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Abstract: In this paper we presented a new method (Eigen-Coordinates (ECs)) that can be used for calculations of
the critical points (CPs) energy of the interband-transition edges of the heterostructures. This new method
is more accurate and complete in comparison with conventional ones and has a wide range of application
for the calculation of the fitting parameters related to nontrivial functions that initially have nonlinear fitting
parameters that are difficult to evaluate. The new method was applied to determine the CPs energies
from the dielectric functions of the MBE grown GaAs1−xPx ternary alloys obtained using spectroscopic
ellipsometry (SE) measurements at room temperature in the 0.5-5 eV photon energy region. The obtained
results are in good agreement with the results of the other methods.
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1. Introduction

In the semiconductor heterostructures, the energy band
E1, E ′0 and E2 occur at the Λ, Γ and X valleys near theBrillouin zone boundary. The energy bands in the higherlevels above E0, which occur at Γ points, are split dueto spin-orbit interactions. Determining the energy band
∗E-mail: dumitru@cankaya.edu.tr
†E-mail: sozcelik@gazi.edu.tr (Corresponding author)

structure variations on alloy composition in heterostruc-tures is important in the design of opto-electronic devices.The composition dependence of the higher energy gaps(named critical energy points) and spin-orbit splitting en-ergy can be obtained by evaluation of the dielectric func-tion (DF). The DFs and optical properties of the semicon-ductor structures can be obtained precisely by evaluationof spectroscopic ellipsometry (SE) measurements [1–5]. Todetermine the CP energies from DF for a layer or lay-ered semiconductor structures several models were devel-oped through Harmonic Oscillator Approximation (HOA)
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and Effective-Medium Approximation (EMA), which arereviewed in Ref. [6]. For analyzing the suitable CP en-ergies for thick epitaxial layers, Yoon et al. suggestedthat the associated optical properties of the grown layercan be considered as the characteristics of bulk material,if the layer thickness is over the critical thickness [7].In our previous works, the CP energies of theGaAs1−xPx/GaAs (100) ternary alloys were obtained byline-shape analysis on their dielectric functions. Alloycompositions of the alloys were determined using highresolution X-ray diffraction [1]. Also, a bowing parameterof the band gap energy was obtained from SE study dueto disordered phosphorous content. In this paper we pre-sented a new method that can be used for calculations ofthe critical points energies and the bowing parameter ofband gap energy due to disordered phosphorous contentof GaAs1−xPx/GaAs (100) ternary alloys, which are grownby using MBE [1]. This new method enables transforma-tion of a wide class of functions, initially containing a setof nonlinear fitting parameters, into a set of slope lines [8].It is more accurate and complete in comparison with con-ventional methods and has a wide range of application forcalculation of the fitting parameters related to nontrivialfunctions that initially have nonlinear fitting parametersthat are difficult to evaluate. The detailed calculationsare depicted in the Mathematical Appendix.
2. Experimental procedure

Semiconducting p-n junction GaAs1−xPx ternary alloys(A1-A5) with different phosphorous contents on epireadyn-GaAs (100) substrate were grown by using a solidsource V80H-MBE system with continues growth method.The lattice-match structures were obtained by growing a1 µm thick graded index n-GaAsP layer on n-GaAs bufferlayer. The p-n junction structures were obtained by grow-ing a thick p-GaAsP layer on a n-GaAsP layer as pre-sented in Figure 1, schematically. The growth procedurecan be seen in Ref. [1], in detail.The dielectric functions of the structures were obtained byusing the Jobin Yvon variable angle spectroscopic rotatinganalyzer ellipsometry, which has an energy resolution of0.01 eV. The ellipsometric data were recorded in 0.5-5 eVphoton energy region with 0.01 eV increments. The angleof incidence of the light beam was fixed at 70° on the sur-face of the samples. The SE measurements for the sam-ples were made at room temperature under atmosphericconditions [1]. Before the measurements, the surface ofthe samples was cleaned using methanol to remove anycontamination artifacts. Preceding the cleaning step, thesample was rinsed thoroughly in deionized water with a

Figure 1. Schematic structure of the grown GaAs1−xPx /GaAs het-
erostructures [1].

resistivity of 18 MΩ-cm.
3. Application of the ECs method for
calculation of the CP energies
3.1. Eigen-Coordinates (ECs) method
The main question regarding ECs method is in what casesone can obtain the basic linear relationship (BLR) for thefunction that initially contains a set of nonlinear fittingparameters? If this procedure can be realized for a setof functions which initially contain nonlinear fitting pa-rameters, then the nonlinear mean-square method can bereduced to the routine procedure which is known as thelinear least square method (LLSM). This reduction is im-portant because in many cases it provides the global fit-ting minima in the space of the fitting parameters.In order to obtain the positive answer it is necessaryto obtain the corresponding differential equation that issatisfied by the chosen hypothesis. If the unknown pa-rameters {Ck (k = 1, 2, . . . , s)} of the corresponding dif-ferential equation form a linear combination (the set ofparameters can be related with initial set of parameters
{Al (l = 1, 2, . . . , q)} in a nonlinear way) then the answerfor the question posed above is positive, and in other casesis negative.The basic principles of the ECs method are outlined in
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[8, 9]. The application in detection of impedances and di-electric spectroscopy can be found in references [10–22].The reader can find some information about the applica-tion in recognition of different statistical distributions in[23–25] and to dynamical chaos in [26].It is known that the complex reflectance ratio of the po-larized light
ρ = rp

rs
= tan(Ψ)ei∆

is determined by the SE technique. Here, rp and rs are thereflection coefficient of the polarized light (p and s referto parallel and perpendicular to the plane of incidence,respectively) and Ψ and ∆ are ellipsometric data. Thedielectric function ε = ε1 +ε2 (ε1 and ε2 are the real andimaginary part of the DF, respectively) of the sample wasobtained by
ε = sin2 φ + sin2 φ tan2 φ (1− ρ)2(1 + ρ2) , (1)

where φ is angle of incidence of the light beam [2, 3, 27].In this paper we used the ECs method to determine thesuitable CP energies of the GaAsP ternary alloys fromDF spectra, given by
ε(E) = C − AeiΦ(E − Ec + iΓ)n, (2)

where A is the amplitude, E is the photon energy, Ecis the critical point energy, Γ is the broadening factorand Φ is the excitonic phase angle. The exponent n hasthe values of − 12 , 0, 12 , and −1 for the one-dimensional,two-dimensional, three-dimensional, and excitonic criticalpoints, respectively [1–5].It is noted that C, A,Φ, Ec and Γ are the fitting parameters.In the case of n 6= 0, by applying the ECs method weobtained:
Y = C1X1 + C2X2 + C3X3 + C4X4 + C5X5, (3)

where
Y =yE2 − (n+ 2) ∫ yEdE − 〈. . .〉,

X2 =y− 〈. . .〉 ,
X3 =nE22 − 〈. . .〉 ,

X4 =n ∫ zdE,

X5 =nE − 〈. . .〉 .
(4)

In addition we have:
C1 = Ec,
C2 = − (E2

c + Γ2) ,
C3 = C,
C4 = Γ,

and
C5 = CEc (5)

such that C5 = C1 ·C3 and C2 = −(C 21 +C 24 ), respectively.Finally, the parameters Γ and Φ have the following forms:
Γ = [− (Ec + C 22 )] 12

and
Φ = arctan( −2C2Γ

C3 + 2C2AEc
)
.

(6)
For the next case, n = 0, we obtained the fitting parame-ters C, A,Φ, Ec,Γ by applying ECs method as follows:

Y = C1X1 + C2X2 + C3X3 + C4X4, (7)
where

Y = yE2 − 2 ∫ yEdE − 〈. . .〉 (8)
and
X1 =yE − ∫ ydE − 〈. . .〉, C1 =2Ec,
X2 =y− 〈. . .〉 , C2 =− (E2

c + Γ2) ,
X3 =E2 − 〈. . .〉 , C3 =− A cos Φ2 ,

X4 =E − 〈. . .〉 , C4 =A cos ΦEc − ΓA sin Φ.(9)
Hence, the fitting parameters Ec,Γ, A and Φ can be ob-tained as

Ec =C12 ,
Γ =±√−C2 − C 214 ,

(10)
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and
A cos Φ =− 2C3,
AΓ sinΦ =− C1C3 − C4,

and
A sin Φ =− (C1C3 + C4)√

−C2 − C214
.

(11)
4. Results and discussions
In the present study, we suggested a new method thatwas used for calculations of the critical points energiesand the bowing parameter of the band gap energy dueto disordered phosphorous content of the MBE grownGaAs1−xPx/GaAs (100) ternary alloys. In our previousworks, the CP energies and band gap bowing parame-ter due to the disordered phosphorous in the layers of thestructures were calculated by using a second derivativemethod [1, 5]: The second-derivative spectra (in Figure 3in Ref. [1]),

∂2ε
∂E2 ,

of the real parts of experimental DF were used to performthe line-shape analyses calculated numerically. The cal-culated second-derivative spectra were fitted to standardcritical-point line shapes. The obtained best-fit criticalpoint parameters Ec and Γ are listed in 5th and 7th col-umn in Table 1 and presented in Figure 3a for comparisonwith results of this work. The alloy compositions of thecompounds, taken from Ref. [1], are also presented in Ta-ble 1.SE measurements were performed in the photon energiesrange of 1.5-5 eV with 0.01 eV increment at the room tem-perature for 70° angle of incidence. The recorded realparts of DF’s spectra ε1 of GaAs1−xPx alloys (A1-A5) con-taining different P content are shown in Figure 2a. Themeasured imaginary ε2 and real parts ε1 of the DF of sam-ple A2 are represented in Figure 2b as an example. Moreexplanations of these spectra can be seen in Ref. [1, 5]. Asclearly seen in Figure 2a, the peaks corresponding to theabsorption edge in the real part of the DFs are shiftedto higher energies with increasing P content in the al-loys. The shifting for the fundamental band E0 is denotedby arrows in Figure 2a. It is well known that the in-tensity of the E2 transition energy is reduced due to theoxide layer on the surface. The surfaces of the samples

Figure 2. (a) Measured real parts of the dielectric functions of
GaAs1−xPx alloys in various alloy compositions, (b) imag-
inary (dot line) and real parts (solid line) of the dielectric
function of Sample A2 [1].

were not chemically etched, since the etching of the sur-face to remove the oxide overlayer can cause roughnessof surface. However, the E2 transition energy was ob-served clearly and was well resolved as seen Figure 2. Inthe imaginary part of the DF ε2 spectra, four main peakswere observed as seen in solid line in Figure 2b, whichcorrespond to the CP energies of the interband-transition
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edges: E0, E1, E1 + ∆1, E ′0, and E2 respectively. The fun-damental absorption edge (band gap) E0 is located at theΓ-point in Brillouin zone. E1 and E1 +∆1 transitions takeplace at the Λ-line in Brillouin zone. The ∆1 is corre-spondent to the spin-orbit splitting in band at Λ-line. E ′0and E2 is correspondent to the transition energy near Γ-

point and X-point in the Brillouin zone, respectively. TheCP energies of samples may be estimated from experi-mental ε2 spectra. As these data are not correspondentto accurate CP energies, several analyzing models hadbeen developed in order to obtain accurate CPs from pureellipsometric data [28].

Table 1. The critical point (CP) energies, line broadening factors Γ, excitonic phase angle Φ and amplitudes A of the DFs obtained ECs method for
GaAs1−xPx /GaAs structures. Also, the CP energies and line broadening parameters of the alloys obtained by using line shape analysis
(LSA) method including evaluation of the second derivative of the DF are presented to compare with obtained ECs method.

Samples Alloy compositiona (%x) CP Energies (eV) ParametersECs LSAa Γ (eV) Φ AECs LSAa
A1 7

E0 1.5217 1.510 0.0391 0.0377 -0.7850 1.050
E1 2.9361 2.938 0.1077 0.1167 -0.0380 55.365
E1 + ∆E1 3.1838 3.177 0.2829 0.1490 -0.0921 43.670
E ′0 4.3676 4.370 0.0072 - 1.1374 0.200E2 4.7254 4.740 0.3969 - -0.0954 106.388

A2 15
E0 1.6267 1.620 0.0410 0.0510 -1.3960 0.530
E1 2.9950 2.969 0.1255 0.1252 -0.0431 144.996
E1 + ∆E1 3.2447 3.178 0.3008 0.1579 -0.0956 136.919
E ′0 4.3994 4.400 0.0203 - 1.5708 0.058
E2 4.7470 4.750 0.5088 - -0.1187 242.228

A3 23
E0 1.7162 1.710 0.0498 0.0536 1.5708 0.417
E1 3.0343 3.051 0.1335 0.1530 -0.0452 146.595
E1 + ∆E1 3.2870 3.305 0.3538 0.1874 -0.1109 139.860
E2 4.7902 4.440 0.0347 - -0.4907 0.828
E ′0 4.4280 4.790 0.5952 - -0.1376 261.611

A4 32
E0 1.7881 1.780 0.0102 0.0611 -1.0291 0.168
E1 3.0857 3.061 0.1502 0.1710 -0.0500 102.948
E1 + ∆E1 3.3420 3.350 0.3782 0.1913 -0.1474 116.715
E ′0 4.4616 4.470 0.0251 - -0.3934 0.905
E2 4.7906 4.790 0.2691 - -0.0620 215.254

A5 39
E0 1.9142 1.910 0.0246 0.0714 1.5708 0.104
E1 3.1100 3.190 0.1633 0.1860 -0.0540 98.814
E1 + ∆E1 3.3915 3.367 0.3815 0.1991 -0.1160 116.925
E ′0 4.4874 4.540 0.0499 - -0.4010 s 1.200
E2 4.8279 4.820 0.2051 - -0.0470 221.573

aTaken from Ref. [1]

Using the measured real part of the DF data which aregiven Figure 2a, values of the critical point energy Ec , thebroadening factor Γ and the excitonic phase angle Φ, andalso amplitude A of the DF against the concentration xin the alloys, can be calculated with the help of expres-sions (5, 6) and (10, 11). The calculated results using ECsmethod are presented in Table 1 and also shown on Fig-ure 3b. As seen in Table 1, the obtained values of CPsenergies using ECs method were in good agreement withthe ones calculated by line shape analysis (LSA) methodincluding the evaluations of the second derivative of the

DF of the GaAsP heterostructures. The broadenings ofthe CP energies, calculated with these two methods, in-creases with increasing phosphorous composition as seenin the Table 1 and in Figure 4. The increase in broadeningcan be explained by alloy scattering, statistical fluctua-tions, and large-scale compositional variations [1, 30]. Thevalues of the broadening factor in case of the ECs methodare bigger than obtained by LSA method. This may beexplained with capability of noise reduction of the ECsmethod. Also, the line broadening of the E′0 and E2 tran-sitions could be calculated by ECs method although there
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were difficulties to obtain them with LSA method for thesesamples.In comparing Figure 3a and 3b, it can be seen that thechange of the CP energies, obtained using LSA method(including second derivative) in our previous work [1] andthe ECs method, versus P composition in the samples,have a similar trend. Also, as seen in Figure 3b, the bow-

ing parameter (b) for the fundamental transition energy
E0 has been found as 0.218 eV. The bowing of the bandgap energy is due to disordered phosphorous content inthe ternary alloy. Obtained bowing parameter using ECsmethods is very close to the value of the obtained secondderivative method [1] as seen in Figure 3a, and also to thereported theoretical and experimental values [29].

Figure 3. The calculated critical point energies E0, E1, E1 + ∆1, E ′0 and E2 transition edges of GaAs1−xPx /GaAs structures using (a) line-shape
analysis method [1] (b) Eigen-coordinates method. The dots show the calculated values, and the solid lines correspond to the fits. As
seen figures (a) and (b), obtained CP energy values and the bowing of the band gap energy versus P content in the alloys gained by
using these two computational methods are very close. Also, the spin-orbit splitting energy is reduced by increasing P composition.
(Critical point energies, E0, E1, E1 + ∆1, E ′0 and E2 values of GaAs and GaP were taken by Ref. [2].)

5. Basic conclusions

We presented a new method that can be used for calcu-lation of the critical points energies and the bowing pa-rameter of the band gap energy due to disordered phos-phorous content of the GaAs1−xPx/GaAs (100) ternary al-loys, which are grown by using MBE. Here, we also wantto stress the importance of applications of the originalECs method for calculation of the critical points. The tra-

ditional method [1] related to calculation of the criticalpoints is based on the calculation of the second deriva-tives from Equation (1) and subsequent fitting realizedwith the necessary polynomials depending on the order
n. But this method is not free from uncontrollable errorsrelated to calculation of the second derivative, subsequentsmoothing and fitting of the noisy data that also containthe uncontrollable errors. The new method can be con-sidered as alternative to the conventional method and has
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the following advantages:
1. It does not use any derivatives and the derivativeoperation in some cases is replaced by integration(that can be considered as the natural smoothingprocedure).
2. The basic linear relationship that is mathematicallyequivalent to initial functions in Equation (1) helps

to find the global fitting minima including the val-ues of the critical points. This important featureundoubtedly increases the level of significance incalculation of the critical points.

Figure 4. The broadening factors Γ corresponding to E0, E1, and E1 + ∆1 using (a) line-shape analysis [1] (b) Eigen-coordinates method. The
broadening of the CPs is increased with increasing the P content.

Appendix A: Mathematical appendix
The application of the ECs method to our problem is ex-plained in detail below.We present two cases, namely when n = 0 and n 6= 0.
Case 1
The starting point is the expression of

ε(E) = C − AeiΦ ln(E − Ec + iΓ)n = 0. (A1)
The photon energy E can be modified experimentally. Thefitting parameters are C, A,Φ, Ec,Γ.

Our aim is to linearize the expression of (A1), where ε ≡
y+ iz, where y = <ε and z = =ε.By using eiΦ = cosΦ + i sin Φ we obtain

ln(E − Ec + iΓ) = ln r + iθ, (A2)
where

r =√(E − Ec)2 + Γ2
and

θ = arctan Γ
E − Ec

.
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As a result we obtain
ε(E) =C − AeiΦ ln(E − Ec + iΓ)=C − A(cos Φ + i sin Φ)(ln r + iθ), (A3)

or
ε(E) =C − A(ln r cos Φ− θ sin Φ)

− Ai(ln r sin Φ + θ cos Φ). (A4)
Finally, we identify the real and the imaginary part of
ε(E) as

< (ε(E)) = y = C − A(ln r cos Φ− θ sin Φ), (A5)
= (ε(E)) = z = −A(ln r sin Φ + θ cos Φ), (A6)

C − y = A ln r cos Φ− Aθ sin Φ, (A7)
z = −A(ln r sin Φ + θ cos Φ). (A8)By taking the derivative with respect with to E we obtain

(ln r)′ = dr
dE
r = E − Ec(E − Ec)2 + Γ2 ,

dθ
dE = −Γ(E − Ec)2 + Γ2 ,

(A9)

y′ = −A cos Φ (ln r)′ + A sin Φ dθ
dE , (A10)

z′ = −A sin Φ (ln r)′ − A cos Φ dθ
dE . (A11)

Finally we obtain:
y′ =− A cos Φ E − Ec(E − Ec)2 + Γ2

+ A sin Φ −Γ(E − Ec)2 + Γ2 ,
(A12)

z′ =− A sin Φ E − Ec(E − Ec)2 + Γ2
− A cos Φ −Γ(E − Ec)2 + Γ2 .

(A13)
We can write that

ln r = 1
r2
∣∣∣∣∣ C − y −A sin Φ
−z A cos Φ

∣∣∣∣∣
= 1
A2 [(C − y)A cos Φ− Az sin Φ]

=(C − y) cosΦ
A − z sin Φ

A .

(A14)

Let us make the following notations u = A ln r and v = Aθ.As a result we obtain
C − y = cosΦu− sin Φv,
−z = sinΦu+ cos Φv. (A15)

By using the Cramer’s method we obtain the followingsolutions
u = ∣∣∣∣∣ C − y − sin Φ

−z cos Φ
∣∣∣∣∣ = (C − y) cos Φ− z sin Φ, (A16)

v = ∣∣∣∣∣ cos Φ C − y
− sin Φ −z

∣∣∣∣∣ = − (C − y) sin Φ− z cos Φ.
(A17)At this stage we take the derivatives of u and v with re-spect to E and we obtain

u′ = − cos Φy′ − sin Φz′ = A (E − Ec)(E − Ec)2 + Γ2 , (A18)
v ′ = sinΦy′ − cos Φz′ = −A Γ(E − Ec)2 + Γ2 . (A19)

From (A18) and (A19) we obtain
y cos Φy′ + y sin Φz′ =(E − Ec) sinΦy′

− (E − Ec) cosΦz′ (A20)
or (E − Ec)Γ = cos Φy′ + sin Φz′sin Φy′ − cos Φz′ . (A21)
As a result we get

Ey′ =Ec.y′ − Ec. cot Φ.z′ + E. cot Φ.z′+ Γ cot Φ.y′ + y.z′.
(A22)

Taking into account that
y′
[(E − Ec)2 + Γ2] = −A cos Φ (E − Ec)− ΓA sin Φ,(A23)

y′E2 + y′E2
c + y′Γ2 − 2EEcy′ =− A cos ΦE + A cos ΦEc

− ΓA sin Φ (A24)
we conclude that

y′E2 =2EEcy′ − y′ (E2
c + Γ2)− A cos ΦE+ A (cos ΦEc − Γ sinΦ) . (A25)
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By integration followed by a separation of terms which donot contain to the left hand side we obtain
T0 = ∫ y′E2dE = yE2 − 2 y∫

y0
yEdE

=E2y− E20y0 − 2 ∫ yEdE,

(A26)

T1 =∫ 2EcEy′dE = 2Ec y∫
y0
y′EdE

=2Ec (Ey− ∫ ydE
)

=2EcE − 2Ec ∫ ydE − 2EcE0y0,

(A27)

T2 =∫ (E2
c + Γ2)y′dE = (E2

c + Γ2) ∫ y′dE

= (E2
c + Γ2)y− (E2

c + Γ2)y0,
(A28)

T3 = ∫ −A cos ΦEdE = −A cos Φ∫ EdE

=− A cos ΦE22 + A cos ΦE202 ,
(A29)

T4 =∫ (A cos ΦEc)dE = A cos ΦEc ∫ dE

=A cos ΦEcE − A cos ΦEcE0,
(A30)

T5 = ∫ −A sin ΦΓdE = −A sin ΦΓE+A sin ΦΓE0. (A31)
By regrouping the terms we obtain
yE2 − 2 ∫ yEdE − E20y0 = 2EcE − 2Ec ∫ ydE

−2EcE0y0 − (E2
c + Γ2)y+ (E2

c + Γ2)y0
−A cos ΦE22 + A cos ΦE202 + A cos ΦEcE
−A cos ΦEcE0 − A sin ΦΓE + A sin ΦΓE0.

(A32)

All terms containing E0 and y0 are constants and we in-clude them to 〈. . .〉 which denotes the average of the errorsubtraction. Therefore, we obtain
Y = yE2 − 2∫ yEdE − 〈. . .〉. (A33)

Taking into account that Y is of the form
Y = C1X1 + C2X2 + C3X3 + C4X4. (A34)

By identification we obtain the constants Ci and Xi asgiven below
X1 =yE − ∫ ydE − 〈. . .〉, C1 =2Ec,
X2 =y− 〈. . .〉 , C2 =− (E2

c + Γ2) ,
X3 =E2 − 〈. . .〉 , C3 =− A cos Φ2 ,

X4 =E − 〈. . .〉 , C4 =A cos ΦEc − ΓA sin Φ.(A35)
We notice that Ec is very important in finding the criticalpoint. We can solve the system of equations with respectwith the fitting parameters and we obtain the followingresults

Ec = C12 , Γ = ±√−C2 − C 214 . (A36)We notice that
A cos Φ =− 2C3,
AΓ sinΦ =− C1C3 − C4

and
A sin Φ = − (C1C3 + C4)√

−C2 − C214
.

Case 2
By analogy one can obtain the next BLR.In this case the expression to start with is ε(E) = C +
AeiΦ ln(E − Ec + iΓ)n, n 6= 0.The fitting parameters are the same as before. As a resultwe obtain (E − Ec + iΓ)n = rneniθ, (A37)where

r =√(E − Ec)2 + Γ2
and

θ = arctan Γ
E − Ec

.

By inspection we observe that
(E − Ec + iΓ)n = (cos Φ + i sin Φ) rn (cosnΦ + i sinnΦ)=rn[(cos Φ cosnθ − sin Φ sinnθ)+ i (sin Φ cosnθ + cos Φ sinnθ)]=rn[cos (Φ + nθ + π)+ i sin (Φ + nθ + π)] (A38)
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or can write it as
(E − Ec + iΓ)n = rn

[cos (Φ′ + nθ
)+ iA sin (Φ′ + nθ

)]
,(A39)under Φ = Φ′ + π.We recall that

ε(E)− C =Arn [cos (Φ′ + nθ
)]+ iA sin [(Φ′ + nθ

)]
≡y+ iz (A40)

or
y− C = Arn cos (Φ′ + nθ

)
, z = Arn sin (Φ′ + nθ

)
.(A41)Taking the logarithm we obtain

ln(y− C ) = lnA+ n ln r + ln(cos(Φ′ + nθ)). (A42)
By using a similar procedure as before, we take the deriva-tive with respect to energy E and we obtain

(ln r)′ = dr
dE
r = E − Ec(E − Ec)2 + Γ2

or
dr
dE
r = (E − Ec)(E − Ec)2 + Γ2 , (A43)
dθ
dE = −Γ(E − Ec)2 + Γ2 . (A44)

Therefore we find out that
y′
[(E − Ec)2 + Γ2] = n (E − Ec) (y− C ) + Γzn. (A45)

By making use of the separation of terms we obtain
E2y′ =2y′EEc − (E2

c + Γ2)y′ + nyE − nCE
− nyEc + Γzn+ nEcC.

(A46)
Following similar technique as in Case 1 and taking intoaccount that Y is given below

Y = C1X1 + C2X2 + C3X3 + C4X4 + C5X5. (A47)

By identification we obtain
Y =yE2 − (n+ 2) ∫ EydE − 〈. . .〉 , (A48)
X1 =2yE − (n+ 2) ∫ ydE − 〈. . .〉 , (A49)
X2 =y− 〈. . .〉 , (A50)
X3 =nE22 − 〈. . .〉 , (A51)
X4 =n ∫ zdE, (A52)
X5 =nE − 〈. . .〉 . (A53)

The constants are given by
C1 =Ec,
C2 =− (E2

c + Γ2) ,
C3 =C,
C4 =Γ,
C5 =CEc.

(A54)

We observe that
C1.C3 = C5 and C2 = − (C 21 + C 24 ) . (A55)

Finally we conclude that
Γ = [− (Ec + C 22 )] 12 , (A56)

and
Φ = arctan( −2C2Γ

C3 + 2C2AEc
)
. (A57)
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