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Abstract:

In this paper we presented a new method (Eigen-Coordinates (ECs)) that can be used for calculations of

the critical points (CPs) energy of the interband-transition edges of the heterostructures. This new method
is more accurate and complete in comparison with conventional ones and has a wide range of application
for the calculation of the fitting parameters related to nontrivial functions that initially have nonlinear fitting
parameters that are difficult to evaluate. The new method was applied to determine the CPs energies
from the dielectric functions of the MBE grown GaAs;_,P, ternary alloys obtained using spectroscopic
ellipsometry (SE) measurements at room temperature in the 0.5-5 eV photon energy region. The obtained
results are in good agreement with the results of the other methods.
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1. Introduction

In the semiconductor heterostructures, the energy band
Ei, Ej and E, occur at the A, T and X valleys near the
Brillouin zone boundary. The energy bands in the higher
levels above Ej, which occur at [' points, are split due
to spin-orbit interactions. Determining the energy band

*E-mail: dumitru@cankaya.edu.tr
TE-mail: sozcelik@gazi.edu.tr (Corresponding author)

structure variations on alloy composition in heterostruc-
tures is important in the design of opto-electronic devices.
The composition dependence of the higher energy gaps
(named critical energy points) and spin-orbit splitting en-
ergy can be obtained by evaluation of the dielectric func-
tion (DF). The DFs and optical properties of the semicon-
ductor structures can be obtained precisely by evaluation
of spectroscopic ellipsometry (SE) measurements [1-5]. To
determine the CP energies from DF for a layer or lay-
ered semiconductor structures several models were devel-
oped through Harmonic Oscillator Approximation (HOA)
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and Effective-Medium Approximation (EMA), which are
reviewed in Ref. [6]. For analyzing the suitable CP en-
ergies for thick epitaxial layers, Yoon et al. suggested
that the associated optical properties of the grown layer
can be considered as the characteristics of bulk material,
if the layer thickness is over the critical thickness [7].

In our previous works, the CP energies of the
GaAsi_P,/GaAs (100) ternary alloys were obtained by
line-shape analysis on their dielectric functions. Alloy
compositions of the alloys were determined using high
resolution X-ray diffraction [1]. Also, a bowing parameter
of the band gap energy was obtained from SE study due
to disordered phosphorous content. In this paper we pre-
sented a new method that can be used for calculations of
the critical points energies and the bowing parameter of
band gap energy due to disordered phosphorous content
of GaAs,_,P,/GaAs (100) ternary alloys, which are grown
by using MBE [1]. This new method enables transforma-
tion of a wide class of functions, initially containing a set
of nonlinear fitting parameters, into a set of slope lines [8].
It is more accurate and complete in comparison with con-
ventional methods and has a wide range of application for
calculation of the fitting parameters related to nontrivial
functions that initially have nonlinear fitting parameters
that are difficult to evaluate. The detailed calculations
are depicted in the Mathematical Appendix.

2. Experimental procedure

Semiconducting p-n junction GaAsi_,P, ternary alloys
(A1-A5) with different phosphorous contents on epiready
n-GaAs (100) substrate were grown by using a solid
source VBOH-MBE system with continues growth method.
The lattice-match structures were obtained by growing a
1 pm thick graded index n-GaAsP layer on n-GaAs buffer
layer. The p-n junction structures were obtained by grow-
ing a thick p-GaAsP layer on a n-GaAsP layer as pre-
sented in Figure 1, schematically. The growth procedure
can be seen in Ref. [1], in detail.

The dielectric functions of the structures were obtained by
using the Jobin Yvon variable angle spectroscopic rotating
analyzer ellipsometry, which has an energy resolution of
0.01 eV. The ellipsometric data were recorded in 0.5-5 eV
photon energy region with 0.01 eV increments. The angle
of incidence of the light beam was fixed at 70° on the sur-
face of the samples. The SE measurements for the sam-
ples were made at room temperature under atmospheric
conditions [1]. Before the measurements, the surface of
the samples was cleaned using methanol to remove any
contamination artifacts. Preceding the cleaning step, the
sample was rinsed thoroughly in deionized water with a

p-GaAs, (P(Be)

n'(ia.‘\S 1-x Px (Si

n-GaAs Buffer

n-GaAs Substrate

—

Figure 1. Schematic structure of the grown GaAs;_,P,/GaAs het-
erostructures [1].

resistivity of 18 MQ-cm.

3. Application of the ECs method for
calculation of the CP energies

3.1. Eigen-Coordinates (ECs) method

The main question regarding ECs method is in what cases
one can obtain the basic linear relationship (BLR) for the
function that initially contains a set of nonlinear fitting
parameters? |If this procedure can be realized for a set
of functions which initially contain nonlinear fitting pa-
rameters, then the nonlinear mean-square method can be
reduced to the routine procedure which is known as the
linear least square method (LLSM). This reduction is im-
portant because in many cases it provides the global fit-
ting minima in the space of the fitting parameters.

In order to obtain the positive answer it is necessary
to obtain the corresponding differential equation that is
satisfied by the chosen hypothesis. If the unknown pa-
rameters {Cy (k = 1,2,...,s)} of the corresponding dif-
ferential equation form a linear combination (the set of
parameters can be related with initial set of parameters
{A(l=1,2,...,q)} in a nonlinear way) then the answer
for the question posed above is positive, and in other cases
is negative.

The basic principles of the ECs method are outlined in
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[8, 9] The application in detection of impedances and di-
electric spectroscopy can be found in references [10-22].
The reader can find some information about the applica-
tion in recognition of different statistical distributions in
[23-25] and to dynamical chaos in [26].
It is known that the complex reflectance ratio of the po-
larized light

p= - tan(W)e®
is determined by the SE technique. Here, r, and r; are the
reflection coefficient of the polarized light (p and s refer
to parallel and perpendicular to the plane of incidence,
respectively) and W and A are ellipsometric data. The
dielectric function € = €1 + &, (&1 and &; are the real and
imaginary part of the DF, respectively) of the sample was
obtained by

(1 - p)

(1+p7)

€ = sin’ @+ sin’ <ptan2 )

M

where ¢ is angle of incidence of the light beam [2, 3, 27].
In this paper we used the ECs method to determine the
suitable CP energies of the GaAsP ternary alloys from
DF spectra, given by

e(E) = C—Ae®(E — E.+1il)", (2)

where A is the amplitude, E is the photon energy, E.
is the critical point energy, I' is the broadening factor

and @ is the excitonic phase angle. The exponent n has
1

two-dimensional, threze—dimensional, and excitonic critical
points, respectively [1-5].

It is noted that C, A, ®, E. and I are the fitting parameters.
In the case of n # 0, by applying the ECs method we

obtained:

the values of —%,0 and —1 for the one-dimensional,

Y =GXi + GCXo + GXs+ GXy + GX, 3)

where

Y =yE2—(n +2)/yEdE—(..,>,

Xo=y—{(.),
nE?
X3=7—(...), (4)
Xy =n/sz,
X5 =nE—()

In addition we have:

C1 :Ec,
C=—(E2+17),
G =C,
G=T,

and
G =CE,

©)

such that G5 = C; - G and G, = —(C3 + C3), respectively.
Finally, the parameters [ and ® have the following forms:

r=[(E+c)]

and

& — arctan | ——2CT
T AN\ BT 2GAE, |
(6)

For the next case, n = 0, we obtained the fitting parame-
ters C,A, &, E., " by applying ECs method as follows:

Y = COXi + GXo + GXs + CiXa, (7)

where

Y:gEz—Z/yEdE—(...) (8)

and

e :yE—/ydE—(...), ¢ =2E,,

X, =y —(...), G=—(El+T7),
X3:E2—(...), C3:—AC;S¢,
Xy =E—{(...), Cy =Acos PE, — Asin .

&)

Hence, the fitting parameters E., [, A and ¢ can be ob-
tained as
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and

Acosd = — 2G5,
Al sind = — C1C3—C4,

and

(GG +G)

N

Asin® =

()

4. Results and discussions

In the present study, we suggested a new method that
was used for calculations of the critical points energies
and the bowing parameter of the band gap energy due
to disordered phosphorous content of the MBE grown
GaAsi_,P,/GaAs (100) ternary alloys. In our previous
works, the CP energies and band gap bowing parame-
ter due to the disordered phosphorous in the layers of the
structures were calculated by using a second derivative
method [1, 5]: The second-derivative spectra (in Figure 3
in Ref. [1]),

d’e

ﬁ’

of the real parts of experimental DF were used to perform
the line-shape analyses calculated numerically. The cal-
culated second-derivative spectra were fitted to standard
critical-point line shapes. The obtained best-fit critical
point parameters E. and [ are listed in 5th and 7th col-
umn in Table 1 and presented in Figure 3a for comparison
with results of this work. The alloy compositions of the
compounds, taken from Ref. [1], are also presented in Ta-
ble 1.

SE measurements were performed in the photon energies
range of 1.5-5 eV with 0.01 eV increment at the room tem-
perature for 70° angle of incidence. The recorded real
parts of DF's spectra €1 of GaAs;_,P, alloys (A1-A5) con-
taining different P content are shown in Figure 2a. The
measured imaginary &, and real parts & of the DF of sam-
ple A2 are represented in Figure 2b as an example. More
explanations of these spectra can be seen in Ref. [1, 5] As
clearly seen in Figure 2a, the peaks corresponding to the
absorption edge in the real part of the DFs are shifted
to higher energies with increasing P content in the al-
loys. The shifting for the fundamental band E; is denoted
by arrows in Figure 2a. It is well known that the in-
tensity of the E, transition energy is reduced due to the
oxide layer on the surface. The surfaces of the samples
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Figure 2. (a) Measured real parts of the dielectric functions of
GaAs;_,P, alloys in various alloy compositions, (b) imag-
inary (dot line) and real parts (solid line) of the dielectric
function of Sample A2 [1].

were not chemically etched, since the etching of the sur-
face to remove the oxide overlayer can cause roughness
of surface. However, the E; transition energy was ob-
served clearly and was well resolved as seen Figure 2. In
the imaginary part of the DF &, spectra, four main peaks
were observed as seen in solid line in Figure 2b, which
correspond to the CP energies of the interband-transition
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edges: Ey, Ey, Ey + Ay, E|, and E; respectively. The fun-
damental absorption edge (band gap) Ey is located at the
["-point in Brillouin zone. E; and E; 4+ /A transitions take
place at the A-line in Brillouin zone. The A is corre-
spondent to the spin-orbit splitting in band at A-line. E;
and E; is correspondent to the transition energy near -

|

point and X-point in the Brillouin zone, respectively. The
CP energies of samples may be estimated from experi-
mental €, spectra. As these data are not correspondent
to accurate CP energies, several analyzing models had
been developed in order to obtain accurate CPs from pure
ellipsometric data [28].

Table 1. The critical point (CP) energies, line broadening factors I, excitonic phase angle ¢ and amplitudes A of the DFs obtained ECs method for
GaAsi_,P,/GaAs structures. Also, the CP energies and line broadening parameters of the alloys obtained by using line shape analysis
(LSA) method including evaluation of the second derivative of the DF are presented to compare with obtained ECs method.

CP Energies (eV) Parameters
41 a (o
Samples Alloy composition? (%x) £Cs LSAC - I (E\L/)SAG ® A
Eo 1.5217 1.510 0.0391 0.0377 -0.7850 1.050
Eq 2.9361 2.938 0.1077 0.1167 -0.0380 55.365
A1l 7 Eq+ AE; 3.1838 3177 0.2829 0.1490 -0.0921 43.670
Eg 4.3676 4.370 0.0072 - 11374 0.200
E, 4.7254 4.740 0.3969 - -0.0954 106.388
Eo 1.6267 1.620 0.0410 0.0510 -1.3960 0.530
Eq 2.9950 2.969 0.1255 0.1252 -0.0431 144.996
A2 15 Eq + AE; 3.2447 3178 0.3008 0.1579 -0.0956 136.919
E, 4.3994 4.400 0.0203 - 15708 0.058
E; 4.7470 4.750 0.5088 - -0.1187 242.228
Eop 1.7162 1.710 0.0498 0.0536 15708 0.417
Eq 3.0343 3.051 0.1335 0.1530 -0.0452 146.595
A3 23 Eq + AE; 3.2870 3.305 0.3538 0.1874 -0.1109 139.860
E; 4.7902 4.440 0.0347 - -0.4907 0.828
Eg 4.4280 4.790 0.5952 - -0.1376 261.611
Eo 1.7881 1.780 0.0102 0.0611 -1.0291 0.168
Eq 3.0857 3.061 0.1502 0.1710 -0.0500 102.948
A4 32 Eq+ AE; 3.3420 3.350 0.3782 0.1913 -0.1474 116.715
Eg 4.4616 4.470 0.0251 - -0.3934 0.905
E 4.7906 4.790 0.2691 - -0.0620 215.254
Eo 1.9142 1.910 0.0246 0.0714 15708 0.104
Eq 3.1100 3.190 0.1633 0.1860 -0.0540 98.814
A5 39 Eq+ AE; 3.3915 3.367 0.3815 0.1991 -0.1160 116.925
Eg 4.4874 4540 0.0499 - -0.4010 s 1.200
E; 4.8279 4.820 0.2051 - -0.0470 221.573

9Taken from Ref. [1]

Using the measured real part of the DF data which are
given Figure 2a, values of the critical point energy E,, the
broadening factor I and the excitonic phase angle ¢, and
also amplitude A of the DF against the concentration x
in the alloys, can be calculated with the help of expres-
sions (5, 6) and (10, 11). The calculated results using ECs
method are presented in Table 1 and also shown on Fig-
ure 3b. As seen in Table 1, the obtained values of CPs
energies using ECs method were in good agreement with
the ones calculated by line shape analysis (LSA) method
including the evaluations of the second derivative of the

DF of the GaAsP heterostructures. The broadenings of
the CP energies, calculated with these two methods, in-
creases with increasing phosphorous composition as seen
in the Table 1 and in Figure 4. The increase in broadening
can be explained by alloy scattering, statistical fluctua-
tions, and large-scale compositional variations [1, 30]. The
values of the broadening factor in case of the ECs method
are bigger than obtained by LSA method. This may be
explained with capability of noise reduction of the ECs
method. Also, the line broadening of the Ej, and E, tran-
sitions could be calculated by ECs method although there
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were difficulties to obtain them with LSA method for these
samples.

In comparing Figure 3a and 3b, it can be seen that the
change of the CP energies, obtained using LSA method
(including second derivative) in our previous work [1] and
the ECs method, versus P composition in the samples,
have a similar trend. Also, as seen in Figure 3b, the bow-
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ing parameter (b) for the fundamental transition energy
Ey has been found as 0.218 eV. The bowing of the band
gap energy is due to disordered phosphorous content in
the ternary alloy. Obtained bowing parameter using ECs
methods is very close to the value of the obtained second
derivative method [1] as seen in Figure 3a, and also to the
reported theoretical and experimental values [29].
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Figure 3. The calculated critical point energies Eq, £q, E1 + A4, Ey and E; transition edges of GaAs;_,P,/GaAs structures using (a) line-shape
analysis method [1] (b) Eigen-coordinates method. The dots show the calculated values, and the solid lines correspond to the fits. As
seen figures (a) and (b), obtained CP energy values and the bowing of the band gap energy versus P content in the alloys gained by
using these two computational methods are very close. Also, the spin-orbit splitting energy is reduced by increasing P composition.
(Critical point energies, Eq, Eq, E1 + A, Ej and E; values of GaAs and GaP were taken by Ref. [2].)

5. Basic conclusions

We presented a new method that can be used for calcu-
lation of the critical points energies and the bowing pa-
rameter of the band gap energy due to disordered phos-
phorous content of the GaAs;_,P,/GaAs (100) ternary al-
loys, which are grown by using MBE. Here, we also want
to stress the importance of applications of the original
ECs method for calculation of the critical points. The tra-

ditional method [1] related to calculation of the critical
points is based on the calculation of the second deriva-
tives from Equation (1) and subsequent fitting realized
with the necessary polynomials depending on the order
n. But this method is not free from uncontrollable errors
related to calculation of the second derivative, subsequent
smoothing and fitting of the noisy data that also contain
the uncontrollable errors. The new method can be con-
sidered as alternative to the conventional method and has
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the following advantages:

1. It does not use any derivatives and the derivative
operation in some cases is replaced by integration
(that can be considered as the natural smoothing
procedure).

2. The basic linear relationship that is mathematically
equivalent to initial functions in Equation (1) helps

0-24 L ¥ T ¥ J T ¥ L T ' T T ¥
(a)
020 _‘__.a-"l" T
-—7 o
[ +A, // pe
0.16 d
',—-"""“I o
% 012 o ]
=
T,
0.08
0_00..,.1.A.A|A.AAx.xlx...

0.0 01 0.2 0.3 04 05

Composition x

to find the global fitting minima including the val-
ues of the critical points. This important feature
undoubtedly increases the level of significance in
calculation of the critical points.
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Figure 4. The broadening factors I corresponding to Ey, £1, and Ey + A using (a) line-shape analysis [1] (b) Eigen-coordinates method. The
broadening of the CPs is increased with increasing the P content.

Appendix A: Mathematical appendix

The application of the ECs method to our problem is ex-
plained in detail below.
We present two cases, namely when n =0 and n # 0.

Case 1
The starting point is the expression of
e(E)=C—Ae®In(E—-E +ilMn=0. (A1)

The photon energy E can be modified experimentally. The
fitting parameters are C,A, &, E,, T.

Our aim is to linearize the expression of (A1), where € =
y + iz, where y =Re and z = ¥e.

By using e® = cos ® + i sin ® we obtain

In(E—E.+ilN)=1Ilnr+ib, (A2)
where
r=+/(E—E)+T?
and
r
6 = arct .
arctan E_E
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As a result we obtain

e(E) =C — Ae’® In(E — E. + il

(A3)
=C — A(cos ® + isinP)(lnr + i0),

or

g(E) =C —A(lnrcos® — Bsin D)

(A4)
— Ai(lnrsin® + O cos D).

Finally, we identify the real and the imaginary part of
e(E) as

R(e(E)) =y =C—A(lnrcos® — Osind), (A5)

X (e(E)) = z= —A(lnrsin® + 6 cos ), (A6)

C—y=Alnrcos®— Absin P, (A7)

z = —A(lnrsin® + O cos D). (A8)

By taking the derivative with respect with to £ we obtain

dr _
(lnr)’:dE :7E EE ZEC rz:
( - c) + (Ag)
0 __ T
dE ~(E—E) +T17?
/ / . df
y'=—Acos®(lnr) +Asm¢d—E, (A10)
"= —Asin®(ln )’—Acoscbﬁ (A11)
7 = i r JE
Finally we obtain:
E—-E,
T
( __‘g * (A12)
+Asin¢72,
(E—E) +T72
Z’=—Asin¢%
(E - _f)r+ (A13)
—AcosP—rs—o.
(E—E) +T2
We can write that
_ C—y —Asind
lnr_ﬁ —z  Acos®
(A14)

1
:ﬁ[(C— y)Acos ® — Az sin ]

(C—y)cos® _zsin®
A A

Let us make the following notations u = Alnrand v = Af.
As a result we obtain

C — y =cosPu —sin v,
(A15)
—z =sindu + cos dv.

By using the Cramer’s method we obtain the following
solutions

C—y —sind '
YL cosd =(C —y)cos®d —zsind, (A16)
cos® C—y| '
T —sind —z | (C—y)sin® —zcos ®.

(A17)
At this stage we take the derivatives of v and v with re-
spect to E and we obtain

E—E,
u' = —cosdy’ —sindz = A¥, (A18)
(E—E)+T172
! H ’ ! r
vV =sindy' —cos®z' = -A————  (A19)
(E—E) +T12
From (A18) and (A19) we obtain
ycos by’ + ysindz’ =(E — E.) sin dy’ (A20)
—(E — E.) cos 7
or
(E—E) _ cosdy’ +sindZ
T sindy’ —cosdz’’ (A21)
As a result we get
Ey =E..y — E,.cotd.Z + E.cotd.7
(A22)

+cotd.y’ +y.7.

Taking into account that

y' [(E —EP+ rz] — _Acos® (E — E,) — [Asin &,
(A23)

YE? + y'E2 + y'T? —2EE.y = — Acos ®E + Acos OE,
—[Asind
(A24)

we conclude that

y'E? =2EE.y' —y' (EZ +T7?) — Acos OE

(A25)
+ A(cosPE, — T sind).
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By integration followed by a separation of terms which do
not contain to the left hand side we obtain

Yy
To :/y/EZdE =yE? - Z/gEdE
Jo (A26)

=F%y — Eyo — ZIyEdE,

y
T = ] 2E.Ey'dE = 2E, / y'EdE

Yo

(A27)
=2E, Ey—/ydE
:ZECE—ZEC/ydE— 2E . Eyyo,
T. :/ E2+T?)y'dE = (EZ +T7 / "dE
o= | )y ( ) [y AZ6)
=(EZ+ )y — (EZ+T?)yo,
T3:/—Acos¢EdE:—Acos¢/EdE
£ £ (A29)
:—Acoscb? +Acos¢7,
T4 :/(Acosd)Ec)dE:Acosd)EC/dE
(A30)

=Acos OE.E — Acos PE_ Ey,

T5 = /—Asin O dE = —Asin®I' E4+Asin ®IEy. (A31)

By regrouping the terms we obtain

yE? — Z/yEdE — E2yo = 2E.E — 2F, / ydE

—2E Egyo — (E2+T?) y + (EZ+T7) yo
2

(A32)
E? Eg
—Acos CD? + Acos (D? + Acos PEE

—AcosOE.Eqg — Asin®lE + Asin ®IEy.

All terms containing £ and y, are constants and we in-
clude them to (...) which denotes the average of the error
subtraction. Therefore, we obtain

Y = yE? —2/gEdE— (... (A33)

Taking into account that Y is of the form
Y =CXi + GXo + GXg+ G Xy (A34)

By identification we obtain the constants C; and X; as
given below

X :yE—/ydE—(...), G =2E,,

X, =y —(...), G=—(El+T7),
X3:E2—(...), C3:_Ac;s¢’
Xy =E—{(...), Cy =Acos PE, — Asin .

(A35)

We notice that E. is very important in finding the critical
point. We can solve the system of equations with respect
with the fitting parameters and we obtain the following

G / c?
E.==, T=+\/-C-—-.
2 G-3

We notice that

results

(A36)

Acos® = — 203,
Al sin®d = — C1C3— C4

and
asine = {06+
C:
V-G — &
Case 2

By analogy one can obtain the next BLR.

In this case the expression to start with is ¢(E) = C +
Ae®In(E —E, +il)", n #0.

The fitting parameters are the same as before. As a result

we obtain
(E—E +iM" =r"e"?, (A37)
where
r = (E —_ Ec)z + rZ
and

r
6 = arctan E_E
By inspection we observe that
(E—Ec+ilN" =(cos® + isin®) r" (cosn® + isinn®)
=r" [(cos ® cos nf — sin ®sin nb)
+ i (sin® cos nO + cos P sin n6)]
=r"[cos (¥ + n6 + n)
+isin(® +n6 + 7)]
(A38)
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or can write it as

(E—E.+il)" = r"[cos (" + nb) + iAsin (' + nb)],
(A39)

under & = ¢’ + .

We recall that

g(E) — C =Ar" [cos (" + n6)] + iAsin [ (" + nb)]
=y + iz

(A40)

or

y—C=Ar"cos(¢'+n9), z:Ar"sin(CD'-i-nB).
(A41)
Taking the logarithm we obtain

In(y — C) = A+ nlnr+ n(cos(®’ + n6)).  (A42)

By using a similar procedure as before, we take the deriva-
tive with respect to energy E and we obtain

dr
(Inry =€ = £ ZEC
(E—E) +T12
or
g _ (E—E)

roo(E—E) 412
(A43)
9 __ T (A44)

dE ~ (E—E ) +17

Therefore we find out that
y' [(E —E)+ r2] =n(E—E)(y—C)+Tzn. (A45)
By making use of the separation of terms we obtain

E*y =2y'EE. — (E2+T?)y' + nyE —nCE

(A46)
—nyE.+Tzn+nE.C.

Following similar technique as in Case 1 and taking into
account that Y is given below

Y =GXi+ GXo + GX+ GXy + GXs. (A47)

By identification we obtain

Y:yEz—(n—i—Z)/Eng—(...), (A48)
X =2gE—(n+2)/ng—<...), (A49)
Xo =y —(...), (AS0)
Xs :”TEZ —(.), (A51)
X, =n / zdE, (A52)
Xs =nE —(...). (AS3)

The constants are given by

C1 :ECV
G=—(E+T7),
G =C, (A54)
G =T,
Gs =CE,.
We observe that
G.G=G and G=-(C+). (A55)

Finally we conclude that

r=[-(E+c)], (A56)
and
26T
® = arctan (m) . (A57)
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