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Abstract: The fractional Burgers equation describes
the physical processes of unidirectional propagation of
weakly nonlinear acoustic waves through a gas-filled
pipe. The Laplace homotopy perturbation method is dis-
cussed to obtain the approximate analytical solution of
space-fractional and time-fractional Burgers equations.
The method used combines the Laplace transform and
the homotopy perturbation method. Numerical results
show that the approach is easy to implement and accurate
when applied to partial differential equations of fractional
orders.
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1 Introduction
The space- and time-fractional Burgers equations have
been of considerable interest in recent literature [1,
19]. These equations have many applications in science
and engineering. The memory effect of the wall friction
through the boundary layer results in the fractional deriva-
tive. Other systems, such as waves in bubbly liquids and
shallow-water waves, give the same form. Some applica-
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tions associated with the space-fractional Burgers equa-
tion, can be found in, for instance, [20].

The fractional Burgers equation has been considered
by several authors recently. In [20], Sugimoto developed
an asymptotic and numerical analysis of the generalized
Burgers equation with a space-fractional derivative. El-
Shahed [2] obtained an analytical solution of the space-
fractional Burgers equation with β = 1

2 by considering
the Adomian decomposition scheme. Biler, Funaki and
Woyczynski considered the existence and uniqueness and
self-similar properties of solutions of the space-fractional
Burgers equation in [1]. In [15],Momani used the decompo-
sitionmethod to obtain approximate solutions for the gen-
eralized Burgers equation with time- and space-fractional
derivatives. In [16], Odibat, Momani and Alawneh used
the variational iteration method to investigate the effect of
varying the order of the time- and space-fractional deriva-
tives on the behaviour of solutions.

The generalized Burgers equation with space- and
time-fractional derivatives has been introduced in the
form (cf. [15])
∂αu
∂tα + ϵu ∂u∂x = υ ∂

2u
∂x2 − η

∂βu
∂xβ

, t > 0, 0 < α, β ≤ 1,

(1)

where ϵ, υ, η are parameters. We refer to equation 1 as
the time-fractional Burgers equation and to the space-
fractional Burgers equation in the cases {0 < α ≤ 1, η = 0}
and {0 < β ≤ 1, α = 1} respectively. The fractional deriva-
tives are considered in the Caputo sense. The general re-
sponse expression contains parameters describing the or-
der of the fractional derivatives which can be varied to ob-
tain various responses. Obviously, the integer-order Burg-
ers equation can be viewed as a special case of the gen-
eralized Burgers equation by putting the space- and time-
fractional order of the derivative equal to unity. In other
words, the ultimate behavior of the fractional system re-
sponse must converge to the response of the integer order
version of the equation.

Some famous methods have been presented to ap-
proximate the analytical solution of linear/nonlinear dif-
ferential equations (see, for example, [6] and [7]). Recently,
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the Laplace decompositionmethod has been suggested by
Khuri. In [12, 13], Khuri used Laplace transforms in ADM
and approximated the solution of a class of differential
equations. In [9] using a similar idea to that of the Laplace
decompositionmethod, the authors combined the Laplace
transforms and homotopy perturbation method to intro-
duced Laplace homotopy perturbation method.

In this study, we use the Laplace homotopy pertur-
bation method for finding the solution of the Burgers
equation in 1. This method has also been used for solv-
ing various kinds of ordinary/fractional order differen-
tial equations [8–10, 14]. This method is called the ho-
motopy perturbation transformmethod and combines the
Laplace transform’s properties and the homotopy pertur-
bation method [11, 14].

2 Basic definitions
In this section, we give some definitions and properties of
fractional calculus (cf. [4, 5, 17]).

Definition 1. The left-sided Riemann-Liouville fractional
integral of order µ ≥ 0 of a function f , f ∈ Cα , α ≥ −1 is
defined by

Iµ f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
Γ(µ)

t∫︁
0

f (τ)
(t − τ)1−µ dτ µ > 0, t > 0,

f (t) µ = 0.

Definition 2. The left-sided Caputo fractional derivative of
f , where f ∈ Cm−1 and m ∈ N ∪ {0} , is defined by

Dµ* f (t) =
∂µ f (t)
∂tµ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Im−µ

[︂
∂m f (t)
∂tm

]︂ m − 1 < µ < m,
m ∈ N,

∂m f (t)
∂tm µ = m.

Note that

(i) Iµt f (x, t) =
1
Γ(µ)

t∫︁
0

f (x, t)
(t − s)1−µ µ > 0, t > 0

(ii) Dµ*t f (x, t) = I
m−µ
t

∂m f (x, t)
∂tm , m − 1 < µ ≤ m.

Definition 3. The Laplace transform of f (t) is given by

F(s) = L[f (t)] =
∞∫︁
0

e−st f (t)dt.

Definition 4. The Laplace transform of the Riemann-
Liouville fractional integral is defined by

L
{︀
Iµ f (t)

}︀
= s−µF(s).

Definition 5. The Laplace transform of the Caputo frac-
tional derivative is defined by

L
{︀
Dµ f (t)

}︀
= sµF(s) −

n−1∑︁
k=0

s(µ−k−1)f (k)(0), n − 1 < µ < n.

3 Application of the Laplace
homotopy perturbation method

In this section we use the Laplace homotopy perturbation
method [11, 14] to solve a type of space-fractional Burgers
equation and time-fractional Burgers equation.

3.1 The Laplace homotopy perturbation
method for space-fractional Burgers
equation

The purpose of this section is to discuss the use of
Laplace transform algorithm and the homotopy perturba-
tion method for solving space-fractional Burgers equation
of the form

∂u
∂t + ϵu

∂u
∂x = υ ∂

2u
∂x2 − η

∂βu
∂xβ

x > 0, t > 0, 0 < β ≤ 1,

(2)

with the initial condition

u(0, t) = f (t), ux(0, t) = g(t).

First we explain the main idea of Laplace homotopy
perturbation method. The method consists of applying
Laplace transform in relation to the space on both sides
of equation 2 so that

L

[︂
∂u
∂t

]︂
+ ϵL

[︂
u ∂u∂x

]︂
− υL

[︂
∂2u
∂x2

]︂
+ ηL

[︂
∂βu
∂xβ

]︂
= 0.

Using the differential property of Laplace transform and
the initial conditions we obtain

∂L[u(x, t)]
∂t + ϵL

[︂
u(x, t)∂u(x, t)∂x

]︂
− υ(s2L[u(x, t)]

− su(0, t) − ux(0, t))

+ η(sβL[u(x, t)] − sβ−1u(0, t)) = 0,



LHPM for approximate solution of space- and time-fractional Burgers equations | 249

⇒ L[u(x, t)] − s−1f (t) − s−2g(t) − ηυ s
β−2L[u(x, t)]

+ ηυ s
β−3f (t) − 1

υ s
−2 ∂L[u(x, t)]

∂t

− ϵυ s
−2L[u(x, t)∂u(x, t)∂x ] = 0. (3)

In the next stage, we construct a homotopy V(r, p) : Ω ×
[0, 1] → R using the homotopy perturbation technique
which satisfies

H(V , p) = (1 − p)
[︀
L[V(x, t)] − u0(s, t)] + p [L[V(x, t)]

− s−1f (t) − s−2g(t) − ηυ s
β−2L[V(x, t)] + ηυ s

β−3f (t)

−1υ s
−2 ∂L[V(x, t)]

∂t − ϵυ s
−2L

[︂
V(x, t)∂V(x, t)∂x

]︂]︂
= 0,

or

H(V , p) = L[V(x, t)] − u0(s, t) + p u0(s, t) − p s−1f (t)

− p s−2g(t) − p ηυ sβ−2L[V(x, t)] + p ηυ sβ−3f (t)

− pυ s
−2 ∂L[V(x, t)]

∂t − p ϵυ s−2L
[︂
V(x, t)∂V(x, t)∂x

]︂
= 0, (4)

where p ∈ [0, 1] is an embedding parameter and u0(s, t) =
s−1f (t) + s−2g(t) is the initial approximation of equation 2
that satisfies the initial conditions. Obviously, if p = 0,
equation 4 becomes

L[V(x, t)] − u0(s, t) = 0.

When p = 1, equation 4 is then the main equation under
consideration equation 3. In topology, this deformation is
called homotopic. Using the parameter p, we expand the
solution in the form

V(x, t) = V0(x, t) + pV1(x, t) + p2V2(x, t) + p3V3(x, t)
+ . . . . (5)

Setting p = 1 results in the solution of equation 2,

u(x, t) = V0(x, t) + V1(x, t) + V2(x, t) + V3(x, t) + . . . .

Substituting equation 5 into equation 4 and collecting the
terms with the same power of p, we obtain

p0 : L[V0(x, t)] − u0(s, t) = 0,
⇒ V0(x, t) = L−1[u0(s, t)] = L−1[s−1f (t) + s−2g(t)]

= f (t) + xg(t).
p1 : L[V1(x, t)] + u0(s, t) − s−1f (t) − s−2g(t)

− ηυ s
β−2L[V0(x, t)]

+ η
υ s

β−3f (t) − 1
υ s

−2 ∂L[V0(x, t)]
∂t

)︂
− ϵυ s

−2L

[︂
V0(x, t)

∂V0(x, t)
∂x

]︂
= 0,

⇒ V1(x, t) = L−1[−u0(s, t) + s−1f (t) + s−2g(t)]

+ L−1
[︁η
υ s

β−2L[V0(x, t)]
]︁

− L−1
[︁η
υ s

β−3f (t)
]︁
+ L−1

[︂
1
υ s

−2 ∂L[V0(x, t)]
∂t

]︂
+ L−1[ ϵυL

[︂
V0(x, t)

∂V0(x, t)
∂x

]︂
.

...

3.2 The Laplace homotopy perturbation
method for time-fractional Burgers
equation

Consider the following form of time-fractional Burgers
equation

∂αu
∂tα + ϵu ∂u∂x = υ ∂

2u
∂x2 , t > 0, 0 < α ≤ 1, (6)

with the initial condition

u(x, 0) = f (x).

The methodology consists of applying Laplace transform
in relation to the time on both sides of equation 6,

L

[︂
∂αu
∂tα

]︂
+ L

[︂
ϵu ∂u∂x

]︂
− L

[︂
υ ∂

2u
∂x2

]︂
= 0.

Using the differential property of Laplace transform and
initial condition we obtain

sαL[u(x, t)] − sα−1f (x) + ϵ L
[︂
u(x, t)∂u(x, t)∂x

]︂
− υ ∂

2L[u(x, t)]
∂x2 = 0

or

L[u(x, t)] − s−1f (x) + ϵ s−αL
[︂
u(x, t)∂u(x, t)∂x

]︂
− υ s−α ∂

2L[u(x, t)]
∂x2 = 0. (7)

Using the homotopy perturbation technique, we construct
a homotopy V(r, p) : Ω × [0, 1] → R which satisfies

H(V , p) = L[V(x, t)] − u0(x, s) + p u0(x, s) − p s−1f (x)

+ p ϵ s−αL[V(x, t)∂V(x, t)∂x ]

− p υ s−α ∂
2L[V(x, t)]
∂x2 = 0. (8)
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where p ∈ [0, 1] is an embedding parameter and u0(x, s) =
s−1f (x) is the initial approximation of equation 6 that satis-
fies the initial conditions. Again, if p = 0, then equation 8
becomes

L[V(x, t)] − u0(x, s) = 0,

andwhen p = 1, equation 8 is again themain equation un-
der consideration, namely equation 7. Substituting equa-
tion 5 into equation 8 and collecting the terms with the
same power of p, we obtain

p0 : L[V0(x, t)] − u0(x, s) = 0,
⇒ V0(x, t) = L−1[u0(x, s)] = L−1[s−1f (x)] = f (x).

p1 : L[V1(x, t)] + u0(x, s) − s−1f (x)

+ ϵs−αL
[︂
V0(x, t)

∂V0(x, t)
∂x

]︂
− υ s−α ∂

2L[V0(x, t)]
∂x2 = 0,

⇒ V1(x, t) = L−1[−u0(x, s) + s−1f (x)]

− L−1
[︂
ϵs−αL[V0(x, t)

∂V0(x, t)
∂x ]

]︂
+ L−1

[︂
υ s−α ∂

2L[V0(x, t)]
∂x2

]︂
.

...

4 Illustrative examples
For purposes of the illustration of Laplace homotopy per-
turbation method for solving Burgers equation of frac-
tional order, we present two examples. In the first ex-
ample, we consider a space-fractional Burgers equation,
while in the secondexample,we consider a time-fractional
Burgers equation.

Example 1. Consider the space-fractional Burgers equa-
tion given in [15] by

∂u
∂t + u

∂u
∂x = υ ∂

2u
∂x2 − η

∂βu
∂xβ

x > 0, t > 0, 0 < β ≤ 1, (9)

with the initial condition

u(0, t) = 0, ux(0, t) =
1
t −

π2
2υt2 ,

u(x, 1) = x − π tanh
[︁πx
2υ

]︁
.

The exact solution, for the special case η = 0 is given by

u(x, t) = xt −
π
t tanh

[︁ πx
2tυ

]︁
.

Using equation 6 and the initial conditions, we can obtain
the approximations

V0(x, t) = x
(︂
1
t −

π2
2υt2

)︂
,

V1(x, t) =
π4x3

24 t4υ3 + x3−βη
Γ[4 − β]

(︂
1
t −

π2
2υt2

)︂
,

V2(x, t) = −
π6x5

240 t6υ5 + π4x5−βη
t4υ4Γ[6 − β] −

π4x5−ββη
4t4υ4Γ[6 − β]

− 3π2x5−βη
t3υ3Γ[6 − β] +

π2x5−ββη
t3υ3Γ[6 − β] +

3x5−βη
t2υ2Γ[6 − β]

− x5−ββη
t2υ2Γ[6 − β]+

x5−2βη(π4xβΓ[6 − 2β] + 2t2ηυ(−π2 + 2tυ)Γ[6 − β]
4t4υ4Γ[6 − 2β]Γ[6 − β] ,

...

The solution in series form is given by

u(x, t) = x
(︂
1
t −

π2
2υt2

)︂
+ π4x3
24 t4υ3 −

π6x5
240 t6υ5

+ x3−βη
Γ[4 − β]

(︂
1
t −

π2
2υt2

)︂
+ π4x5−βη
t4υ4Γ[6 − β]

− π4x5−ββη
4t4υ4Γ[6 − β] −

3π2x5−βη
t3υ3Γ[6 − β] +

π2x5−ββη
t3υ3Γ[6 − β]

... (10)

Setting β = 1
2 in equation 10, we reproduce the solution

given in [2] by

u(x, t) = x
(︂
1
t −

π2
2υt2

)︂
+ π4x3
24 t4υ3 −

π6x5
240 t6υ5 + 8x5/2η

15
√
πtυ

+ . . . .

Also, we obtain the exact solution when η = 0 in equa-
tion 10 with

u(x, t) = x
(︂
1
t −

π2
2υt2

)︂
+ π4x3
24 t4υ3 −

π6x5
240 t6υ5 + . . . .

We observe that the results obtained by this method are
exactly same as the solution given in [15] which uses the
Adomian decomposition method.

Example 2. Consider the time-fractional Burgers equation
given in [15] by

∂αu
∂tα + u ∂u∂x = υ ∂

2u
∂x2 t > 0 , 0 < α ≤ 1,

with the initial condition

u(x, 0) = f (x) =
µ + σ + (σ − µ) exp( µυ (x − λ))

1 + exp( µυ (x − λ))
.
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Figure 1: The approximate solution (A).
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Figure 2: The exact solution (B).

Figure 3: The approximate solution for α = 1
2 (C).

Figure 4: The approximate solution for α = 3
4 (D).

The exact solution for the special case α = 1 is given by

u(x, t) =
µ + σ + (σ − µ) exp( µυ (x − σt − λ))

1 + exp( µυ (x − σt − λ))
. (11)

Using equation 9 and the initial conditions, we can obtain
the approximations

V0(x, t) = f (x),

V1(x, t) = (υf (2)(x) − f (x)f
′
(x)) tα

Γ[α + 1] ,

V2(x, t) = (2f (x)(f
′
(x))2 + (f (x))2f (2)(x) − 4υf

′
(x)f (2)(x)

− 2υf
′
(x)f (3)(x) + υ2f (4)(x)) t2α

Γ[2α + 1] ,

...

The solution in series form is given by

u(x, t) = f (x) + (υf (2)(x) − f (x)f
′
(x)) tα

Γ[α + 1]
+ (2f (x)(f

′
(x))2 + (f (x))2f (2)(x) − 4υf

′
(x)f (2)(x)

− 2υf
′
(x)f (3)(x) + υ2f (4)(x)) × t2α

Γ[2α + 1]
+ . . . . (12)

The results for the exact solution equation 11 and the ap-
proximate solution equation 12 for the special case α = 1
are shown in Figures 1 and 2. It can be seen from Figure 1
that the solution obtained by the present method is nearly
identical to the exact solution. Figures 3 and 4 show the
approximate solutions when α = 1

2 and α =
3
4 respectively.

The parameters have the values υ = 0.1, µ = 0.4, σ =
0.6, λ = 0.125. From the graphical results in Figures 3
and 4, we may also conclude that the approximate solu-
tion obtained using the Laplace homotopy perturbation
method is in agreement with the approximate solution ob-
tainedusing the variational iterationmethod [16] andAdo-
mian decomposition method [15] for all values of x and t.
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5 Conclusion
The Laplace homotopy perturbation method is a powerful
method for handling linear and nonlinear fractional par-
tial differential equations. This method has been success-
fully applied to fractional space and time Burgers equa-
tions. This technique produces the same solution as the
Adomian decompositionmethodwith the proper choice of
initial approximation.

Conflict of interest: The authors declare that there is no
conflict of interests regarding the publication of this paper.
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