

An Investigation of Software Development Process

Terminology.

Paul Clarke 1, 2, Antoni Lluís Mesquida Calafat 4, Damjan Ekert 5, J.J. Ekstrom 6,

Tatjana Gornostaja 7, Milos Jovanovic 4, Jørn Johansen 8, Antonia Mas 4, Richard

Messnarz 5, Blanca Nájera Villar 9, Alexander O’Connor 1, 3, Rory V. O’Connor 1, 2,

Michael Reiner 10, Gabriele Sauberer 9, Klaus-Dirk Schmitz 11, Murat Yilmaz 12

1 Dublin City University, Ireland; 2 Lero, the Irish Software Engineering Research Centre

3 ADAPT, The Global Centre of Excellence for Digital Content Technology

{paul.m.clarke, alexander.oconnor, rory.oconnor}@.dcu.ie

4 Universitat de les Illes Balears, Palma, Mallorca

{antoni.mesquida, antonia.mas, milos.jovanovic}@uib.es
5 ISCN, the International Software Consulting Network, Graz, Austria

{rmess, dekert}@iscn.com
6 Brigham Young University, Provo, UT, USA

jekstrom@byu.edu
7 Tilde Company, Riga, Latvia

tatjana.gornostaja@tilde.com
8 Whitebox Aps, Hørsholm, Denmark

jj@whitebox.dk
9 TermNet, the International Network for Terminology, Vienna, Austria

{gsauberer, bnajera}@termnet.org
10 European Certification and Qualification Association (ECQA), Krems, Austria

michael.reiner@fh-krems.ac.at
11 Technical University of Cologne, Germany

klaus.schmitz@th-koeln.de
12 Çankaya University, Ankara, Turkey

myilmaz@cankaya.edu.tr

Abstract. The practice of software development has evolved considerably in

recent decades, with new programming technologies, the affordability of

hardware, pervasive internet access and mobile computing all contributing to

the emergence of new software development processes. The newer process

initiatives, which include those which are sometimes referred to as agile or lean

methods, have brought with them new terms, which sometimes reflect the

introduction of novel concepts. Other times, new terms correspond to long

established concepts that have been repackaged. The net position is that we

have a proliferation of language and term usage in the software development

process domain, a problem which has implications for assessors and assessment

frameworks, and for the broader community. In this paper, we explore this

problem, finding that it is worthy of further research. Plus, we identify a

technique suited to addressing this concern: the establishment of a canonical

software process ontological model.

Keywords: Software Engineering, Software Development Process, Software

Development Roles, Specialised Communication, Terminology, Ontology.

1 Introduction

Software development is a complex activity [1] that is highly sensitive to human

interaction and team work [2]. We should therefore pay very careful attention to

human communication mechanisms, including language and terminology. The

concern of the authors of this paper is that we are perhaps not paying sufficient

attention to the area of language and terminology in software development, and in

particular our focus is on a potentially large, latent terminology problem concerning

software development activities and roles. That a terminology problem may exist in

our field ought not to come as any major surprise – our domain has witnessed rapid

expansion over the past thirty years, an expansion that has been fueled by innovation.

Such innovation is very welcome and a foundation for many of the advancements

witnessed, and with it comes diversity and innovation in use of language. It is for this

reason that we have iterations that are sometimes called sprints, team leaders that

might be considered to be ScrumMasters, use cases that some might confuse with

user stories, and reviews that some refer to as retrospectives. This type of drift in

terminology is not always accompanied by expansion of the underlying concepts and

therefore, it could be claimed that some new terminology is neither required nor

desirable.

The importance of systematic terminology work is of concern to many fields of

endeavour with the result that methods have been developed to help address issues

related to language diversity. One technique that can be employed to address issues of

terminology diversity is the grounding of a set of terms in a conceptual framework

called an ontology. An ontology sets out by first identifying the concepts of

importance to an area of interest, an important step as this can help to interrelate

terminology which has emerged in a field. Thus, the ontological focus is first on the

concepts or meanings of interest in a field and thereafter in the terms associated with

these meanings.

In this paper we briefly examine the scale of the terminological problem in software

development processes (Section 2) and introduce the methods of systematic

terminology concept-orientation (Section 3). Section 4 presents a discussion on the

implications of our initial research findings, with Section 5 containing the conclusion.

2 Software development language and terminology

A key question to ask in the early stages of any research effort is: Does the envisaged

problem appear worthy of research? Correspondingly, our primary work to date has

focused on just this question. Although our research remains at a nebulous stage, our

present findings indicate that there is problem regarding software process terminology

and that this problem extends into the identification of various software development

roles. In this position paper, we seek only to very broadly scope the problem such that

readers can gain an initial appreciation for the impact and nature of terminology drift

in the software development space. In undertaking our research, we have looked to

the early days of software development, seeking to identify the origin of some of the

central concepts and terminology in our field. This search, which is far from

complete, has rendered the view presented in Figure 1.

Fig. 1. Software Terminology Landscape – A process and role viewpoint

The software development process – or software process as it is sometimes

shortened - exists as a documented concept since at least the early 1960s [3]. More

recently, the agile software development community has opted for the term method to

identify the software process or aspects of the software process, though it has been

observed by one of the agile founding fathers that the terms method and methodology

should be replaced by the term agile software development ecosystems [4]. Perhaps

the inclination to describe the process as a method or methodology in the agile domain

emanates from the concept that the agile structure adopted should be of a barely

sufficient nature [4], containing only as much process as is beneficial, and therefore

the use of the term method or methodology sets the agile approach apart from more

comprehensive process elaborations – if this was the intention, then it could have

probably been satisfied just as well (and with less recourse to terminological debate)

through use of an alternative label, perhaps: agile software process. Whatever the

case, and whatever your process or method or methodology or ecosystem persuasion,

that such debate and deviation exists concerning the labelling of the domain itself is

indicative of intrinsic terminology issues in our field – if we cannot agree on the name

for the domain, it does not bode well for our ability to consistently apply terminology

in identifying concerns within the domain – including the roles involved in producing

software.

When it is considered that the term method has a long-established and very

specific meaning in programming [5], it could be suggested that it was unhelpful to

overload the term method when labelling an agile software development process.

Concerning the adoption of the term agile method, it may be the case that this

terminological divergence from the more traditional process term was considered

important by early agile innovators as a mechanism to distinguish the agile

development philosophy from its precursors. Central to this innovation is the degree

of agility enabled by agile methods, a point that is well made by Barry Boehm and

Richard Turner [6]. Though, on the subject of language, it is worth highlighting that

the juxtaposition of the terms Agility and Discipline in the title of Boehm and

Turner’s work is unfortunate as it carries with it the implicit suggestion that agile

software development is something that is not disciplined or which may not require

discipline (which of course is not the case, and which one suspects was not intended

by the authors). And this is not an issue that is evident only in Boehm and Turner’s

work – one of the primary advocates for agile software development, Jim Highsmith,

has employed an equally unsatisfactory juxtaposition when outlining the difference

between the two camps as balancing Flexibility and Structure [4]. Of course,

flexibility is not achieved through the removal of structure, rather it is achieved

through the adoption of structures that support flexibility – and one suspects that this

is a further instance of unintended language implications from the perspective of the

original author. So, all around we appear to have some lack of clarity with respect to

term usage and even a weak concept-to-language coupling, and this is something

which the authors consider to be leading to misunderstanding in our profession in

general, the full cost of which could be greater than many might expect.

Two concepts that appear to be central to many software development process

models are iterations and increments. Iterative software development, which is a core

feature of agile software development, is a not an invention of the agile movement

[7], and along with incremental development, it has been noted as beneficial for

software development since at least the 1960s [8], [9]. Indeed, some in our field may

be surprised to learn that the waterfall model [10] also caters for iterative

development – a fact which the authors suspect may be largely over looked in some

quarters. The basic point here is that the iteration and increment concepts are long

established in the software development domain. Yet, these concepts are not

necessarily immediately or intuitively obvious across all life cycle models – at least

not from a language and terminology perspective. Perhaps the most obvious example

is to be found in the term sprint. A Sprint is “an iterative cycle of development work”

[11] and as such, is essentially the same concept as an iteration (in Royce’s Waterfall)

or cycle (in Boehm’s Spiral [12]). One could therefore legitimately claim that a sprint

could have been described using existing terms - perhaps as a short iteration - and it

is not difficult to see how such language use would have benefited those hordes of

software developers already familiar with the term iteration. Even today, one suspects

that the exact relationship between a sprint and a traditional iteration is not entirely

clear to all in our field. Those outside our field could not be blamed for seeing no

relationship whatsoever from looking at the terminology employed.

Beyond the inconsistent use of terminology across various software development

processes, in recent times we have the added confusion that there would appear to be

an inreasing tendency to create new titles for individual actors (or software

development roles). In [13] we are told that “the ScrumMaster fills the position

normally occupied by the project manager” with the ScrumMaster responsible for

managing the Scrum process but not for the definition and management of the work

itself. However, it has been observed in some case studies that pure self-organisation

can be difficult to achieve in practice, with the theoretical disjoint between work

management and process management being difficult to realise in some Scrum

environments where teams may need a team member pushing the workload towards

completion [13], [14] or where the ScrumMaster may tend to naturally assume this

authority [15] (though it should be noted that [13] puts this issue down to a failure to

implement Scrum correctly). It is therefore the case, that at least in some cases, the

ScrumMaster may – even if incorrectly so – operate as a traditional project manager.

Advocates of Scrum have legitimised this role naming with the assertion that the

ScrumMaster needs to be distinguished from the traditional Software Project Manager

role (which has existed at least since the 1960s [16]), that their authority should

essentially be indirect, with their knowledge and policing of Scrum practices being

the limit of their power [13]. This being the case, the role of traditional process

manager (for which the following definition has been suggested: “to provide

information to specialise and instantiate the process model, and to activate and

monitor the execution of this instantiated model” [17] would appear to overlap greatly

with that of a ScrumMaster, thus questioning the need to introduce another new role

title. Even in rugby, from which Scrum claims to draw its inspiration in metaphor,

there is no such role as a ScrumMaster (there is a Scrum Half, who has varying

degrees of authority in terms of calling different pre-planned plays at different times).

So the software process terminology issue is broad, it is not just concerned with the

adoption of different terms for similar (or equivalent) concepts across different

software process models, it also extends to the terminology adopted for different roles

within software development teams.

Further examples of issues related to terminology may be found in the treatment of

software requirements, which may sometimes be referred to as requirements, other

times as use cases, other times again as user stories and features (and one expects

many other labels besides). With the passing of time, what was once the single

homogenous software requirements activity has come to be tackled using a variety of

different techniques. The term software requirements is in use at least as early as 1965

[18] and was quite possibly common parlance for some time prior to that point. Use

Cases can be adopted when gathering requirements and have been reported to have

“fulfilled the role of software requirements well” [19]. Within agile software

development there would appear to be a number of terms used for the purpose of

identifying software requirements, many of which appear to be related to the use case

concept. In Adaptive Software Development [20], the term feature is preferred with a

number of features constituting the scope (and a number of features may be required

in order to deliver a single piece of functionality). Feature Driven Development

(FDD) [21] adopts a similar convention, where features are small client-valued

functions that can be delivered in two weeks and where sets of features may be

utilised to deliver higher level complex functions. Consequently, on the evidence

accumulated in our cursory investigation, a significant research effort might be

required just to harmonise the current software requirements concepts and

terminology. The broader process terminology issue is certainly current and if

anything, our findings suggest that we may have a large and perhaps mostly latent

terminology problem – and to answer the question we set forth at the start of this

research: Does the envisaged problem appear worthy of research? Our conclusion,

based on early efforts, suggests that it is a problem worthy of further research.

3 Terminology and Ontology

In order to reduce a terminological problem, the common approach is to retrieve and

store already existing terms, approve definitions and, if necessary, coin new terms. It

is what the terminology science call systematic terminology work. In this case, we

propose applying this to software development process terminology. To address this

task, there is no need to start from scratch. As we have illustrated in Section 2, many

terms are already in use and, in some cases, may be confusing users. The first step

would be an assessment of the field of knowledge by identifying and evaluating the

preexisting related resources. For example, the ISO terminology about software

process, to be found in the official ISO Online Browsing Platform [22] or the

International Software Testing and Qualifications Board Glossary [23], just to

mention two examples. The reliability of such resources is a key factor while

retrieving information.

The role of the experts is essential in this process. The terminologist can only draft

the methodology for a successful terminology project. But the software process

engineers are the experts that have the knowledge to select the best term candidates,

draft definitions and validate relevant information. A study of the field of knowledge

will allow the collection of the concepts and terms of this specific field and, thus, to

develop a conceptual structure of the domain in the form of an ontology. This

ontology is essential to study the relations between concepts in order to reduce some

of the problems presented in Section 2.

An ontology is the collection of concepts and terms in a certain language in a

specific subject field, but also the formal, explicit (conceptual) models of object

ranges in a computational representation [24]. According to the ISO, a model of

product knowledge is achieved by a formal and consensual representation of the

concepts of a product domain in terms of identified characterization classes, class

relations and identified properties [25]. An ontology also gives an indication about the

degree of necessity of a prescriptive approach as it will show if there is proliferation

of terms for one concept, why this happens and which term candidate is the most

adequate in each case. The ontological approach will also set the path for the concept

orientation of the terminology database. It should be highlighted that there is no single

approach to ontology development that is universally applied, and that tooling can be

utilised in order to support the development task [26].

This ontology approach to the software process conceptual structure would also

help to delimit and clarify roles and tasks in the working environment. This can help

not just to harmonise existing resources but also to standardise curricula and skills for

professions related to knowledge-driven software development. The software process

community will directly benefit from a terminology database and ontology to guide

them through the terminology related to tasks, roles, competences and skills.

All this work would result in a much-needed, industry standard terminological

database with an ontology component for knowledge-driven holistic application

development. The existence of such a terminological database (or TermBase) would

facilitate lower friction, higher quality development in multi-party projects, and assist

in tacit knowledge maintenance as teams evolve, and ultimately can be a canonical

collection of the state-of-art terminology for the software development process that

could be used as lookup reference tool not only for experts and peers, but also for

new-comers in the community as well as laymen.

The effectiveness of ontologies in addressing terminology concerns has been

demonstrated to be effective in many fields [27] and given the type of findings

identified in Section 2, there are good reasons to consider its use in the software

development process space. In the following section, we present some discussion on

the implications of adopting ontology structures for the software process and software

development roles.

4 Discussion

In Section 2, we demonstrated that there is diversity in the use of language and

terminology in the software development process domain. This diversity has

accumulated over the decades, with various waves of process innovation often

introducing new terminology. For example, we highlighted the new terminology

introduced in the Scrum process [28], with ScrumMasters and Sprints seeming to

overlap heavily with the pre-existing concepts of Project/Process managers and

Iterations. It should not be inferred from the examples that we highlight in this work

that they originate from process models or approaches that might be considered

especially problematic from a terminology perspective. Rather, the examples

employed are often from some of the most important and impactful process

innovations (for example, Scrum, the Waterfall model and the Spiral model). Through

looking to some of the most impactful process models, we can also start to get some

indication of the depth and nature of the diversity of language, and in this case, our

finding is that a software professional familiar with Scrum may have difficulty

relating some Scrum terminology to the Waterfall model (and vice versa). Indeed,

when it is further considered that a wide variety of situational or environmental

factors inform process selection [29], that processes may be tailored for individual

project needs [30], and that the software process itself may be continually evolving

[31], [32], the problem of term usage is perhaps amplified – since a hybrid software

development process may further confuse language and terminology usage. Our

general impression is that there is a wide variety of different terminology adopted to

represent similar or overlapping concepts, and perhaps a lack of clarity with respect to

the salient concepts of concern across different software development efforts.

If we accept that diversity exists in software development process terminology –

and few, we suspect, would argue to the contrary – the debate shifts to examining the

scale of the diversity and its potential impact. Our initial research in this space

suggests that there may be a large degree of diversity in software development

process terminology and we plan further, more expansive, investigations to fully

evaluate the problem size. However, our initial standpoint is that the diversity of

terminology is a sizeable problem at present, with implications for many software

development projects. For large software development undertakings requiring

multiple suppliers, the absence of a common and cohesive understanding of scope,

roles and processes may prove to be a challenging and costly issue. All we have to do

is consider the case where one of the suppliers is working with a process that deals

with User Stories, Sprints and ScrumMasters. Meanwhile, a second supplier deals in

the different terminological currency of Requirements, Iterations and Project

Managers.

And this is not merely a problem of terminology, it is deeper than just that – it is

likely to be a problem whereby we have not as a community managed to render the

core concepts of our field in a universally digestible form (a form which must permit

the interaction of concepts from different process models and lifecycles in the first

instance, while the labels and terms adopted in individual process approaches would

ideally be related to concepts from different approaches). Added into this mix is the

further suspicion of the authors that there may even an issue concerning appropriate

levels of completeness of individual understandings of the various software

development process models that have been proposed. Anecdotal evidence from the

experience of the authors suggest that there may insufficiencies in understanding for

the models that do exist – with one example being the Waterfall model which it seems

may have become associated with single-pass, sequential software development in

some quarters, even though Royce’s original contribution in fact dedicates specific

attention to the need to utilize multiple iterations in software development (those

seeking clarification on this point should refer to [10]).

This problem of terminology diversity is not just manifested in large multiple-

supplier software projects, it may be a problem for the field in general. Each time a

company hires a new software developer, there is inevitably going to be some

distance between the newcomer’s personal dictionary of terms and the established

practice in the new company. Partly this is a problem of education both within the

educational sector and also personal professional development, but is also a problem

that is not assisted by the unfortunate reality that we do not presently have a single

canonical software development process ontology (incorporating roles) – and

therefore, associations between individual software development process models are

difficult to achieve. And this is not a problem that has gone entirely unnoticed in our

field, for example [33] has proposed an initial ontology for the purpose of ISO/IEC

Sub Committee 7 (SC7), a welcome contribution in the eyes’ of the authors. Our

proposal however is greater than just SC7 language and terminology concerns, we

seek to address the broader software engineering community, large swathes of which

have (at best) only loose interaction with software engineering standards.

Furthermore, we have established a cross disciplinary team of expertise that we feel is

essential to achieving the goal of our research to reduce the problem of unintended or

harmful terminological diversity in our field. This team includes software

development process expertise, terminological and ontological specialisms,

proficiency in knowledge management, and computational linguistics skills. With this

team, we seek to develop a canonical ontology for software development processes

which incorporates all major software development process lifecycles and associated

terminology, with the systematic community-led establishment of a commonly

accepted set of concepts and definitions for our field (based upon the many sources of

software process terminology that are presently in existence) and the enablement of

access to this knowledge store (either directly with queries or through published

APIs) through readily available channels (such as internet/cloud-based services).

For the software process assessment community, especially those who are

regularly engaged in process assessments, there can be a challenge when formulating

discussions with individuals and organizations in order to establish precisely the

extent to which a process is enacted, or to understand the boundary to individual roles

within companies. Therefore, the challenge of process assessment could potentially be

eased – if only slightly – through the introduction of mechanisms that might improve

the consistency of use of terminology related to software processes and roles such as

is proposed by the authors. A cautionary note should be registered concerning our

proposed undertaking though: it is neither small nor simplex. It is for this reason that

we have assembled a cross-disciplinary team and it is also the foundation of our

determination to pursue a community-led approach to the work program. This could

include, for example, engagement with relatively large numbers of software

development experts so as to systematically agree concepts, terms and definition.

Naturally, within individual software development approaches where clarity exists in

relation to software process terms, we would not seek to redefine individual terms –

but rather clearly identify their relationship to other process models. Finally, work of

the proposed nature requires many participants and many years, and therefore

substantial funding, the pursuit of which is ongoing.

5 Conclusion

In this paper, we have provided a brief snapshot of some of the terminology issues

that exist in contemporary software development. This snapshot suggests that there is

a large, complex and potentially very costly problem concerning the present

application of terminology to both processes and roles involved in software

development. This perceived problem does not have a quick or simple solution but

rather a solution will require the sustained engagement of multiple disciplines,

including terminology expertise, software development specialists, knowledge

management know-how, and computational linguistics. It should also be emphasised

that it would be a folly to attempt to eliminate the problem, but that the challenge is to

reduce the problem to more manageable proportions.

Our proposal is to systematically develop a canonical software development

process and roles ontology. In this proposed community-led work program, the

contributions of earlier working groups and process initiatives should not be

overlooked, but rather carefully incorporated so as to maximize the benefit of earlier

important work in this space. The resultant canonical ontology should be capable of

seamlessly integrating emerging and future software development lifecycles, and it

should comfortably accommodate the primary process models in active use, including

more recent innovations in agile and lean software development. Such an ontology

can be used in educational settings, in professional training programs, it may be

integrated into existing software tooling solutions, and also adopted by industrial

software developers. To draw analogy with an established programming practice, it

would in a sense represent a refactoring of the terminology and language usage in our

domain. A refactoring which, we suggest, is overdue and essential to future smooth

and professional operation of our field, including but not limited to those involved in

process assessment.

References

1. Clarke, P., O'Connor, R. V., Leavy, B.: A Complexity Theory viewpoint on the

Software Development Process and Situational Context. In: Proceedings of the

2016 International Conference on Software and System Process (ICSSP 2016),

IEEE, San Francisco, CA, USA (2016)

2. Yilmaz M., O’Connor, R. and Clarke, P.: A Systematic Approach to the

Comparison of Roles in the Software Development Processes. In: Proceedings

12th International Conference on Software Process Improvement and Capability

dEtermination, CCIS Vol. 290. Springer-Verlag, Heidelberg, Germany (2012)

3. Singleton, J.W.: Software design and implementation. System Development

Corporation, Santa Monica, CA (1963)

4. Highsmith, J.: What is Agile Software Development? Crosstalk – The Journal of

Defense Software Engineering, 15 (10), 4-9 (2002)

5. Cox, B.J.: Object-oriented programming -an evolutionary ‘Approach. 1st edn.

Addison-Wesley Inc., Reading, Mass. (1986)

6. Boehm, B., Turner, R.: Balancing agility and discipline - A guide for the

perplexed. Pearson Education Limited, Boston, Massachusetts, USA (2003)

7. Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero,

R., Williams, L., Zelkowitz, M.: Empirical Findings in Agile Methods. In:

Extreme Programming and Agile Methods — XP/Agile Universe 2002, pp. 197-

207. Springer, Berlin Heidelberg (2002)

8. Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief

History. IEEE Computer, 36 (6), 47-56 (2003)

9. Basili, V.R., Turner, A.J.: Iterative Enhancement: A Practical Technique for

Software Development. IEEE Transactions on Software Engineering, SE-1 (4),

390-396 (1975)

10. Royce, W.: Managing the development of large software systems: concepts and

techniques. In: Western Electric Show and Convention Technical Papers, IEEE

Computer Society, Los Alamitos, California, USA (1970)

11. Schwaber, K.: SCRUM Development Process. In: Business Object Design and

Implementation Workshop at the 10th Annual Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA 1995), Springer-

Verlag, Berlin / Heidelberg, Germany (1995)

12. Boehm, B.: A Spiral Model of Software Development and Enhancement. IEEE

Computer, 21 (5), 61-72 (1988)

13. Schwaber, K.: Agile project management with scrum. WP Publishers &

Distributors Pvt Limited (2004)

14. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of SCRUM Practices within a

Global Company. In: IEEE International Conference on Global Software

Engineering, 2008, pp. 222-226. IEEE, (2008)

15. Moe, N.B., Dingsoyr, T., Dyba, T.: Overcoming Barriers to Self-Management

in Software Teams. IEEE Software, 26 (6), 20-26 (2009)

16. Jones, M.M., McLean, E.: Management Problems in Large-Scale Software

Development Projects. Industrial Management Review, 11 1-15 (1970)

17. Conradi, R., Fernström, C., Fuggetta, A., Snowdon, R.: Towards a reference

framework for process concepts. In: Software Process Technology. Proceedings

of the second European Workshop, EWSPT '92, pp. 1-17. Springer, Berlin

Heidelberg (1992)

18. Bauer, W.F., Campbell, E.K.: Advanced naval tactical command and control

study (informatics report TR-65-58-2). 1st edn. Prepared for Advanced Warfare

Systems Division, Naval Analysis Group, Office of Naval Research by

Informatic Inc. (1965)

19. Kulak, D., Guiney, E.: Use cases: Requirements in context. 1st edn. Addison-

Wesley, Boston, MA (2004)

20. Highsmith, J.: Adaptive software development: A collaborative approach to

managing complex systems. Dorset House Publishing, New York, USA (2000)

21. Palmer, S.R., Felsing, J.: A practical guide to feature-driven development.

Prentice Hall, Upper Saddle River, New Jersey, USA (2002)

22. ISO, Online Browsing Platform, https://www.iso.org/obp/ui/#home

23. ISTQB, Standard Glossary of Software Testing Terms,

http://www.istqb.org/downloads/glossary.html

24. Budin, G.: Methodology for Dynamic Ontology Creation From Terminologies

to Ontologies – Tools of Knowledge Organization. In: Proceedings

of International Terminology Summer School 2009, TermNet, Cologne,

Germany (2009)

25. ISO: ISO 13584-32:2010 - industrial automation systems and integration -

OntoML: Product ontology markup language. 1st edn. ISO, Geneva,

Switzerland (2010)

26. Aardi, G., Falbo, R.d.A., Pereira Filho, J.G.: Using Objects and Patterns to

Implement Domain Ontologies. Journal of the Brazilian Computer Society, 8

(1), 43-56 (2002)

27. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,

H., Hübner, S.: Ontology-based Integration of Information - A Survey of

Existing Approaches. In: Proceedings of IJCAI-01 Workshop: Ontologies and

Information Sharing, pp. 108-117. Seattle, WA (2001)

28. Schwaber, K., Beedle, M.: Agile software development with SCRUM. Prentice

Hall, Upper Saddle River, New Jersey, USA (2002)

https://www.iso.org/obp/ui/#home
http://www.istqb.org/downloads/glossary.html

29. Clarke, P., O'Connor, R.V.: The Situational Factors that Affect the Software

Development Process: Towards a Comprehensive Reference Framework.

Journal of Information and Software Technology, 54 (5), 433-447 (2012)

30. Coleman, G., O'Connor, R.: Investigating Software Process in Practice: A

Grounded Theory Perspective. Journal of Systems and Software, 81 (5), 772-

784 (2008)

31. Clarke, P., O'Connor, R., Leavy, B., Yilmaz, M.: Exploring the Relationship

between Software Process Adaptive Capability and Organisational Performance.

IEEE Transactions on Software Engineering, 41 (12), 1169-1183 (2015)

32. Clarke, P., O'Connor, R.V.: An Empirical Examination of the Extent of

Software Process Improvement in Software SMEs. Journal of Software:

Evolution and Process, 25 (9), 981-998 (2013)

33. Henderson-Sellers, B., McBride, T., Low, G., Gonzalez-Perez, C.: Ontologies

for International Standards for Software Engineering. In: Proceedings of 32th

International Conference on Conceptual Modeling, ER 2013, Hong-Kong,

China, November 11-13, 2013. pp. 479-486. Springer Berlin Heidelberg, Berlin,

Heidelberg (2013)

