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Abstract

In this article, we present an active control methodology for controlling the chaotic
behavior of a fractional order version of Rössler system. The main feature of the
designed controller is its simplicity for practical implementation. Although in
controlling such complex system several inputs are used in general to actuate the
states, in the proposed design, all states of the system are controlled via one input.
Active synchronization of two chaotic fractional order Rössler systems is also
investigated via a feedback linearization method. In both control and
synchronization, numerical simulations show the efficiency of the proposed methods.

Keywords: Fractional order system, Active control, Synchronization, Rössler system,
Chaos

Introduction
Rhythmic processes are common and very important to life: cyclic behaviors are found

in heart beating, breath, and circadian rhythms [1]. The biological systems are always

exposed to external perturbations, which may produce alterations on these rhythms as

a consequence of coupling synchronization of the autonomous oscillators with pertur-

bations. Coupling of therapeutic perturbations, such as drugs and radiation, on biologi-

cal systems result in biological rhythms, which is known as chronotherapy. Cancer

[2,3], rheumatoid arthritis [4], and asthma [5,6] are a number of the diseases under

study in this field because of their relation with circadian cycles. Mathematical models

and numerical simulations are necessary to understand the functions of biological

rhythms, to comprehend the transition from simple to complex behaviors, and to

delineate their conditions [7]. Chaotic behavior is a usual phenomenon in these sys-

tems, which is the main focus of this article.

Chaos theory as a new branch of physics and mathematics has provided a new way

of viewing the universe and is an important tool to understand the behavior of the

processes in the world. Chaotic behaviors have been observed in different areas of

science and engineering such as mechanics, electronics, physics, medicine, ecology,

biology, economy, and so on. To avoid troubles arising from unusual behaviors of a

chaotic system, chaos control has gained increasing attention in recent years. An

important objective of a chaos controller is to suppress the chaotic oscillations comple-

tely or to reduce them toward regular oscillations [8]. Many control techniques such as
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open-loop control, adaptive control, and fuzzy control methods have been implemen-

ted for controlling the chaotic systems [9-11].

Generally, one can classify the main problems in chaos control into three cases: sta-

bilization, chaotification, and synchronization. The stabilization problem of the

unstable periodic solution (orbit) arises in the suppression of noise and vibrations of

various constructions, elimination of harmonics in the communication systems, elec-

tronic devices, and so on. These problems are distinguished for the fact that the con-

trolled plant is strongly oscillatory, that is, the eigenvalues of the matrix of the

linearized system are close to the imaginary axis. The harmful vibrations can be either

regular (quasiperiodic) or chaotic. The problems of suppressing the chaotic oscillations

by reducing them to the regular oscillations or suppressing them completely can be

formalized as stabilization techniques. The second class includes the control problems

of excitation or generation of chaotic oscillations. These problems are also called the

chaotification or anticontrol.

The third important class of the control objectives corresponds to the problems of

synchronization or, more precisely, controllable synchronization as opposed to auto-

synchronization. Synchronization has important applications in vibration technology

(synchronization of vibrational exciters [12]), communications (synchronization of the

receiver and transmitter signals) [13], biology and biotechnology, and so on.

As an important problem, it has been found that a model for the mechanism of cir-

cadian rhythms in Neurospora (three-variable model) develops non-autonomous chaos

when it is perturbed with a periodic forcing, and its dynamical behavior depends on

the forcing waveform (square wave to sine wave) [14]. Instead, in a ten-equation

model of the circadian rhythm in Drosophila, autonomous chaos occurs in a restricted

domain of parameter values, but this chaos can be suppressed by a sinusoidal or

square wave forcing cycle [15].

The subject of fractional calculus has gained considerable popularity and importance

during the past three decades or so, mainly due to its applications in numerous see-

mingly diverse and widespread fields of science and engineering. Applications including

modeling of damping behavior of viscoelastic materials, cell diffusion processes, trans-

mission of signals through strong magnetic fields, and finance systems are some exam-

ples [16-18]. Moreover, fractional order dynamic systems have been studied in the

design and implementation of control systems [19]. Studies have shown that a frac-

tional order controller can provide better performances than an integer order one and

leads to more robust control performance [20]. Usefulness of fractional order control-

lers has been reported in many practical applications [21].

Recently numerous works have been reported on the fractional order Rossler control

and synchronization. For instance [22-25] have considered the fractional order Rossler

system. However, their control and synchronization methodologies had two important

limitations: considering the commensurate fractional order system, and controlling via

multiple input. In this article, at first we study the dynamics of the fractional order ver-

sion of the well-known Rossler system. In contrast to [23,24,26], in this article, we

want to control a chaotic fractional order system via a single actuating input, which is

more suitable for implementation. The capability of the proposed control methodology

is justified using a reliable numerical simulation. Synchronization of two chaotic frac-

tional order Rossler systems is considered. The simulation is carried out in the time
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domain technique instead of the frequency based methods since the latter are not

reliable in simulating chaotic fractional systems.

This article is organized as follows. ‘Basic tools of fractional order systems’ section

summarizes some basic concepts in fractional calculus theory. The well-known Rössler

system is illustrated in ‘Fractional order Rössler system’ section. ‘Control and synchro-

nization of Rössler system’ section is devoted to control and synchronization of the

Rossler system via an active control methodology. Finally, the article is concluded in

‘Conclusion’ section.

Basic tools of fractional order systems
Definitions and theorems

In this subsection, some mathematical backgrounds are presented.

Definition 1 [27]

The fractional order integral operator of a Lebesgue integrable function x(t) is defined

as follows:

aD
−q
t x(t) :=

1
�(q)

t∫
a

(t − s)q−1x(s) ds, q ∈ �+ (1)

in which �(q) =

∞∫
0

e−zzq−1dz, q > 0 is the Gamma function.

Definition 2 [28]

The left fractional order derivative operator in the sense of Riemann-Liouville (LRL) is

defined as follows:

RL
a Dq

t x(t) := Dm
aD

−(m−q)
t x(t) =

1
�(m − q)

dm

dtm

t∫
a

(t − s)m−q−1x(s)ds,

m − 1 < q < m ∈ Z+

(2)

Remark 1 [28]

For fractional derivative and integral RL operators we have:

L
{
aD

−q
t x(t)

}
= s−qX(s), x(a) = 0

lim
q→m

0D
−q
t x(t) = 0D

−m
t x(t), q > 0, m ∈ Z+

RL
0 Dq

t c =
ctq−1

�(1 − q)

(3)

where L is Laplace transform operator. As one can see RL differentiation of a con-

stant is not zero; also its Laplace transform needs fractional derivatives of the function

in initial time. For overcoming these imperfections the following definition is

presented:

Definition 3 [28]

The left fractional order derivative operator in the sense of Caputo is defined as fol-

lows:
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C
a D

q
t x(t) :=

RL
a D−(m−q)

t Dmx(t) =
1

�(m − q)

t∫
a

(t − s)m−q−1x(m)(s)ds,

m − 1 < q < m ∈ Z+

(4)

Remark 2 [29]

For fractional Caputo derivative operator, we have:

C
0D

q
t c = 0

C
0D

q
t 0D

−q
t x(t) = RL

0 Dq
t 0D

−q
t x(t) = x(t), 0 < q < 1

(5)

Usually a dynamical system with fractional order could be described by:{
RL
0 Dq

t x(t) = f (x(t), t), m − 1 < q < m ∈ Z+, t > 0[
RL
0 Dq−k

t x(t)
]
|t=0 = xk0, k = 1, 2, . . . , m.

(6)

where x ∈ �n, f : �n × � → �n, q =
(
q1 q2 · · · qn

)T are vector state, nonlinear vec-

tor field, and differentiation order vector, respectively. If q1 = q2 = ··· = qn Equation (6)

refers to commensurate fractional order dynamical system [29]; otherwise it is an

incommensurate one. Moreover, the sum orders of all the involved derivatives in Equa-

tion 6, i.e.,
n∑
i=1

qi is called the effective dimension of Equation (6) [30].

Theorem 1 [30]

The following commensurate order system:

C
0D

q
t x(t) = Ax(t), x(0) = x0 (7)

with 0 < q ≤ 1, x ∈ �n and A ∈ �n×n is asymptotically stable if and only if∣∣arg (λ)∣∣ > q
π

2
is satisfied for all eigenvalues l of A. Moreover, this system is stable if

and only if
∣∣arg (λ)∣∣ ≥ q

π

2
is satisfied for all eigenvalues l of A with those critical

eigenvalues satisfying
∣∣arg (λ)∣∣ = q

π

2
have geometric multiplicity of one.

Theorem 2 [31]

Consider the following linear fractional order system:

C
0D

q
t x(t) = Ax(t), x(0) = x0 (8)

with x ∈ �n and A ∈ �n×n and q = (q1 q2 ··· qn)
T, 0 <qi ≤ 1 with

qi =
ni
di
, gcd(ni, di) = 1. Let M be the lowest common multiple of the denominators

di’s. The zero solution of system (8) is globally asymptotically stable in the Lyapunov

sense if all roots l’s of the equation:

�(λ) = det
(
diag (λMqi) − A

)
= 0 (9)

satisfy
∣∣arg (λ)∣∣ >

π

2M
.
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Numerical solution of fractional differential equations

Numerical methods used for solving ODEs have to be modified for solving fractional

differential equations (FDE). A modification of Adams-Bashforth-Moulton algorithm is

proposed in [32-34] to solve FDEs.

Consider for q Î (m - 1,m] the initial value problem:

C
0D

q
t x(t) = f (t, x(t)); 0 ≤ t ≤ T

xk(0) = x(k)0 , k = 0, 1, · · · , m − 1
(10)

This equation is equivalent to the Volterra integral equation given by [35]:

x(k) =
m−1∑
k=0

x(k)0
tk

k!
+

1
�(q)

t∫
0

(t − s)q−1f (s, x(s))ds (11)

Consider the uniform grid {tn = nh: n = 0,1, ···, N} for some integer N and h =
T

N
.

Let xh (tn) be an approximation to x(tn). Assuming to have approximations xh(tj), j =

1,2, ···, n and we want to obtain xh(tn+1) by means of the equation:

xh(tn+1) =
m−1∑
k=0

x(k)0
tkn+1
k!

+
hq

�(q + 2)
f (tn+1, x

p
h(tn+1)) +

hq

�(q + 2)

n∑
j=0

aj,n+1f (tj, xn(tj)) (12)

where

aj,n+1 =

⎧⎨
⎩

nq+1 − (n − q)(n + 1)q; j = 0
(n − j + 2)q+1 + (n − j)q+1 − 2(n − j + 1)q+1; 1 ≤ j ≤ n

1; j = n + 1
(13)

The preliminary approximation xph(tn+1) is called predictor and is given by:

xph(tn+1) =
m−1∑
k=0

x(k)0
tkn+1
k!

+
1

�(q)

n∑
j=0

bj,n+1f (tj, xn(tj)) (14)

where

bj,n+1 =
hq

q

(
(n − j + 1)q − (n − j)q

)
(15)

The error in this method is:

max
j=0, 1, ··· ,N

∣∣x(tj) − xn(tj)
∣∣ = O(hp) (16)

where p = min(2,1+q).

Fractional order Rössler system
The Rössler system [36] is a three dimensional nonlinear system that can exhibit chao-

tic behavior. The attractor of the Rössler system belongs to the 1-scroll chaotic
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attractor family. The fractional order Rössler system is defined by the following equa-

tions [37]:⎛
⎝C

0D
q1
t x1(t)

C
0D

q2
t x2(t)

C
0D

q3
t x3(t)

⎞
⎠ =

⎛
⎝ −(x2 + x3)

x1 + 0.63x2
0.2 + x3(x1 − 10)

⎞
⎠ (17)

The equilibria of this system are:

Q1 : (0.013,−0.02, 0.02)

Q2 : (9.987,−15.853, 15.853)
(18)

The Jacobian of this system at the equilibrium Q: (x1*,x2*,x3*) is:

J =

⎛
⎝ 0 −1 −1

1 0.63 0
x∗
3 0 x∗

1 − 10

⎞
⎠ (19)

The eigenvalues of the Jacobian matrix (19) associated with the two above equilibria

are:

�1 = (λ1,λ2,λ3) =
(−9.985, 0.314 + j0.949, 0.314 − j0.949

)
�2 = (λ1

′,λ2
′,λ3

′) = (0.593, 0.012 + j4.103, 0.012 − j4.103)
(20)

Since Q1 is a saddle point of index 2, if chaos occurs in this system, the 1-scroll

attractor will encircle this equilibrium.

Assume that a three dimensional chaotic system ẋ = f (x) displays a chaotic attractor.

For every scroll existing in the chaotic attractor, this system has a saddle point of

index 2 encircled by its respective scroll. Suppose that Ω is the set of equilibrium

points of the system surrounded by scrolls. We know that system C
0D

q
t x = f (x) with q

= (q1,q2,q3)
T and system ẋ = f (x) have the same equilibrium points.

Hence, a necessary condition for fractional order system C
0D

q
t x = f (x) to exhibit the

chaotic attractor similar to its integer order counterpart is the instability of all the

equilibrium points in Ω; otherwise, one of these equilibrium points becomes asympto-

tically stable and attracts the nearby trajectories. According to (9), this necessary con-

dition is mathematically equivalent to [38]:

π

2M
− min

i

{∣∣arg (λi)
∣∣} ≥ 0 (21)

where li’s are the roots of:

det
(
diag

(
λMq1 λMq2 λMq3

) − J
∣∣Q )

= 0, ∀Q ∈ � (22)

We consider three cases for fractional differentiation orders:(
q1, q2, q3

)
= {(0.7, 0.2, 0.9) , (0.9, 0.8, 0.7) , (1, 1, 1)} (23)

For order (q1,q2,q3) = (0.7,0.2,0.9) (22) reduces to:

λ18 − 0.63λ16 + 11λ9 − 0.63λ7 + 0.02λ2 + 9.9874 = 0 (24)
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Finding the roots of Equation 24, one can verify that:

π

2M
− min

i

{∣∣arg (λi)
∣∣} = −0.1603 < 0 (25)

Since the necessary condition for chaoticity is not satisfied, one cannot deduce any

result about chaos occurrence in the fractional Rössler system with this order. How-

ever, (25) implies that there are some initial conditions for which the Rössler system

has no chaotic attractor. An example is illustrated in Figure 1 using x(0) = (0,0,0).

Now consider (q1,q2,q3) = (0.9,0.8,0.7) as order of the fractional Rössler system. Simi-

lar to the previous case we have:

λ24 + 9.987λ17 − 0.63λ16 − 6.2921λ9 + 0.02λ8 + λ7 + 9.975 = 0 (26)

Thus:

π

2M
− min

i

{∣∣arg (λi)
∣∣} = 0.0098 > 0 (27)

This shows only that the fractional Rössler system satisfies the necessary condition.

Simulations in Figure 2 using x(0) = (0,0,0) clarify the chaotic behavior.

As the final case, we examine (q1,q2,q3) = (1,1,1) which indicates the integer order

Rössler system which is known as a chaotic system. To check the necessary condition

of chaos in this case, one can see that from (22):

π

2M
− min

i

{∣∣arg (λi)
∣∣} = 0.3196 > 0 (28)

which is consistent with those of classical case [37].

Control and synchronization of Rössler system
Active control methodology

In this section, an active control law is applied to the incommensurate fractional chao-

tic Rössler system using only one actuating input. In this technique, controller output

signal is directly exerted to the fractional chaotic system. The controlled system is

described by:⎛
⎝C

0D
q1
t x1(t)

C
0D

q2
t x2(t)

C
0D

q3
t x3(t)

⎞
⎠ =

⎛
⎝ −(x2 + x3)

x1 + 0.63x2
0.2 + x3(x1 − 10) + u(x)

⎞
⎠ (29)

Figure 1 Simulation results for system (17) when (q1,q2,q3) = (0.7,0.2,0.9).
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For the sake of suitable stabilization, we first use the following transformation:

u(x) = v(x) − 0.2 + x3(10 − x1) (30)

Applying this control law to (29) yields:⎛
⎝C

0D
q1
t x1(t)

C
0D

q2
t x2(t)

C
0D

q3
t x3(t)

⎞
⎠ =

⎛
⎝ −(x2 + x3)
x1 + 0.63x2

v(x)

⎞
⎠ (31)

Let’ us select a state feedback structure for v(x) as follows:

v(x) = −k1x1 − k2x2 − k3x3 (32)

Now, the design process reduces to choosing three parameters k1,k2,k3 such that (29)

is asymptotically stable. The dynamics (31) reduces to:⎛
⎝C

0D
q1
t x1(t)

C
0D

q2
t x2(t)

C
0D

q3
t x3(t)

⎞
⎠ =

⎛
⎝ 0 −1 −1

1 0.63 0
−k1 −k2 −k3

⎞
⎠

⎛
⎝x1
x2
x3

⎞
⎠ (33)

Using standard methods in linear control systems one can find a proper gain k1,k2,k3
such that the desired poles of (33) are located in stability region of the fractional order

system. Here we consider the desired poles to be at -1, -2, -3. Thus the final controller

is:

u(x) = 14.1769x1 + 8.3014x2 − 6.63x3 − 0.2 + x3(10 − x1) (34)

Note that all three desired poles satisfy the stability conditions in Theorem 2.

Indeed:

�(λ) = λ24 + 0.663λ17 − 0.63λ16 − 4.1769λ9 + 14.1769λ8 + λ7 + 6 = 0 (35)

Therefore:

0.05π < min
i

∣∣arg(λi)
∣∣ = 0.1816 (36)

This shows the stability of (33). In the following simulations (Figure 3) we examine

the designed controller for the order (q1,q2,q3) = (0.9,0.8,0.7) which previously shown

in (27) that this order produces a chaotic behavior. Note that the control signal is

Figure 2 Simulation results for system (17) when (q1,q2,q3) = (0.9,0.8,0.7).
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applied on t = 500. It can be seen that the linearizing state feedback has stabilized the

chaotic system.

Active synchronization of Rössler system

In this section, we are designing a controllable synchronization scheme in which a par-

ticular dynamical system, i.e., chaotic incommensurate fractional Rössler system, acts

as master and a different dynamical system acts as a slave. As told previously the main

goal is to synchronize the slave with the master using an active controller.

Now we consider two chaotic incommensurate fractional order Rössler system:

master system :

⎛
⎝C

0D
q1
t x1(t)

C
0D

q2
t x2(t)

C
0D

q3
t x3(t)

⎞
⎠ =

⎛
⎝ −(x2 + x3)

x1 + 0.63x2
0.2 + x3(x1 − 10)

⎞
⎠ ; initial conditions : x0 ∈ �3 (37)

and

slave system :

⎛
⎝C

0D
q1
t x1′(t)

C
0D

q2
t x2′(t)

C
0D

q3
t x3′(t)

⎞
⎠ =

⎛
⎝ −(x2′ + x3′)

x1′ + 0.63x2′

0.2 + x3′(x1′ − 10) + u

⎞
⎠ ; initial conditions : x′

0 ∈ �3 (38)

Note that the initial conditions are different and we want to synchronize the signals

in spite of discrepancy between the initial conditions. So let us define the errors as:

ei = xi
′ − xi; i = 1, 2, 3. (39)

Therefore, the error states can be written as:

⎛
⎝C

0D
q1
t e1(t)

C
0D

q2
t e2(t)

C
0D

q3
t e3(t)

⎞
⎠ =

⎛
⎝ −(e2 + e3)

e1 + 0.63e2
x3′x1′ − x3x1 − 10e3 + u

⎞
⎠ ; initial conditions : e0 = x0′−x0 ∈ �3 (40)

Also note that here we used only one actuating signal. Based on active controller

structure one can choose the control law as:

u = 10e3 + x3x1 − x3
′x1′ + v (41)

So using (41), the error state (40) reduces to:⎛
⎝C

0D
q1
t e1(t)

C
0D

q2
t e2(t)

C
0D

q3
t e3(t)

⎞
⎠ =

⎛
⎝ −(e2 + e3)
e1 + 0.63e2

v

⎞
⎠ ; initial conditions : e0 = x0′ − x0 ∈ �3 (42)

Figure 3 Simulation results for the controlled system (29) when (q1,q2,q3) = (0.9,0.8,0.7).
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Substituting v = -k1e1 - k2e2 - k3e3 into (42) yields:

⎛
⎝C

0D
q1
t e1(t)

C
0D

q2
t e2(t)

C
0D

q3
t e3(t)

⎞
⎠ =

⎛
⎝ 0 −1 −1

1 0.63 0
−k1 −k2 −k3

⎞
⎠

⎛
⎝ e1
e2
e3

⎞
⎠ ; initial conditions : e0 = x0′ − x0 ∈ �3 (43)

Choosing k1 = -44.3269, k2 = -56.2959, k3 = 11.63 the poles of (43) will be: -2, -4, -5.

Now let us determine the characteristic equations:

λ24 + 11.63λ17 − 0.63λ16 − 7.3269λ9 + 44.3269λ8 + λ7 + 40 = 0 (44)

Thus:

0.05π < min
i

(∣∣arg(λi)
∣∣) = 0.9541 (45)

Based on Theorem 2, one can see that all these poles lie in the stability region. This

indicates that the proposed controller can asymptotically synchronize foregoing

systems.

Figure 4 shows the simulation result of synchronization of the chaotic systems with

initial conditions: x0 = (0.2, 0, 2) and x0
’ = (0, 2.5,0). Note that the synchronization

scheme is activated on t = 500.

Conclusions
In this article, we proposed an active control for controlling the chaotic fractional

order Rössler system. Moreover, based on the same methodology, i.e., active control, a

synchronization scheme was presented. The method was applied to an incommensu-

rate fractional order Rössler system, for which the existence of chaotic behavior was

analytically explored. Using some known facts from nonlinear analysis, we have derived

the necessary conditions for fractional orders in the Rossler system for exhibiting

chaos. The proposed control law has two main features: simplicity for practical imple-

mentation and the use of single actuating signal for control. Simulations show the

effectiveness of the proposed control.

Figure 4 Numerical simulation for the synchronized systems (40) when (q1,q2,q3) = (0.9,0.8,0.7).
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