
ÇANKAYA UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

 MASTER THESIS

DETECTING LOCATION OF HIDDEN MESSAGES
ON DIGITAL IMAGES USING RS STEGANALYSIS METHOD

EFE ÇİFTCİ

JULY 2013

iii

ABSTRACT

DETECTING LOCATION OF HIDDEN MESSAGES

ON DIGITAL IMAGES USING RS STEGANALYSIS METHOD

ÇİFTCİ, Efe

M.Sc., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Reza HASSANPOUR

July 2013, 41 pages

Steganography is a branch of methods that deal with hiding information in cover

media. The result of the hiding process should resist detection by any means. To

detect the hidden information, several analysis methods have been developed (named

as steganalysis methods). Steganalysis of Regular and Singular Groups (RS) is a

method which aims to detect hidden information on digital images. This method is

helpful for estimating length of the hidden message but it does not find over which

section of the image the hidden message is. The aim of this thesis is to locate in

which part(s) of the image the message is hidden by utilizing this steganalysis

method and quadtree data structure.

Keywords: Steganography, Steganalysis, Quadtree

iv

ÖZ

RS STEGANALİZ YÖNTEMİ KULLANARAK SAYISAL GÖRÜNTÜLERDEKİ

GİZLİ İLETİLERİN KONUMUNUN TESPİT EDİLMESİ

ÇİFTCİ, Efe

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Yrd. Doç. Dr. Reza HASSANPOUR

Temmuz 2013, 41 sayfa

Steganografi, taşıyıcı ortamlar üzerine bilgi gizleme yöntemlerine verilen isimdir.

Gizleme işleminin sonucu herhangi bir tespit yöntemine karşı dayanıklı olmalıdır.

Gizli bilgiyi tespit edebilmek için steganaliz olarak adlandırılan çeşitli analiz

yöntemleri geliştirilmiştir. Bir steganaliz yöntemi olan RS analizi, sayısal görüntüler

üzerinde gizli bilgi tespit etmek için geliştirilmiş bir yöntemdir. Bu analiz yöntemi

gizli iletinin uzunluğunu hesaplamak için faydalı bir yöntem olmasına rağmen gizli

iletinin, görüntü dosyasının hangi kısmı üzerinde bulunduğunu tespit edememektedir.

Bu tezin hedefi bu steganaliz yöntemini ve quadtree veri yapısını kullanarak gizli

iletinin görüntünün hangi kısım(lar)ında bulunduğunun tespit edilmesidir.

Anahtar Kelimeler: Steganografi, Steganaliz, Quadtree

v

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM...iii

ABSTRACT..iv

ÖZ...v

TABLE OF CONTENTS...vi

LIST OF TABLES...viii

LIST OF FIGURES...ix

CHAPTERS:

1 INTRODUCTION...1

1.1 Outline of Thesis...2

2 STEGANOGRAPHY..3

2.1 The Prisoners' Problem..3

2.2 Watermarking..4

2.3 Encryption...5

2.4 History and Physical Examples of Steganography..8

2.5 Digital Steganography...10

2.5.1 Digital steganography by carrier format..12

2.5.1.1 Digital audio...12

2.5.1.2 Digital image..13

2.5.1.3 Digital video...15

2.5.1.4 Text and other formats...16

vi

2.5.2 Techniques for steganography on digital images.................................17

2.5.2.1 Techniques on spatial domain..17

2.5.2.2 Techniques on frequency domain...23

3 STEGANALYSIS OF DIGITAL MEDIA..25

3.1 Digital Images...26

3.1.1 Steganalysis methods on spatial domain...26

3.1.1.1 Sample pair analysis..26

3.1.1.2 Chi-Square analysis...27

3.1.1.3 Steganalysis of regular and singular groups................................27

3.1.2 Steganalysis methods on frequency domain..30

3.2 Other Digital Media...30

4 RS STEGANALYSIS WITH QUADTREE DATA STRUCTURE....................32

4.1 Quadtrees On Digital Images..33

4.2 RS Steganalysis With Quadtrees...34

5 EXPERIMENTS AND RESULTS..36

6 CONCLUSION...41

6.1 Future Work...41

REFERENCES...42

APPENDICES:

A. RS STEGANALYSIS CODE WITH QUADTREE DATA STRUCTURE......45

B. RANDOM MESSAGE GENERATION CODE...49

C. CURRICULUM VITAE..50

vii

LIST OF TABLES

TABLES

Table 2.1 Comparison of Steganography, Encryption and Watermarking....................7

Table 5.1 Image Groups..37

Table 5.2 Test 2 Results..39

viii

LIST OF FIGURES

FIGURES

Figure 2.1 The Prisoners' Problem..4

Figure 2.2 Steganography by Letter Shifting..10

Figure 2.3 Hiding Messages After EOF..11

Figure 2.4 RGB Composition...14

Figure 2.5 Before and After States of 8 Pixels..18

Figure 2.6 Effects of Flipping Bits...19

Figure 2.7 Comparison of a Digital Image and Its GIF Version.................................21

Figure 2.8 Histogram Comparison for LSB Method..22

Figure 2.9 Digital Image Embedded in Another Digital Image..................................22

Figure 3.1 RS Diagram of an Image...29

Figure 4.1 Quadtree..32

Figure 4.2 An Image with Quadtree Segmentation..33

Figure 5.1 Highest and Lowest Initial Results..37

Figure 5.2 ucid01049.bmp, Zoomed-in..37

Figure 5.3 Embedding Process...38

ix

CHAPTER 1

INTRODUCTION

Since the earliest days of known human history, communication has been an essential

aspect of daily life. Voice being the most basic form, human beings have utilized

different methods for communication during ages. With each age, communication

methods of humanity have evolved from simple drawings on cave walls to carved

wax tablets and handwritten letters to digital communication.

There are times when people would not want their communication to be interpreted

by others. In such cases, the communication should be protected. This protection can

be achieved by many methods. One method of protection is hiding messages in

unsuspicious carriers. All techniques involving hiding messages in a carrier medium

are called steganography.

With the advancements on digital technologies starting at 20th century and computers

getting more popular by each passing day, steganography has gained new fields of

application. Today; every information on computers are stored in different formats

according to the data they represent. The most basic form of user data on computers

is plain text documents, which consist of characters that when read together, they

form words and sentences. Digital images are another type of user data; where the

bytes that are arranged as two-dimensional matrices represent colors and shapes.

Digital audio consist of bytes carrying sound information, which are heard as various

forms of sounds such as music or speech. Digital videos are digital images shown

one after another and usually accompanied with digital audio.

1

These are just a few examples; there are many other representations of digital data

which are used and interpreted in many different ways. With all these different

formats, new methods of steganography have been discovered.

Along with these steganography methods; their counterparts, steganalysis methods

have also been developed. Steganalysis is the common name given to methods that

are useful for detection of hidden messages in carrier media. Rather than the sender

and receiver, these steganalysis methods are employed by other people who are not

supposed to be the receivers but who has intercepted and got suspicious of the

mentioned media.

The aim of this study is accurately detecting the location of hidden messages on

stego carriers by utilising an existing steganalysis method onto different segments of

the carrier. Choice of medium is digital images since the mentioned method works on

digital images.

1.1 Outline of Thesis

This thesis has been divided into 6 chapters, each focusing on one major topic. The

second chapter of this thesis contains the history of steganography, explains how

messages can be hidden into various types of carrier media. Third chapter explains

the concept of steganalysis, gives examples on various steganalysis methods and

focuses on RS steganalysis method. Fourth chapter gives definition about quadtree

data structure and explains how it can be combined with RS steganalysis method to

further enhance the analysis process. Fifth chapter demonstrates the experiments

conducted for validation of the method explained in Chapter 4 and presents the

results of each test. Sixth and final chapter summarizes the work and experiments

done, mentions future works and concludes this thesis.

2

CHAPTER 2

STEGANOGRAPHY

Steganography is the science of hidden communication. The word steganography has

been derived from Greek language; steganos means protected and graphei means

writing [1]. This hidden communication is achieved by embedding the information in

unsuspicious carrier media. Any method that hides information in carrier media is

named a "steganographic method". Steganographic methods are used when an

information should be transferred from a source to a destination but the discovery or

visibility of the information is not desired, thus it should remain hidden from

everyone else who knows the existance of the information, namely the source and

destination.

Steganographic methods should do minimum amount of detectable change to the

carrier media because steganography may fail if the carrier media gets altered in a

much detectable way and becomes too obvious that it contains extra information.

2.1 The Prisoners' Problem

A famous example for defining steganography is the Prisoners' Problem, defined by

Simmons [2]. This problem features three people; of which two are prisoners and one

is the warden of the prison. The prisoners have been put in two seperate cells of a

prison. In order to devise a plan to escape the prison, the prisoners should

communicate but they can't communicate directly, so they should ask the warden to

3

deliver their messages. They should also communicate discreetly; otherwise the

warden may destroy the message and prevent their plans if he discovers the prisoners

are conspiring. This discreet communication requires steganography. Figure 2.1

demonstrates the process defined by this problem.

Figure 2.1 The Prisoners' Problem

In order to successfully inform Prisoner #2 of the escape plan without the warden

realising it, Prisoner #1 should encode and hide the plans in an innocent cover

message so the warden won't get suspicious of the message. When Prisoner #2

receives the message, he can decode the contents and extract the secret message from

the innocent cover message.

2.2 Watermarking

A watermark is an addition applied on media to discourage the media from

unauthorized uses and to prevent fraud. When a property owned by someone should

4

Secret
Message

Cover
Message

Stego
Message

Suspicious
Message?

Discard
Message

Reveal
Message

 Yes

No

Prisoner #1 Warden Prisoner #2

be made publicly available, the owner would need the property to be protected in a

way that the owner can be identified and the property is unique. It is usually a visible

text or logo but depending on the medium, different types of watermarks can be used

as well.

Some examples for watermarked property are;

• Banknotes: Several hard-to-replicate watermarks are applied onto banknotes

for security reasons and to identify which banknotes are authentic and which

are not.

• Media such as images or videos owned by a certain individual or

organization: These usually have a logo or text embedded on them to identify

the owner, so when these media are used elsewhere, the origin of the media

can be traced back to the owner.

• Digital watermarking methods such as the ones proposed in [3] and [4]

provide robust watermarks for digital media such as images and videos.

Although watermarking and steganography are both used for embedding information

into cover media, the goals and results are different. For instance, invisibility of the

embedded data is a requirement for steganography but it is not a necessity for

watermarking. Watermarking instead focuses on robustness, that the embedded

information should resist and be hard to remove from cover.

2.3 Encryption

Encryption is the transformation of readable messages into unreadable ciphertext.

This transformation is required when contents of a message should be kept safe from

being interpreted by unwanted third parties. Reverse of this transformation process

5

which produces readable messages again is named decryption. Encryption and

decryption should be accomplished only by authorized people.

On modern computers and similar devices such as cell phones, encryption is

necessary for several tasks such as;

• Local data storage: Data of users that are stored on local hard drives can be

encrypted to keep them safe from other users of the same computer. While

storage encryption can be employed on computers for all purposes, this is

especially useful for large data servers which are accessed by hundreds and

thousands of users routinely so that no one can access the files of other users

without their acknowledgement.

• Network security: Information transferred across computers or similar

devices are usually encrypted for safekeeping from possible man in the

middle attacks. Encryption and decryption occurs at the source and

destination devices, respectively. While there are many more, HTTPS

(Hypertext Transfer Protocol Secure) and SSH (Secure Shell) are two

common examples of network protocols that provide such security measures.

It should be noted that in steganography, the message that is hidden in cover media

can be encrypted first in order to make interpreting this message a lot challenging, in

case the cover medium has been analysed by attackers and steganography has failed.

In such cases, both the sender and the receiver must know how to hide / reveal the

message and how to encrypt / decrypt the hidden message respectively.

Differences between steganography, watermarking and encryption has been listed in

[5] according to several criteria; these differences are shown in Table 2.1.

6

Table 2.1 Comparison of Steganography, Encryption and Watermarking [5]

Criteria Steganography Watermarking Encryption

Carrier Any digital media Mostly image /
audio files

Usually text based,
with some
extensions to image
files

Secret Data Payload Watermark Plain text

Key Optional Necessary

Input Files At least two unless in self-embedding One

Detection Blind Usually informative
(i.e., original cover
or watermark is
needed for
recovery)

Blind

Authentication Full retrieval of data Usually achieved
by cross correlation

Full retrieval of data

Objective Secret communication Copyright
preserving

Data protection

Result Stego-file Watermarked-file Cipher-text

Concern Delectability / capacity Robustness Robustness

Type of
Attacks

Steganalysis Image processing Cryptanalysis

Visibility Never Sometimes Always

Fails When It is detected It is removed /
replaced

Deciphered

Relation to
Cover

Not necessarily related
to the cover. The
message is more
important than the
cover

Usually becomes an
attribute of the
cover image. The
cover is more
important than the
message

N/A

Flexibility Free to choose any
suitable cover

Cover choice is
restricted

N/A

History Very ancient except its
digital version

Modern era Modern era

7

2.4 History and Physical Examples of Steganography

Depending on the age of humanity, there have been various methods of

steganography. The earliest known methods of steganography can be traced back to

450 - 400 BC. First examples of steganography covers wax tablets; which was

achieved by carving messages on wooden part of tablets and then covering the

carved side of the wooden tablet with wax. After this operation, any regular message

would be carved on the waxy surface and the tablet would be sent to its destination.

Anyone who intercepted these tablets instead of the destination would only notice the

text on the top layer (wax) but detection of text on bottom layer (wood) would be

difficult unless the wax layer was removed.

In known history, another historical steganographic method was first used in ancient

China. This method required usage of paper masks by both the sender and the

receiver. These papers had holes at random locations, so that when sender placed his

mask over a paper, he could write the secret message into the holes. Then he would

remove the mask and write a cover message to the rest of the paper and send it.

Receiver could recover the hidden message by putting his own mask paper onto the

letter.

One another historical steganographic method was achieved by tattooing a message

on the shaved head of a slave. When the hair grows, it covers the tattooed message so

it can not be seen. When the slave reached his destination, his head was again shaved

to reveal the message. Similar steganographic methods that involve human body

have been used recently during World War II as well; by writing the message on the

backs of messengers using invisible ink.

8

Writing messages using invisible ink on different carriers also produces acceptable

results for steganography. For example, if a message was written on a paper using

invisible ink, that text would not be seen by bare eyes. Then, something totally

unrelated and unsuspicious can be written on the paper using ordinary ink. As a result

of this process, anyone viewing the paper would only see the information written

using regular ink and would not notice the information written with invisible ink. To

reveal the invisible message, special chemical solutions should be applied on the

paper.

Written text can alone be used for steganography as well. One basic form of

steganography on plain text is capitalizing certain non-consecutive letters of a given

text so when these capitalized letters are read together, they will form a meaningful

message. Although this method is simple to apply, it is also very simple to be

detected because randomly capitalized letters can become very suspicious in a

standard paragraph where capitalized letters should appear only at abbreviations and

at the beginning of sentences and important words.

Another steganographic method that can be applied on printed media that is similar

to the previously explained method (but harder to detect) can be accomplished by

shifting the positions of certains letters in a text by very small amounts. This shifting

operation on letters is very hard to detect by bare eyes at first sight, but with proper

information, these letters can be detected and rearranged together to form a

meaningful text. Figure 2.2 demonstrates this method.

9

Figure 2.2 Steganography by Letter Shifting

The first line in the figure is the original line. In the second line, three letters were

tilted in small amounts to either left or right and third line overlaps both lines to

make the differences visible. Cyan lines between the first and second lines have been

placed there for the purpose of easier detection of this operation, showing how much

these three letters have moved.

This steganographic method can be applied in different ways; such as shifting words

themselves, instead of single letters. This "word shifting" steganographic method can

be used in different ways. One way is embedding the message by shifting

corresponding words in the cover text. These words, when they are read together,

will form the hidden message. One another word shifting technique will be

mentioned under Section 2.5.1.4.

2.5 Digital Steganography

Computers and similar electronical devices such as embedded systems or mobile

devices handle and store user data with different methods according to the data

10

format but basically, all information stored on these devices are represented by bits

and bytes. Thus, these devices provide a vast array of steganography methods.

One basic steganography method on digital media can be achieved by hiding the

message in unused bytes of the cover media. These unused bytes can be padding

bytes; which are used for defining a fixed length of bytes such as file headers. Or the

message can be hidden after the end of file as shown in Figure 2.3. Since the

program that is used for opening these files know which bytes to interpret and will

stop at EOF marker, the bytes that are used for steganography are ignored by these

programs.

Figure 2.3 Hiding Messages After EOF

As a result, the user notices no difference on how the media is served but viewing the

bytes using text editors reveals such messages. While this method provides

possibility to hide unlimited lengths of messages, hiding long messages should be

avoided as it may produce suspiciously huge files.

11

2.5.1 Digital steganography by carrier format

Different formats of data require different arrangements of bits and bytes. For

example; a plain text file, which consists of mostly human readable information, will

not be interpreted as a digital image by computers because bytes stored by the text

file would not be organized in the way digital images require them to. Because of

these differences, various different steganography methods that are dependent to the

specifications of each carrier format have been implemented.

2.5.1.1 Digital audio

Digital audio files store sound information that has been recorded from analog

signals and converted to digital representation of these signals. These sound

information can either be stored compressed or uncompressed. Compressed audio

files usually omit less audible sounds and they have lesser amount of redundant

information.

MP3 (MPEG-1 / MPEG-2 Audio Layer III) being the most widely known and

popular, there are many both proprietary and free formats such as OGG Vorbis,

FLAC, Windows Media Audio and RealAudio that can be used for storing digital

audio today.

Differences about how these formats store sound information has enabled researchers

to implement steganography on these formats. In [6], it has been proposed that data

can be hidden in integer wavelet domain into cofficients of a given cover audio file.

[7] and [8] proposes different steganography methods for MP3 files; one by

exploiting the rule of window switching during encoding and the other via Huffman

tables, respectively.

12

2.5.1.2 Digital image

Steganography methods that target digital images focus on hiding information in

cover images. As a result of this hiding process, a "stego image" is created. Some of

the steganography methods are based on modifications on spatial domain and some

of them are based on frequency domain. There are also methods such as the one

proposed in [9] which utilizes both the spatial and frequency domains of images to

achieve steganography. Some other possibilities such as hiding message in unused

bytes which has been explained before in Section 2.5 are also present. Methods that

focus on spatial and frequency domains will be studied further in Section 2.5.2.1 and

Section 2.5.2.2 respectively.

In computer graphics, the smallest element of a digital image is named a "pixel".

Each and every single pixel holds a color value. Arranging multiple pixels in rows

and columns create a visual display perceived by the human eye as a

two-dimensional image. Number of columns and rows of pixel determine the

resolution of digital images. Total amount of pixels in digital images is calculated as

the multiplication of column and row counts. For example, a 640x480 image has

640 columns and 480 rows of pixels and the total amount of pixels in that image is

307.200.

Color of a pixel is determined by the numerical value of the bits and bytes it

occupies. Depending on the image type, pixels may use different lengths of bits. This

value is named as bits per pixel (bpp). While there have been many different

implementations of color depths during the evolution of computer graphics and

display devices, some of these implementations are being used very regularly today.

13

For example, an image is commonly considered as grayscale today if each pixel of

the image uses 8 bits. In such images, every single pixel can hold up to only 256

values (0 – 255) of brightness without any color information; where 0 is black, 255 is

white and values between 0 and 255 are shades of gray from black to white.

Another popular implementation is color images that use 24 bits for pixels. Such

images define three values of color information for each pixel: red, green and blue;

again divided in groups of 8 bits. Such digital images of 24 bit color depth are also

referred as "true color" images. Similar to grayscale images, these groups of 8 bits

still hold values between 0 and 255 but since now we have three different groups of 8

bits (each for red, green and blue channels) such pixels can now hold up to

16.777.216 different values of color (256 * 256 * 256) due to the composition of the

3 different grayscale channels. This composition operation of three channels is

demonstrated in Figure 2.4.

Figure 2.4 RGB Composition

14

For example; a pixel with 0 red, 0 green and 0 blue is black because values of all

three color channels are set to 0, another pixel with 255 red, 0 green and 0 blue is

bright red because it has the maximum value of red and no values for green and blue,

and an another pixel with 255 red, 255 green and 255 blue is white because it has the

maximum value of all three color channels.

An another implementation uses 32 bits per pixel for color images. This kind of color

depth is named as RGBA or sometimes ARGB; which stands for red, green, blue and

alpha channels. When compared to RGB color depth, RGBA's structure is similar but

the extra 8 bits for alpha channel holds opacity value for the pixel. In RGB images,

only the color value of pixels can be defined but the pixels themselves should stay

100% opaque. In RGBA images, the extra 8 bits used by opacity channel lets the

visibility of the pixels range from 100% transparent (if the opacity value is 0) to

100% opaque (if the opacity value is 255), while all other values between 0 and 255

provide different levels of translucency for the pixel.

2.5.1.3 Digital video

Digital videos are actually multimedia files that contain multiple data streams such as

audio and video tracks. A digital video file must at least contain one video track.

These video tracks are sequences of images which are displayed one after another

very rapidly so that they are perceived by human visual system as a moving image.

Video files can grow very large as the length of the video increases. For example, a

30 minutes long video that displays 25 frames per second stores 45.000 still images.

To overcome this problem, various compression methods such as MPEG or H.264

have been implemented.

15

Depending on their format specifications, it is possible to hide information in both

compressed and uncompressed video formats. [10], [11], [12] and [13] are a few

examples of proposed methods for video steganography, each focusing on different

properties of videos for hiding.

2.5.1.4 Text and other formats

Word shifting method, which has been explained previously under Section 2.4, can

also be accomplished through assistance of bits and bytes as well. In this method, the

hidden message should first be converted from ascii to binary form. Then according

to the binary form, positions of words in the cover text can be altered so that words

in their original position will denote bit "0" and shifted words will denote bit "1". To

recover the hidden message, binary text should first be extracted from the cover text

according to the positions of the words, and then the binary message should be

translated into ascii form.

It has been demonstrated in [14] how TeX source files can be used to hide

information in generated PDF document. Their method proposes that words in a line

should first be grouped such that;

• Each pair of consecutive words carries one bit of secret data,

• Two words before and after a full stop are treated as a single word,

• Last word of a line and first word of next line are treated as a single word.

After this grouping, spaces between words of groups are modified according to

whether they will hold bit "0" or bit "1". If 0 is going to be embedded, then the space

of current group is left unmodified. If 1 is going to be embedded, then the space of the

group will be widened or narrowed in turns to prevent to keep space widths as

minimum as possible and increase efficiency of the method.

16

2.5.2 Techniques for steganography on digital images

Steganographic methods that can be applied on digital images are commonly

classified in two groups;

• Steganography in spatial domain,

• Steganography in frequency domain.

2.5.2.1 Techniques on spatial domain

Techniques on spatial domain are mostly focused on altering bits of pixels to carry

messages. This alteration must happen in small amounts in order to make the

difference caused by steganography indetectable by human visual system. In other

words; range of this modification should be kept as narrow as possible, as wider

ranges may result in undesirable results such as turning color of a pixel from light

gray to dark gray.

LSB steganography (LSB replacement) method focuses on the least significant bits

of channels of pixels. The eighth bit of each channel affects the value of the pixel by

1. Likewise, the seventh bit modifies the color by 2 and the sixth bit modifies the

color by 4, etc. Because of this fact, any changes on the eighth bit is very

insignificant and hard to detect by human visual system. On images with lots of color

information (e.g. photos taken by digital cameras), it is almost impossible to detect

by human visual system if the LSB's of pixels have been changed or not.

Modifying the LSB's of several pixels enables us to hide information in these bits.

For example, binary representation of the character 'e' is "0110 0101". To carry this

character, LSB's of eight pixels should be set to ones and zeros accordingly; so that

each pixel will carry one bit of this character. Figure 2.5 shows the difference

17

between the original and modified values of eight consecutive pixels of a grayscale

digital image. As it can be seen from the figure, original and modified colors of the

pixels are almost identical and differences caused by modifying least significant bits

are almost impossible to detect with human visual system.

Figure 2.5 Before and After States of 8 Pixels

It is also possible to alter more than one bits per pixel in Least Significant Bit method

to increase embedding capacity; but as the amount of bits used for steganography per

pixel increases, risk of detection by human visual system also increases. Figure 2.6

demonstrates how the state of each bit affects the value of a randomly chosen color

(Red: 139, Green: 0, Blue: 0). From this figure, it can be derived that the visual

differences caused by the change of color increase rapidly as the changed bit shifts

from the least significant bit to the most significant bit.

18

Figure 2.6 Effects of Flipping Bits

Least Significant Bit steganography can be achieved in several ways. One may

embed the information in pixels in sequential order. To reveal the message in such

images, it is adequate to read LSB's of the image in the same sequential order. To

strenghten the method, only a subset of the pixels may be used for steganography.

For example, the message can be embedded into every 10th pixel. This way, the

message can be restored by extracting LSB's from only the 10th, 20th, 30th, etc. pixels.

To further strengthen the method, the order of the pixels used for embedding can be

scrambled in a predefined pseudo-random order (that is shared between sender and

receiver) as well. Such documents produces meaningless messages if anyone tries to

interprets LSB's in sequential order. Thus, it is necessary to interpret LSB's according

to the previously defined order.

Embedding message into edges available in images is an another method for LSB

steganography. In an image, edges are defined as locations in which the brightness of

neighbouring pixels change sharply. This instant change of brightness can be used as

an advantage as embedding in these locations will raise less suspicion. Before

19

embedding into edges, edge detection methods such as Sobel, Prewitts, Laplacian,

etc. should be used to identify these locations first.

A different approach for LSB steganography is named as LSB matching. In this

method, LSB's of pixels are modified by randomly adding or subtracting 1 from the

pixel if it does not match the bit of the message. Methods proposed in [15], [16], [17]

and [18] provide improvements to LSB matching method.

Maximum length of hidden message a digital image can carry depends on;

• Resolution of image (width * height),

• Amount of color channels,

• Amount of bits used per pixel.

As an example; a 512x512 grayscale image can hold messages as long as 32.768

bytes if only 1 bit is used for steganography, or a 384x256 RGB image can hold

messages as long as 73.728 bytes if 2 bits are used.

The format of digital images as a carrier media is very important for Least

Significant Bit steganographic method. Digital image formats such as JPEG or GIF

process the image to decrease the file size. These operations produce lossy results,

which means pixels irreversibly lose their original values after the the compression

has been applied onto the image. Figure 2.8 demonstrates the loss caused by GIF

format by comparing the original image and its GIF version. GIF format commonly

supports images that use up to 256 colors, which requires alteration of pixels

according to the 256-color palette. In the figure, every pixel is represented by unique

colors in the original image on the left; while its GIF counterpart on the right must

represent much larger blocks of pixels with the same color because of the lack of

available colors.

20

Figure 2.7 Comparison of a Digital Image and Its GIF Version

Because of these and similar facts, a stego image which has been converted to a lossy

format can no longer be used for reading the message that was hidden in spatial

domain by methods such as Least Significant Bit method; as the bits carrying the

information have been modified after embedding. To overcome this problem, digital

image formats that provide no compression or lossless compression should be

preferred as carrier media for Least Significant Bit method instead. Portable Network

Graphics (PNG) or Bitmap image format (BMP) are two examples for this

requirement; PNG format provides lossless compression, while BMP files can be

saved without any compression at all. Digital image files saved in these formats or

any other format that keeps pixel values intact can safely be used as carrier media for

Least Significant Bit steganographic method.

In addition to image format, contents of the chosen cover image is also important.

Since this method modifies pixels; groups of same colored pixels may turn into noisy

regions, which can be detected much easier than regions that are made up of irregular

colors. These changes in the image can be observed via histograms. Figure 2.8

compares the histograms of original lenna.bmp and its 100% embedded version

according to LSB method. It can be deduced that the embedding operation has

resulted a much more noisy image.

21

Figure 2.8 Histogram Comparison for LSB Method

Least Significant Bit method does not necessarily require the format of the hidden

message to be plain text only. Figure 2.9 [19] is a demonstration of a digital image

hidden in another other digital image.

Figure 2.9 Digital Image Embedded In Another Digital Image

Here, the RGB image of cat has first been reduced to 64 colors; which means 4

colors for each color channel. Then these colors have been compressed so that they

can be represented using only two bits as Formula 2.1 shows.

22

[
0000 00002

0101 01012

101010102

111111112
]÷8510=[

002

012

102

112
] (2.1)

As the final step, compressed values of every pixel of the cat image have been

embedded on the image of tree. The hidden image reveals itself when these two least

significant bits are extracted from stego image and have normalization applied on

them to enlarge their color range back as Formula 2.2 shows.

[
002

012

102

112
]∗8510=[

000000002

010101012

101010102

111111112
] (2.2)

This example shows that Least Significant Bit method can be applied on any kind of

digital carrier media to hide any kind of information albeit with some losses.

2.5.2.2 Techniques on frequency domain

On computer graphics, two-dimensional transforms are essential for image

enhancement operations such as blurring, sharpening and contrast correction.

Fourier Transform and Discrete Cosine Transform are two popular frequency domain

transforms related to digital image processing. Some digital image formats such as

JPEG (Discrete Cosine Transform in this case) utilizes transform operations while

encoding as well.

[20] has proposed a steganography method on frequency domain that targets JPEG

images as cover media by using 32x32 quantization tables instead of standard 8x8

quantization tables. This method resulted in reduced computation time with increased

hidden message capacity while keeping image quality and file size at reasonable

levels.

23

Westfeld's method [21] is a strong steganography method on JPEG files that resists

visual and statistical attacks. By utilizing matrix encoding [22], this method requires

a small amount of modifications to store hidden messages of same length.

24

CHAPTER 3

STEGANALYSIS OF DIGITAL MEDIA

As it has been explained in the previous chapter, aim of steganographic methods is to

achieve secret communication by hiding messages into cover media indetectably.

The intended readers for a stego message are only the sender and the receiver, thus

only they should know whether a media contains a hidden message and if it does,

how to reveal it. If the chosen steganographic method is strong enough, anyone else

who receives the carrier would only notice the carrier itself but not detect the hidden

message; which means steganography has succeeded.

Based on the format and properties of cover media, attackers may implement

methods that analyse these cover media to determine whether the they carry hidden

messages or not. The methods that aim to inspect and reveal information are referred

as steganalysis methods. If succeeded, steganalysis methods usually produce results

such as length of the hidden message or the message itself.

If steganalysis methods were to be applied on media which contains no hidden

information, it is possible that the method may produce false positives. This may

happen depending on the algorithm and the cover media itself.

Steganography methods on digital media such as digital images, digital audios and

others have enabled proper analysis / attack methods to be developed in order to

extract information from cover media. The following sections will briefly mention

these methods by medium type.

25

3.1 Digital Images

Steganalysis methods that target digital images usually attack against steganography

methods achieved on spatial and frequency domains. As with other media, there are

elements that pose risk to accuracy of steganalysis of digital images. Modifications

such as resizing, cropping, converting to a lossy format after embedding or other

similar operations may cause steganalysis methods to fail or produce faulty results.

3.1.1 Steganalysis methods on spatial domain

Least Significant Bit steganography methods are the earliest examples of

steganography on digital images, thus they are the most studied methods. Methods

such as Sample Pair Analysis [23], Chi-Square [24], RS Analysis [25], are widely

known steganalysis methods that target least significant bit methods. Specialised

analysis methods for certain steganography methods have also been implemented.

For example; [26], [27], [28] and [29] propose different approaches for attacking

against LSB matching steganography, which was previously mentioned under

Section 2.5.2.1.

3.1.1.1 Sample pair analysis

Sample Pair analysis is a statistical LSB steganography attack method that reveals

hidden message length with high precision. In [23], results obtained by applying this

method on several natural images with various message lengths p has been reported

to be highly accurate.

26

3.1.1.2 Chi-Square analysis

This method is a statistical analysis method that works on cover images that carry

sequentally embedded messages but not on images carrying pseudo-randomly

scattered messages.

3.1.1.3 Steganalysis of regular and singular groups

Steganalysis of Regular and Singular Groups (RS analysis), proposed by Fridrich et

al [25], can be used against both color and grayscale images and produces an

approximate length of the hidden message in the image as result. This analysis

method provides a basis for the method which will be explained in Chapter 4 of this

thesis.

This method starts the analysis by first dividing an MxN image into groups that

contain n pixels (x1, ..., xn). Value of these pixels are from set P. For example, P = {0,

1, ..., 255} for an 8 bit grayscale image. A discrimination function f is defined for

checking the pixels in each group G for irregularities between them and the

differences among the pixels in groups are noted.

f (x1, ... , xn)=∑
i=1

n−1

∣xi+1−x i∣ (3.1)

If the values of pixels in group G are close to each other, then the difference value for

the group will be a small integer but groups containing noisy pixels will produce a

higher value. This operation repeats until all the groups in the image have been

traversed.

Then, a flipping operation F flips LSB's of each channel of each pixel such that;

F1=0↔1,2↔3, ..., 254↔255 (3.2)

27

Also, shifted LSB flipping operation F-1 has also been defined such that;

F−1(x)=F1(x+1)−1 (3.3)

And identity permutation F0 is defined as;

F0(x)=x (3.4)

The discrimination function f and flipping operation F are used for defining three

pixel groups R, S and U. After calculating f(F(G)) and f(G), both results are

compared:

• f(F(G)) > f(G) : group is regular

• f(F(G)) < f(G) : group is singular

• f(F(G)) = f(G) : group is unusable

A mask M, which is an n-tuple containing values -1, 0 and 1 is defined to capture

assignment of flipping to each pixel. Thus, flipped group F(G) can be defined as

(FM(1)(x1), FM(2)(x2), ..., FM(n)(xn)).

Using mask M, f(FM(G)) has been calculated and f(FM(G)) and f(G) are compared to

calculate number of R, S and U groups. Negative mask -M is used for calculating

f(F-M(G)) and calculating number of negative R, S and U groups by comparing

f(F-M(G)) and f(G).

Regular groups for mask M are denoted as RM, singular groups for mask M are

denoted as SM, regular groups for negative mask -M are denoted as R-M and singular

groups for negative mask -M are denoted as S-M. It has been explained that a typical

image should have the following features:

RM+SM⩽1 (3.5)

28

R−M+S−M⩽1 (3.6)

RM≈R−M (3.7)

S M≈S−M (3.8)

As a result of their tests with a large image database, they have experimentally

verified that as the amount of flipped pixels increase, values of RM and SM converge

while values of R-M and S-M diverge. At 50%, RM and SM curves intersect. This

behaviour has been shown in Figure 3.1 [25].

Figure 3.1 RS Diagram of an Image

In light of these information, they have derived the following formula for estimation

of message length p after rescaling the graph above such that p/2 becomes 0 and

100-p/2 becomes 1:

d0=RM (p /2)−SM (p /2)

d−0=R−M (p/2)−S−M (p /2)
d1=RM (1−p /2)−SM (1−p /2)

d−1=R−M(1−p/2)−S−M (1−p/2)

2(d1+d0)x2+(d−0−d−1−d1−3d0)x+d0−d−0=0

(3.9)

29

Finally, p is calculated as;

p=x /(x−1/2) (3.10)

They have deduced the following factors affect the accuracy of RS method:

• Initial bias: It has been explained that initial bias can be caused by random

variations; for example it has been observed that small images, scans of

half-toned images and noisy images generate larger variations.

• Noise: Higher amounts of noise alters the difference between regular and

singular groups' counts.

• Message placement: It has been explained that RS method produces more

accurate results on images that carries scattered messages.

3.1.2 Steganalysis methods on frequency domain

The method proposed at [30] aims at detecting hidden messages embedded onto

JPEG images. Their experimental results show that this method has high

performance of detecting messages embedded via several JPEG steganography

methods.

In [31], Fridrich et al has proposed a method for detecting hidden messages

embedded with F5 algorithm. Their analysis method focuses on the changes on DCT

coefficients caused by F5 algorithm. Their results show that this method can be used

to detect even small amounts of modifications on DCT coefficients.

3.2 Other Digital Media

Other than digital images, it is possible to implement steganalysis methods for carrier

formats such as digital audio and video as well. For example in [32], a steganalysis

30

method that aims to differentiate stego signals from cover signals of an audio file has

been proposed. Another steganalysis method for digital audio files has been proposed

in [33] as well. This method can detect hidden messages in WAV files that have been

embedded with Steghide [34].

31

CHAPTER 4

RS STEGANALYSIS WITH QUADTREE DATA STRUCTURE

Quadtree is a tree data structure, which has four children as nodes. Applying

quadtree data structure on a dataset results in 4 independent subsets of the original

dataset. Figure 4.1 shows a representation of quadtree segmentation. On the left is

the representation of a sample data and on the right is the tree-form of this data.

Quadtrees can recursively be applied several times on a dataset as long as capacity of

the dataset allows further segmentation. Each recursion produces smaller child nodes

that hold lesser data than their parent nodes.

Figure 4.1 Quadtree

[35] and [36] are a few examples of quadtree utilization for different problems.

While quadtrees are commonly used with image data, they may be used for

segmentation of different data formats as well.

32

4.1 Quadtrees on Digital Images

Segmentation of a MxN digital image with quadtrees results in 4 child nodes, each

with width=M/2 and height=N/2; in other words each child node represents one

quarter of the original image. Figure 4.2 shows a 512x512 image which has been

divided into segments several times with quadtree data structure.

Figure 4.2 An Image with Quadtree Segmentation

As a result of first segmentation, 4 child nodes of resolution 256x256 have been

obtained. By repeating this process recursively on these child nodes, further smaller

nodes have been obtained as well. The smallest segments represented at this figure

have been obtained by applying quadtrees recursively 4 times on the original image.

Size of these segments are 32x32 and they each are 1/64th of the original image.

Quadtree's can be applied on digital images for various reasons depending on the

purpose. [37] have used quadtrees for partial encryption of images, while [38] have

proposed using quadtrees for their image compression technique.

33

4.2 RS Steganalysis with Quadtrees

In the previous chapter, it was explained that applying RS steganalysis method on to

an image I resulted in a single value, estimated message length p, for a single image.

Since this result has been obtained by analysing the whole image, it would not help

us identify at which location(s) the message has been embedded at but give us an

overall estimation of the length of the message hidden on the image.

But if we instead were to apply quadtree algorithm to an image first, the image

would be divided into 4 smaller images. Then, running RS steganalysis method

independently on each quadrant would give us 4 independent analysis results. As

these results are now responsible for their own quadrants, it can be observed which

quadrants carry higher amounts of hidden messages and which quadrants carry less.

By recursively repeating this process until a defined depth D has been reached, we

can determine precise location(s) of hidden messages. It should be noted that D must

not be a large value because as the size of the image gets smaller, larger variations

can be observed; which leads to erroneous analysis results (defined previously under

Section 3.1.1.3).

If the message has not been scattered randomly but embedded as blocks instead, this

method can help us save time by not trying to extract message from unmodified

regions while working with huge images or while working on batch operations with

large amounts of images.

To simplify analysis operations with quadtrees, a minimum threshold percentage TL

can be defined; so we can denote which quadrants carry insignificant amounts of

hidden message. Defining an upper threshold percentage TH also proves useful for

34

denoting which quadrants hold maximum amount of hidden message. As a result, the

quadrants that don't meet these threshold requirements can be ignored so that further

analyses won't be conducted on them.

Algorithm of this proposed method is as follows:

1. Conduct RS analysis on I,

2. If results > TL and results < TH then continue, else stop

3. If depth < D, then create quadrants ITL, ITR, IBL, IBR from image I, else stop

4. Repeat from Step 1 for each quadrant ITL, ITR, IBL, IBR.

35

CHAPTER 5

EXPERIMENTS AND RESULTS

To see how the method which has been explained in Section 4.2 works, several tests

were conducted on a large dataset of 1.338 digital images obtained from [39]. These

images have been converted to grayscale BMP while keeping their resolution intact.

In order to conduct these tests, algorithm of RS analysis method has been

implemented in Python with inspiration from an existing and working

implementation of RS analysis written in Java and licensed with General Public

License Version 3 (GPLv3) [40]. After the initial port, a few modifications has also

been implemented. For imaging operations, Python extension of OpenCV [41] has

been used. For quadtree support, a recursive function that calls itself 4 times with

different quadrants of the provided image has been implemented. Recursion level can

be controlled with a variable in the program. This code is presented at Appendix A.

First of all, the images have been analysed with masks {1, 0, 1, 0} and {0, 1, 0, 1}

and their initial results have been recorded. Images that produce the lowest and

highest result values are shown in Figure 5.1 with their respective estimated message

length.

While the results of a huge majority of the images vary between 0 and 4000, reason

of ucid01049.bmp generating such a higher result is the high amounts of variations

between neighbouring pixels. Figure 5.2 displays a zoomed-in section of this image.

Non-zero results obtained from these initial analyses can be associated with the three

36

factors that affect the accuracy of RS method which have been explained previously

under Section 3.1.1.3.

Figure 5.1 Highest and Lowest Initial Results

Figure 5.2 ucid01049.bmp, Zoomed-in

Based on these initial results, images have been grouped into three: smooth, normal

and noisy. Amount of pictures in each group are given in Table 5.1 with their

thresholds.

Table 5.1 Image Groups

Group Threshold Amount of Images

Smooth [0 – 500] 744

Normal [500 – 4000] 563

Noisy [4000 – 40000] 31

37

Every image has also been analysed with 1-level quadtree segmentation and results

of each quarter has been recorded as well. After obtaining these initial results, the

first test has been conducted. For this purpose, bottom-left quadrant of each image

(1/4th) has been extracted and had randomly generated texts of 6.164 and 6.172 bytes

long (depending on the resolution of the quadrant) embedded into them. The code

used for generating these random messages has been displayed in Appendix A, along

with how to use it. After embedding, these extracted stego-quadrants has been

merged back with the original images; replacing original bottom-left quadrants. This

creation process has been shown in Figure 5.3.

Figure 5.3 Embedding Process

After running the analysis code on the stego images, obtained results have been

compared with the original results and the following behaviours have been observed:

• Independent results of bottom-left quadrants of all images from all three sets

(smooth, normal, noisy) have increased almost by the length of the embedded

message while the independent results of other quadrants stay same.

38

start

crop bottom-left quadrant

embed the message into
cropped quadrant

overwrite stego-quadrant
onto original image

end

• Overall results of smooth images have increased almost by the message

length as well. But it has been observed that results of some of the most noisy

images from noisy set have decreased, rather than increasing. This can be

associated with the fact that modifying bits of already noisy sets of pixels

may have reduced the variance between them.

• Of 1.338 images; bottom-left quadrant analysis results of 5 images have

decreased, while results of 1.333 images has increased.

Next, an another test has been conducted. This time, a depth-2 quadrant (1/16th) of

the original image has been cropped. The same steps from the first test has been

repeated with a shorter message of length 1.560 bytes. After this test, the following

behaviours have been observed:

Table 5.2 Test 2 Results

Noisy Images

Overall 1/4th Quadrants 1/16th Quadrants

Increased 16 22 28

Decreased 15 9 3

Normal Images

Overall 1/4th Quadrants 1/16th Quadrants

Increased 363 524 558

Decreased 200 39 5

Smooth Images

Overall 1/4th Quadrants 1/16th Quadrants

Increased 712 729 740

Decreased 32 15 4

39

From these results, it is safe to say that hiding a message that is 1/16th long of the

cover image;

1. Has caused noticable amount of changes on smooth images but ratio of

change gets lower with images in normal and noisy groups,

2. As the depth of analysis increases (or in other words, size of the analysed

quadrant gets smaller), amount of quadrants which generate higher values

increase.

Based on these results obtained from 1.338 images, the following results have been

obtained:

1. Noisier images have a higher chance of deceiving the analyser at initial

analyses but further analyses on quadrants can still lead the analyser to

locations where the message has been embedded.

2. Smooth images with hidden messages don't deceive the analyser with low

values after initial analyses, they let the analyser to know they are carrying

hidden messages in the beginning of analyses.

40

CHAPTER 6

CONCLUSION

The aim of this thesis is locating the positions of hidden messages on a digital image.

The chosen steganalysis method provides an overall estimated message length for a

given image but does not tell us where this message is located at. This steganalysis

method has been combined with quadtree data structure; this has enabled analyzing

smaller parts of the image and obtain independent results for each part, thus

knowledge about which parts of the image generate higher results and which parts

don't has been obtained. Thanks to this method, parts containing higher amounts of

messages can be focused and other parts can be skipped to speed-up revealing the

message.

To prove this method, a large dataset of images has been used to create stego images

carrying sequential blocks of messages. Depending on the noisiness / smoothness of

these images, mixed results have been obtained initially but further analyses on

smaller quadrants usually proved useful to detect where the messages are located at.

6.1 Future Work

In this thesis, the proposed method has been tested with RS analysis method. Instead

of RS steganalysis method, other spatial domain steganalysis methods can be chosen

to work with quadtree data structure to observe the success rate of each method for

finding location of hidden messages.

41

REFERENCES

[1] http://en.wikipedia.org/wiki/Steganography

[2] SIMMONS, G. (1984), The Prisoners' Problem and the Subliminal Channel,
Advances in Cryptology, 51-67.

[3] COX, I.J. et al (1997), Secure Spread Spectrum Watermarking for Multimedia,
IEEE Transactions on Image Processing, Vol. 6, Issue 12, 1673-1687

[4] HSU, C., WU, J. (1999), Hidden Digital Watermarks in Images, IEEE
Transactions on Image Processing, Vol. 8, Issue 1, 58-68

[5] CHEDDAD, A. et al (2010), Digital image steganography: Survey and
analysis of current methods, Signal Processing, Vol. 90, Issue 3, 727-752

[6] DELFOROUZI, A., POOYAN, M. (2008), Adaptive Digital Audio
Steganography Based on Integer Wavelet Transform, Circuits, Systems &
Signal Processing, Vol. 27, Issue 2, 247-259

[7] YAN, D. et al (2012), Steganography for MP3 Audio By Exploiting the Rule of
Window Switching, Computers & Security, Vol. 31, Issue 5, 704-716

[8] YAN, D., WANG, R. (2011), Huffman Table Swapping-based Steganography
for MP3 Audio, Multimedia Tools and Applications, Vol. 52, Issue 2-3,
291-305

[9] RAJA, K.B. et al (2005), A Secure Image Steganography using LSB, DCT and
Compression Techniques on Raw Images", Third International Conference on
Intelligent Sensing and Information Processing, 170-176

[10] XU, C., PING, X. (2007), A Steganographic Algorithm in Uncompressed
Video Sequence Based on Difference between Adjacent Frames, Fourth
International Conference on Image and Graphics, 297-302

[11] XU, C. et al (2006), Steganography in Compressed Video Stream, First
International Conference on Innovative Computing, Information and Control,
269-272

[12] CHAE, J.J., MANJUNATH, B.S. (1999), Data Hiding in Video, International
Conference on Image Processing, Vol. 1, 311-315

[13] BHOLE, A., PATEL, R. (2012), Steganography over Video File using
Random Byte Hiding and LSB Technique, IEEE International Conference on
Computational Intelligence & Computing Research, 1-6

[14] CHAO, C. et al (2006), Information Hiding in Text Using Typesetting Tools
with Stego-Encoding, First International Conference on Innovative Computing,
Information and Control, Vol. 1, 459-462

42

[15] MIELIKAINEN, J. (2006), LSB Matching Revisited, IEEE Signal Processing
Letters, Vol. 13, Issue 5, 285-287

[16] LUO, W. et al (2010), Edge Adaptive Image Steganography Based on LSB
Matching Revisited, IEEE Transactions on Information Forensics and Security,
Vol. 5, Issue 2, 201-214

[17] XI, L. et al (2010), Improved LSB Matching Steganography Resisting
Histogram Attacks, 3rd IEEE International Conference on Computer Science
and Information Technology, 203-206

[18] QIUDONG, Y., LIU, X. (2009), A New LSB Matching Steganographic
Method Based on Steganographic Information Table, Second International
Conference on Intelligent Networks and Intelligent Systems, 362-365

[19] http://en.wikipedia.org/wiki/Steganography#Digital

[20] VONGURAI, N., PHIMOLTARES, S. (2012), Frequency-Based
Steganography Using 32x32 Interpolated Quantization Table and Discrete
Cosine Transform, Fourth International Conference on Computational
Intelligence, 249-253

[21] WESTFELD, A. (2001), F5 – A Steganographic Algorithm: High Capacity
Despite Better Steganalysis, 4th International Workshop on Information
Hiding, 289-302

[22] CRANDALL, R. (1998), Some Notes on Steganography,
http://www.di.unisa.it/~ads/corso-security/www/CORSO-0203/steganografia/L
INKS%20LOCALI/matrix-encoding.pdf

[23] DUMITRESCU, S. et al (2003), Detection of LSB Steganography via Sample
Pair Analysis, IEEE Transactions on Signal Processing, Vol. 51, Issue 7,
1995-2007

[24] WESTFELD, A., PFITZMANN, A. (1999), Attacks on Steganographic
Systems, Information Hiding

[25] FRIDRICH, J. et al (2001), Reliable Detection of LSB Steganography in
Color and Grayscale Images, IEEE Multimedia, Vol. 8, Issue 4, 2001, 22-28.

[26] HUANG, F. et al (2007), Attack LSB Matching Steganography by Counting
Alteration Rate of the Number of Neighborhood Gray Levels, IEEE
International Conference on Image Processing, 401-404

[27] GUI, X. et al (2012), Improved Payload Location for LSB Matching
Steganography, 19th IEEE International Conference on Image Processing,
1125-1128

[28] ZHANG, T. et al (2010), Detection of LSB Matching Steganography Based on
Distribution of Pixel Differences in Natural Images, International Conference
on Image Analysis and Signal Processing, 548-552

43

[29] YU, X., BABAGUCHI, N. (2008), An Improved Steganalysis Method of LSB
Matching, International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 557-560

[30] LIU, Q. et al (2010), An Improved Approach to Steganalysis of JPEG Images,
Information Sciences, Vol. 180, Issue 9, 1643-1655

[31] FRIDRICH, J. et al (2003), Steganalysis of JPEG Images: Breaking the F5
Algorithm, Information Hiding

[32] AVCIBAŞ, İ. (2006), Audio Steganalysis With Content-Independent Distortion
Measures, IEEE Signal Processing Letters, Vol. 13, Issue 2, 92-95

[33] RU, X. et al (2005), Steganalysis of Audio: Attacking the Steghide, Proceedings
of 2005 International Conference on Machine Learning and Cybernetics, Vol.
7, 3937-3942

[34] http://steghide.sourceforge.net/

[35] KAMBHAMPATI, S., DAVIS, L.S. (1986), Multiresolution path planning for
mobile robots, IEEE Journal of Robotics and Automation, Vol. 2, Issue 3,
135-145

[36] AVIN, C. (2011), Geographical Quadtree Routing, IEEE Symposium on
Computers and Communications, 302-308

[37] CHENG, H., XIAOBO, L. (2000), Partial Encryption of Compressed Images
and Videos, IEEE Transactions on Signal Processing, Vol. 48, Issue 8,
2439-2451

[38] VAISEY, J., GERSHO, A. (1992), Image Compression With Variable Block
Size Segmentation, IEEE Transactions on Signal Processing, Vol. 40, Issue 8,
2040-2060

[39] http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html

[40] http://vsl.sourceforge.net/

[41] http://opencv.willowgarage.com/

44

APPENDIX A

RS STEGANALYSIS CODE WITH QUADTREE DATA STRUCTURE

#!/usr/bin/python
-*- coding: utf-8 -*-

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import cv, sys

class RSAnalysis:
 def __init__(self, image, m, n):
 k = 0
 self.mMask = [[None] * m * n, [None] * m * n]
 for i in range(n):
 for j in range(m):
 if (((j % 2) == 0 and (i % 2) == 0) or
 ((j % 2) == 1 and (i % 2) == 1)):
 self.mMask[0][k] = 1
 self.mMask[1][k] = 0
 else:
 self.mMask[0][k] = 0
 self.mMask[1][k] = 1
 k += 1
 self.image = image
 self.imgy = image.height
 self.imgx = image.width
 self.mM = m
 self.mN = n

 def doAnalysis(self):
 startx = 0; starty = 0
 block = [None] * self.mM * self.mN
 numregular = 0; numsingular = 0
 numnegreg = 0; numnegsing = 0
 numunusable = 0; numnegunusable = 0

 while startx < self.imgx and starty < self.imgy:
 for m in range(2):
 k = 0
 for i in range(mN):
 for j in range(mM):
 block[k] = int(self.image[starty + i, startx + j][0])
 k += 1

 variationB = self.getVariation(block)
 block = self.flipBlock(block, self.mMask[m])
 variationP = self.getVariation(block)

45

 block = self.flipBlock(block, self.mMask[m])
 self.mMask[m] = self.invertMask(self.mMask[m])
 variationN = self.getNegativeVariation(block, self.mMask[m])
 self.mMask[m] = self.invertMask(self.mMask[m])
 if variationP > variationB:
 numregular += 1
 elif variationP < variationB:
 numsingular += 1
 else:
 numunusable += 1

 if variationN > variationB:
 numnegreg += 1
 elif variationN < variationB:
 numnegsing += 1
 else:
 numnegunusable += 1

 startx += 1
 if startx >= self.imgx - self.mM:
 startx = 0
 starty += 1
 if starty >= self.imgy - self.mN:
 break

 totalgroups = numregular + numsingular + numunusable
 allpixels = self.getAllPixelFlips()
 x = self.getX(numregular, numnegreg, allpixels[0], allpixels[2],
 numsingular, numnegsing, allpixels[1], allpixels[3])

 if 2 * (x - 1) == 0:
 epf = 0
 else:
 epf = abs(x / (2 * (x - 1)))

 if x - 0.5 == 0:
 ml = 0
 else:
 ml = abs(x / (x - 0.5))

 results = [None, None, None, None]
 results[0] = totalgroups
 results[1] = epf
 results[2] = ml
 results[3] = (self.imgx * self.imgy * ml) / 8
 return results

 def getAllPixelFlips(self):
 allmask = [1] * self.mM * self.mN
 block = [None] * self.mM * self.mN
 startx = 0; starty = 0
 numregular = 0; numsingular = 0
 numnegreg = 0; numnegsing = 0
 numunusable = 0; numnegunusable = 0

 while startx < self.imgx and starty < self.imgy:
 for m in range(2):
 k = 0
 for i in range(self.mN):
 for j in range(self.mM):
 block[k] = int(self.image[starty + i, startx + j][0])
 k += 1

 block = self.flipBlock(block, allmask)
 variationB = self.getVariation(block)
 block = self.flipBlock(block, self.mMask[m])
 variationP = self.getVariation(block)
 block = self.flipBlock(block, self.mMask[m])
 self.mMask[m] = self.invertMask(self.mMask[m])
 variationN = self.getNegativeVariation(block, self.mMask[m])

46

 self.mMask[m] = self.invertMask(self.mMask[m])

 if variationP > variationB:
 numregular += 1
 elif variationP < variationB:
 numsingular += 1
 else:
 numunusable += 1

 if variationN > variationB:
 numnegreg += 1
 elif variationN < variationB:
 numnegsing += 1
 else:
 numnegunusable += 1
 startx += 1
 if startx >= self.imgx - self.mM:
 startx = 0
 starty += 1
 if starty >= self.imgy - self.mN:
 break

 results = [None] * 4
 results[0] = numregular
 results[1] = numsingular
 results[2] = numnegreg
 results[3] = numnegsing
 return results

 def getX(self, r, rm, r1, rm1, s, sm, s1, sm1):
 dzero = r - s
 dminuszero = rm - sm
 done = r1 - s1
 dminusone = rm1 - sm1

 a = 2 * (done + dzero)
 b = dminuszero - dminusone - done - (3 * dzero)
 c = dzero - dminuszero

 if a == 0:
 x = c / b

 discriminant = (b ** 2) - (4 * a * c)

 if discriminant >= 0:
 rootpos = ((-1 * b) + (discriminant ** .5)) / (2 * a)
 rootneg = ((-1 * b) - (discriminant ** .5)) / (2 * a)

 if abs(rootpos) <= abs(rootneg):
 x = rootpos
 else:
 x = rootneg
 else:
 cr = (rm - r) / (r1 - r + rm - rm1)
 cs = (sm - s) / (s1 - s + sm - sm1)
 x = (cr + cs) / 2

 if x == 0:
 a_r = ((rm1 - r1 + r - rm) + (rm - r) / x) / (x - 1)
 a_s = ((sm1 - s1 + s - sm) + (sm - s) / x) / (x - 1)
 if a_s > 0 or a_r < 0:
 cr = (rm - r) / (r1 - r + rm - rm1)
 cs = (sm - s) / (s1 - s + sm - sm1)
 x = (cr + cs) / 2
 return x

 def getVariation(self, block):
 var = 0
 for i in range(len(block) - 1):
 var += abs(block[i] - block[i + 1])

47

 return var

 def getNegativeVariation(self, block, mask):
 var = 0
 for i in range(len(block) - 1):
 colour1 = block[i]; colour2 = block[i + 1]
 if mask[i] == -1:
 colour1 = self.invertLSB(colour1)
 if mask[i + 1] == -1:
 colour2 = self.invertLSB(colour2)
 var += abs(colour1 - colour2)
 return var

 def flipBlock(self, block, mask):
 for i in range(len(mask)):
 if mask[i] == 1:
 block[i] = self.negateLSB(block[i])
 elif mask[i] == -1:
 block[i] = self.invertLSB(block[i])
 return block
 def invertLSB(self, abyte):
 if abyte == 255:
 return 256
 if abyte == 256:
 return 255
 return self.negateLSB(abyte + 1) - 1

 def negateLSB(self, abyte):
 temp = abyte & 0xfe
 if temp == abyte:
 return abyte | 0x1
 else:
 return temp

 def invertMask(self, mask):
 for i in range(len(mask)):
 mask[i] *= -1
 return mask

def recursion(image):
 if image.width >= minwidth and image.height >= minheight:
 hw = image.width / 2
 hh = image.height / 2
 try:
 print int(RSAnalysis(image, mM, mN).doAnalysis()[3]),
 except:
 print sys.exc_info()
 pass

 recursion(cv.GetSubRect(image, (0, 0, hw, hh))) # top left
 recursion(cv.GetSubRect(image, (hw, 0, hw, hh))) # top right
 recursion(cv.GetSubRect(image, (0, hh, hw, hh))) # bottom left
 recursion(cv.GetSubRect(image, (hw, hh, hw, hh))) # bottom right

if len(sys.argv) != 2:
 print 'You must specify an image file!'
 sys.exit()
else:
 path = sys.argv[1]

image = cv.LoadImage(path)
width = image.width
height = image.height

DEPTH = 1
mM = 4
mN = 1
minwidth = width / (2 ** DEPTH)
minheight = height / (2 ** DEPTH)
recursion(image)

48

APPENDIX B

RANDOM MESSAGE GENERATION CODE

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(int argc, char** argv)
{
 int i;
 char lower[] = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z', ' ' };
 char upper[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
 'Y', 'Z', ' ' };
 char numer[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ' };

 if (argc != 2) {
 printf("Usage: %s, <msg size>\n", argv[0]);
 return 0;
 }

 srand(time(0));

 for (i = 0; i < atoi(argv[1]); i++) {
 switch (rand() % 3) {
 case 0:
 printf("%c", lower[rand() % 27]);
 break;
 case 1:
 printf("%c", upper[rand() % 27]);
 break;
 case 2:
 printf("%c", numer[rand() % 11]);
 break;
 }
 }

 return 0;
}

Compilation, sample run and sample output of the program:

$ gcc randstrgen.c -o randstrgen
$./randstrgen 20 > msg20
$ cat msg20
UcGHoX6cO0 AZ174f vp

Desired length of the message should be provided as a command line parameter. In

this example, a 20 bytes long message has been generated and stored in a file named

"msg20". This file can be used for embedding operation at a later time.

49

APPENDIX C

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Çiftci, Efe
Nationality: Turkish (TC)
Date and Place of Birth: 21 May 1986, Samsun
Marital Status: Single
E-mail: efeciftci@gmail.com

EDUCATION

Degree Instution Year of Graduation

BS Çankaya Univ. Dept. of Computer
Engineering

2008

WORK EXPERIENCE

Year Place Enrollment

2009 - Present Çankaya Univ. Dept. of Computer
Engineering

Specialist

2008 - 2009 Avian Software Software Developer

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

1. Medeni, İ. T., Çiftci, E., "A Decision Support System Proposal for the
Engineering Students' Specialty Area Selection", WCIT 2011

2. Yıldırım, A. A., Çiftci, E., Özdoğan, C., "Geniş Veri Kümeleri Üzerinde
Paralel Veri Madenciliği Yaklaşımları: Wavecluster Yöntemi ile Öbekleme
Uygulaması", 3. Mühendislik ve Teknoloji Sempozyumu

3. Tokmak, V., Şengez, Y., Çiftci, E., Güngören, B., Aluftekin, N., Aktaş, Z.,
"Web Tabanlı İnsan Kaynakları Yönetim Sistemi", Akademik Bilişim 2008

HOBBIES

Reading books, listening to music, watching movies, swimming.

50

	ABSTRACT
	ÖZ
	TABLE OF CONTENTS
	LIST OF TABLES
	TABLES
	Table 2.1 Comparison of Steganography, Encryption and Watermarking 7
	Table 5.1 Image Groups 37
	Table 5.2 Test 2 Results 39
	LIST OF FIGURES
	FIGURES
	Figure 2.1 The Prisoners' Problem	4
	Figure 2.2 Steganography by Letter Shifting 10
	Figure 2.3 Hiding Messages After EOF 11
	Figure 2.4 RGB Composition 14
	Figure 2.5 Before and After States of 8 Pixels 18
	Figure 2.6 Effects of Flipping Bits 19
	Figure 2.7 Comparison of a Digital Image and Its GIF Version 21
	Figure 2.8 Histogram Comparison for LSB Method 22
	Figure 2.9 Digital Image Embedded in Another Digital Image 22
	Figure 3.1 RS Diagram of an Image 29
	Figure 4.1 Quadtree 32
	Figure 4.2 An Image with Quadtree Segmentation 33
	Figure 5.1 Highest and Lowest Initial Results 37
	Figure 5.2 ucid01049.bmp, Zoomed-in 37
	Figure 5.3 Embedding Process 38
	1.1 Outline of Thesis
	2.1 The Prisoners' Problem
	2.2 Watermarking
	2.3 Encryption
	2.4 History and Physical Examples of Steganography
	2.5 Digital Steganography
	2.5.1 Digital steganography by carrier format
	2.5.1.1 Digital audio
	2.5.1.2 Digital image
	2.5.1.3 Digital video
	2.5.1.4 Text and other formats
	2.5.2 Techniques for steganography on digital images
	2.5.2.1 Techniques on spatial domain
	2.5.2.2 Techniques on frequency domain
	3.1 Digital Images
	3.1.1 Steganalysis methods on spatial domain
	3.1.1.1 Sample pair analysis
	3.1.1.2 Chi-Square analysis
	3.1.1.3 Steganalysis of regular and singular groups
	3.1.2 Steganalysis methods on frequency domain
	3.2 Other Digital Media
	4.1 Quadtrees on Digital Images
	4.2 RS Steganalysis with Quadtrees
	6.1 Future Work

