceE. Themap θ : P → [0,∞] is said to be a nonnegative
continuous concave functional whenever θ is continuous and θ(tx + (1 − t)y) ≥ tθ(x) + (1 −
t)θ(y) for all x, y ∈ P and 0 ≤ t ≤ 1 [20]. We need the following fixed point theorems for
obtaining our results.

Lemma 1.1 (see [22]). Let E be a Banach space, P a cone in E, and Ω1, Ω2 two bounded open balls
of E centered at the origin with Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \Ω1) → P is a completely con-
tinuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \Ω1).
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Lemma 1.2 (see [23]). Let P be a cone in a real Banach space E, c, b, and d positive real numbers,
Pc = {x ∈ P : ‖x‖ ≤ c}, θ a nonnegative concave functional on P such that θ(x) ≤ ‖x‖ for all x ∈ Pc

and

P(θ, b, d) = {x ∈ P : b ≤ θ(x), ‖x‖ ≤ d}. (1.4)

Suppose thatA : Pc → Pc is completely continuous and there exist constants 0 < a < b < d ≤ c such
that

(c1) {x ∈ P(θ, b, d) : θ(x) > b}/= ∅, and for some x ∈ P(θ, b, d) we have θ(Ax) > b,

(c2) ‖Ax‖ < a for all x with ‖x‖ ≤ a,

(c3) θ(Ax) > b for all x ∈ P(θ, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 such that ‖x1‖ < a, b < θ(x2), a < ‖x3‖ with
θ(x3) < b.

Note that the condition (c1) implies (c3) whenever d = c.

2. Main Results

As we know, there is an integral form of the solution for the following equation:

Da
0+u(t) +D

β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, (2.1)

Suppose that the functions u and f are continuous on [0, 1]. Then u(t) =
∫ t
0 G(t−τ)f(τ, u(τ))dτ

is a solution for (2.1), where G(t) = tα−1Eα−β,α(−tα−β) and Eα,β is the two-parameter function
of the Mittag-Leffler type (see [9]). Now, we give an equivalent solution for (2.1). In fact, if
we apply the Laplace transform to (2.1), then by using a calculation and finding the inverse
Laplace transform we get that u(t) = tα−1Eα−β,α(−tα−β) ∗ f(t, u(t)) is an equivalent solution for
(2.1). In this way, note that

Dαu(t) +Dβu(t) =
(
DαG(t) +DβG(t)

)
∗ f(t, u(t)), (2.2)

where G(t) = tα−1Eα−β,α(−tα−β). But, we have

DαG(t) +DβG(t) = t−1Eα−β,0
(
−tα−β

)
+ tα−β−1Eα−β,α−β

(
−tα−β

)

= Eα−β,0
(
−tα−β

)
− Eα−β,0

(
−tα−β

)
− 1

t

1
Γ
(
α − β

) .
(2.3)

Since limt→ 0(1/t)(1/Γ(α − β)) = δ(t), we get DαG(t) +DβG(t) = δ(t) and so

Dαu(t) +Dβu(t) = δ(t) ∗ f(t, u(t)) = f(t, u(t)). (2.4)

Now, we establish some results on existence and multiplicity of positive solutions for the
problem (2.1). Let E = (C[0, 1], ‖·‖∞) be endowed via the order u ≤ v if and only if u(t) ≤ v(t)
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for all t ∈ [0, 1]. Consider the cone P = {u ∈ E | u(t) ≥ 0} and the nonnegative continuous
concave functional θ(u) = inf1/2<t<1|u(t)|. Now, we give our first result.

Lemma 2.1. Define T : P → P by Tu(t) :=
∫ t
0 G(t−τ)f(τ, u(τ))dτ , whereG(t) = tα−1Eα−β,α(−tα−β)

and Eα,β(z) is the two-parameter function of the Mittag-Leffler type. Then T is completely continuous.

Proof. Since the mappings G and f are nonnegative and continuous, it is easy to see that T is
continuous. Now, we show that T is a relatively compact operator. This implies that T is com-
pletely continuous. Let Ω ⊂ P be a bounded subset. Then there exists a positive constant
M > 0 such that ‖u‖ ≤ M for all u ∈ Ω. Put L = sup0≤t≤1|f(t, u(t))| + 1. Then, for each u ∈ Ω,
we have

|Tu(t)| =
∣
∣
∣
∣
∣

∫ t

0
(t − τ)α−1Eα−β,α

(
−(t − τ)α−β

)
f(τ, u(τ))dτ

∣
∣
∣
∣
∣

≤ L
∣∣∣−tαEα−β,α+1

(
−tα−β

)∣∣∣ ≤ L

∣∣∣∣∣
−tα

1 +
∣∣−tα−β∣∣

∣∣∣∣∣
≤ Ltα ≤ L,

(2.5)

where 0 < α < 1 and t ∈ [0, 1]. Thus, T is uniformly bounded. Now, we show that T is equi-
continuous. Let t, τ ∈ [0, 1] and t1 ≤ t2. Thus,

|Tu(t1) − Tu(t2)|

=

∣∣∣∣∣

∫ t1

0
G(t1 − τ)f(τ, u(τ))dτ −

∫ t2

0
G(t2 − τ)f(τ, u(τ))dτ

∣∣∣∣∣

=

∣∣∣∣∣

∫ t1

0

(
G(t1 − τ)f(τ, u(τ)) −G(t2 − τ)f(τ, u(τ))

)
dτ +

∫ t1

t2

G(t2 − τ)f(τ, u(τ))dτ

∣∣∣∣∣

≤
∣∣∣∣∣

∫ t1

0

[
G(t1 − τ)f(τ, u(τ)) −G(t2 − τ)f(τ, u(τ))

]
dτ

∣∣∣∣∣
+

∣∣∣∣∣

∫ t1

t2

G(t2 − τ)f(τ, u(τ))dτ

∣∣∣∣∣
.

(2.6)

Now, by using the formula for integration of the Mittag-Leffler function term by term given
in (∗), we obtain that

|Tu(t1) − Tu(t2)|

≤ ∥∥f
∥∥

⎡

⎣

⎛

⎝ tα1

1 +
∣∣∣−tα−β1

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣
+

(t2 − t1)α

1 +
∣∣∣−(t2 − t1)α−β

∣∣∣

⎞

⎠

+

⎛

⎝ tα2

1 +
∣∣∣−tα−β2

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣
− (t2 − t1)α

1 +
∣∣∣−(t2 − t1)α−β

∣∣∣

⎞

⎠

⎤

⎦

=
∥∥f

∥∥

⎡

⎣
tα2

1 +
∣∣∣−tα−β2

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣

⎤

⎦ ≤ ∥∥f
∥∥

⎡

⎢
⎣

(
tα2 − tα1

) − tα2

(
t
α−β
2 − t

α−β
1

)
+ t

α−β
2

(
tα2 − tα1

)

(
1 +

∣∣∣−tα−β1

∣∣∣
)(

1 +
∣∣∣−tα−β2

∣∣∣
)

⎤

⎥
⎦.

(2.7)
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Thus, by using the formula ts2−ts1 = (t2−t1)/(ts−12 +· · ·+ts−11 ), we obtain a common factor (t1−t2).
This implies that small changes of u cause small changes of Tu. that is, T is equicontinuous.
Now by using the Arzela-Ascoli theorem, we get that T is a relatively compact operator.

Theorem 2.2. Suppose that in the problem (1.2) there exists a positive real number r > 0 such that

(A1) f(t, u) ≤ αr for all (t, u) ∈ [0, 1] × [0, r],

(A2) f(t, u) ≥ 0 for all t ∈ [0, 1] with u(t) = 0.

Then the problem (1.2) has a positive solution u such that 0 ≤ |u| ≤ r.

Example 2.3. Consider the nonlinear fractional differential equation initial value problem

D3/2u(t) +D1/2u(t) + u(t) + sin t = 0, u(0) = 0, (0 < t < 1). (2.8)

Put r = 2 and α = 3/2. Since f(t, u) = u(t)+sin t ≤ u+1 ≤ 3 = αr for all (t, u) ∈ [0, 1]×[0, 2] and
f(t, u) = u+ sin t ≥ 0 for all (t, u) ∈ [0, 1]× {0}, by using Theorem 2.2 we get that this problem
has a positive solution we get that this problem has a positive solution u with 0 ≤ ‖u‖ ≤ 2.

Proof. First, let us to consider the operator (Tu)(t) =
∫ t
0 G(t − τ)f(τ, u(τ))dτ , where G(t) =

tα−1Eα−β,α(−tα−β)(0 < β < α < 1). By using Lemma 2.1, T is completely continuous and note
that u is a solution of the problem (1.2) if and only if u = T(u). LetΩ1 = {u ∈ P : ‖u‖ = 0} and
Ω2 = {u ∈ P : ‖u‖u ∈ ∂Ω1} we have u(t) = 0 for all t ∈ [0, 1]. By using the assumption (A2),
we have

(Tu)(t) =
∫ t

0
G(t − τ)f(τ, u(τ))dτ ≥ 0 = ‖u‖ (2.9)

and so ‖Tu‖ ≥ ‖u‖. Also, for u ∈ ∂Ω2 we have 0 ≤ u(t) ≤ r for all t ∈ [0, 1]. By using the
assumption (A1) we have

‖Tu‖ = max
0≤t≤1

∫ t

0
G(t − τ)f(τ, u(τ))dτ ≤ αr

∫ t

0
(t − τ)α−1dτ = rtα ≤ r = ‖u‖. (2.10)

This completes the proof.

Theorem 2.4. Suppose that in the problem (2.1) there exist positive real numbers 0 < a < b < c such
that

(A1) f(t, u) < αa for all (t, u) ∈ [0, 1] × [0, a],

(A2) f(t, u) > Nb for all (t, u) ∈ [1/2, 1] × [b, c], where

N−1 = inf
1/2<t<1

∣∣∣∣∣

∫ t

0
G(t − s)ds

∣∣∣∣∣
, (2.11)

(A3) f(t, u) ≤ αc for all (t, u) ∈ [0, 1] × [0, c].
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Then the problem (2.1) has at least there positive solutions u1, u2, and u3 such that sup0≤t≤1|u1(t)| < a,
b < inf1/2≤t≤1|u2(t)| < sup1/2≤t≤1|u2(t)| ≤ c, a < sup0≤t≤1|u3(t)| ≤ c and inf1/2≤t≤1|u3(t)| < b.

Proof. Define Pc = {x ∈ P : ‖x‖ ≤ c}. Then, ‖u‖ ≤ c for all u ∈ Pc. Note that, the assumption
(A3) implies that f(t, u(t)) ≤ αc for all t. Thus,

‖Tu‖ = sup
0≤t≤1

∣
∣
∣
∣
∣

∫ t

0
G(t − τ)f(τ, u(τ))dτ

∣
∣
∣
∣
∣
≤ αc

∫ t

0
(t − τ)α−1dτ = αc

tα

α
= ctα ≤ c. (2.12)

Hence, T is a operator on Pc. Also, note that the assumption (A1) implies that f(t, u(t)) < αa
for all 0 ≤ t ≤ 1. Thus, the condition (c2) in Lemma 1.2 holds. It is sufficient that we show that
the condition (c1) in Lemma 1.2 holds. Put u(t) = (b + c)/2 for all 0 ≤ t ≤ 1. It is easy to see
that u(t) ∈ P(θ, b, c) and θ(u) = θ((b + c)/2) > b. Thus, {u ∈ P(θ, b, c) : θ(u) > b}/= ∅ and
so b ≤ u(t) ≤ c for all u ∈ P(θ, b, c) and 1/2 ≤ t ≤ 1. But, the assumption (A2) implies that
f(t, u(t)) ≥ Nb for all 1/2 ≤ t ≤ 1 and so

θ(Tu) = inf
1/2≤t≤1

|(Tu)(t)| = inf
1/2≤t≤1

∣∣∣∣∣

∫ t

0
G(t − τ)f(τ, u(τ))dτ

∣∣∣∣∣
> NbN−1 = b. (2.13)

Thus, θ(Tu) > b for all u ∈ P(θ, b, c). This shows that the condition (c1) in Lemma 1.2 holds.
This completes the proof.
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nonlinear differential equations with fractional time derivative,” Journal of Physics A, vol. 44, no. 5,
Article ID 055203, 2011.
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