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Abstract: The scattered fields from ablack half plane which absorbs all the
incoming electromagnetic energy are evaluated by defining a new modified
theory of physical optics surface current. This current eliminates the
reflected fields, coming from the first stationary point of the reflection
integral and only creates a reflected diffracted field. The incident scattered
fields are found from the same integral, written for the perfectly conducting
half plane. The scattered fields are evaluated by using the stationary phase
method and edge point technique. The evaluated fields are plotted
numerically.
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1. Introduction

A black screen that absorbs al the electromagnetic energy illuminating its surface and causes
no reflection and transmission is a theoretical concept. An approximate approach to this
problem is introduced by Kirchhoff and expanded by Kottler [1]. Kottler defined jump
conditions across the black screen which relates the two sides of the screen to each other.
Sommerfeld developed a different approach in the context of his mathematical theory of
diffraction [2]. He thought the absorbed waves by the screen as traveling fields through the
other sheets of the Riemann surfaces. So there is no reflection to the real space which is at the
first Riemann surface, but the waves go through the conceptual spaces which forms the other
Riemann surfaces. Nye and co-workers constructed some experiments in order to compare the
related theories[3, 4].

This paper aims to deal with the problem of the black half plane by using the method of
modified theory of physical optics (MTPO) [5]. The MTPO reflected field from a perfectly
conducting (PEC) half plane will be considered and its general construction in terms of the
critical points will be examined. Their relation with the geometrical optics (GO) and
diffracted fields will be described. A new MTPO surface current will be defined by using the
knowledge, obtained from the behavior of the MTPO integral. The total field (incident and
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diffracted) will be constructed by considering the MTPO surface current in the scattering
integrals. These integrals will be evaluated asymptotically and the results will be plotted.

A timefactor ™ is assumed and suppressed throughout the paper.
2. General construction of the MTPO integral
The MTPO reflection integral for a PEC half plane can be written as

E ka cos ¢y e I Sn{ﬂ ¢0 jdx (1)

rz } J. lkR 2
for an electric polarized incident plane wave [5]. E; is the amplitude of the incident plane

wave, the expression of which can be written as E, exp|jk(xcosg, + ysing,)g,. The
geometry of the problem is given in Fig.1.
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Fig. 1. Reflection geometry from a PEC half plane

It is possible to express Eq. (1) in the form of
1(k,7)= [ £(F,x)e " ax ®)
0

where I denotes the coordinates of the observation point. k is the wave-number and has a
large value for high frequencies (k >> 1) . The amplitude and phase functions of the integral

in Eq. (2) can be defined as
. gn(ﬁ;%j
(7 x)=—e's -2

3.
V2 kR 39
g(F,x)= R— X cosg, = pcosy + X' (cos 3 — cosg, ) (3.b)

respectively. The critical points of EqQ. (2) can be classified into two groups as the stationary
phase points and the edge point. The stationary phase points are evaluated by equating the
first derivative of Eq. (3.b) to zero. The equation of

cos@, —cos =0 4
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is obtained as a result of the procedure pointed out above. The details of this operation are
given in Ref. [5]. The stationary phase points can be found as

:le =0, , /Bsz =27 - ¢, 5

which are in the physical limits (0< ¢ < 27) of the problem. The contribution of these points
can be evaluated by using the formula of

6
kg (x.) ©

where x_ and g"(x,) arethe values of x' and the second derivative of the phase function at
the stationary point [6]. Equation (6) is equal to

| ~ _Eieikpoos(¢+¢o) ©)

for the first stationary phase point (/3. ). It is apparent that Eq. (7) shows the reflected GO
waves from the PEC surface. Equation (6) isequal to zeroat S = 3, . Thisistheresult of the
term of sin[(ﬂ + q)o)/ 2] in Eq. (1). This term comes from the MTPO surface current [5]. The

expression of Sing, takes the place of the related term in the physical optics (PO) integral.
For this reason, two scattered fields are observed at the plots of the PO integral.

— PO integral
=== MTPO integral
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Fig. 2. Comparison of the PO and MTPO integrals for the places of the stationary points

Figure 2 shows the comparison of the PO and MTPO integrals. The angle of incidence
(¢,) is taken as z/3 and the observation point is a 64 . The first fields for ¢ <7 —4¢,

coincide, but PO gives a second GO field for ¢ =7 +¢, where the MTPO integral

approaches to zero. The field expression for ¢ = 77 + ¢, represent the transmitted waves from

the half plane. It is apparent that this field does not exist for the PEC half plane case.
It is clear from the above analysis that GO fields are related with the stationary phase

points. The first stationary point gives the reflected fields. The stationary point of /3,
represent the transmitted rays from the half plane. This result is important for the following
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analysis of the black half plane. The integral representation of the transmitted field can be
expressed as

2 KE T joccoss, € 0F (ﬂ—¢]
E =e*— ejkm"’”—sn 70 ldx' 8
. %! = ®

where the term of sin[(ﬂ—q)o)/Z] eliminates the reflected wavesin Eq. (6).
The coordinates of the edge point can be defined as X'=0 and f=7—-¢. The
influence of the edge point can be evaluated by using the formula of

| =~— f (Xe) e—J'kg(Xe) (9)
ikg'(x.)
where X, isthevalue of X' at the edge point of theintegral. X, isequal to O for Eq. (2). This
expression gives the field of

E cos ) o
P 2 € (10)
" \JJ2r cosp+cosg, \[kp

when applied to Eqg. (2). Eg. (10) shows the exact reflected diffracted fields from a PEC half
plane. The term of cos{(¢—¢,/2)] comes from sin[(B+¢,)/2] and creates a transition

region at the reflection boundary of ¢ =7 —¢, .

3. Boundary conditionsfor a black half plane

There is not any rigorous boundary condition, which will enable the exact solution, in
literature for a black screen. The surface conditions will be examined in the point of view of
PO in this section. According to the PO approach, the reflected waves are the result of the
surface currents, which are created by the incident field on the scattering surface. Thereis an
electric current density on the surface for the PEC half plane case and there will flow a
magnetic current on a perfectly permeable surface. These current densities create the reflected
electromagnetic fields. The MTPO surface current can be written as

3 2E in B+9, glloccas;

=&, s

Jureo 7 (11)

0

for a PEC surface illuminated by an electric polarized incident plane wave. The related current
density can be represented as

Jymo = 2H, [éx cos%— g, sin%)ejkm% (12)
when an incident magnetic polarized wave is considered. The surface currents will be
congtructed according to the approach of Kottler.

The method of MTPO considers two scattering integrals, the asymptotic evaluation of
which give the GO and diffracted waves. Thefirst oneisthe aperture integral, which gives the

incident GO (U, ) and incident diffracted (U, ) fields as

U, =U, +Uy (13)

#7852 - $15.00 USD Received 17 June 2005; revised 29 August 2005; accepted 28 August 2005
(C) 2005 OsA 19 September 2005/ Vol. 13, No. 19/ OPTICS EXPRESS 7279



where u denotes the electric or magnetic field component. The second integral represents the
reflected GO (u, ) and reflected diffracted (U, ) fields by the formula of

Ug =u, +Uy . (14)
According to Kottler, the boundary condition on a black screen can be written as

ul,, —u, =u, (15)

St s i

for S+ and S represent the upper and lower surfaces of the black screen, respectively. The
term of uisequal tothesum of u, and Ug. The condition in Eq. (15) can be expressed as
(16)

(Us+u +uy ), —(us+uy ), =y,

by using Egs. (13) and (14) in Eq. (15). Since S represents the shadow region, U, is not used
in the second term at the left-hand side of Eq. (16). The conditions of

(us +Uy )|5+ = (us +Uy )|5_ 7
or

Ugle. =—Ug] (18

St St
can be obtained when Eqg. (16) is taken into account. There will be only diffracted fields in the
term of U, because the reflected waves vanish at the case of a black screen. The condition, in
Eqg. (18), can only be satisfied when the surface currents, flowing on the black screen,
eliminate the reflected wave and give rise to the diffracted field.

A black half plane absorbs all the electromagnetic energy falling on its surface and causes
no reflection and transmission. This proposal is valid when the electric and magnetic current
densities are equal to zero. The related equations can be written as

J. =fxH;

. =0 (19.9)
J=—fixE| =0 (19.6)

where ET and HT are the total electric and magnetic fields. Equations (19.a) and (19.b)

cause the MTPO integral to be equal to zero and the diffracted fields can not be evaluated. In
order to obtain fields, that satisfies the condition in Eq. (18), the current components in Egs.
(19.8) and (19.b) must be different from zero. These equations will be represented as

—

J.=HA xH;

_#0 (20.8)

J=-fixE| #0 (20.b)
for the MTPO reflection integrals. N, is the modified unit normal vector of the surface. The

main objective of the analysisis that the reflected fields from the black half plane are equal to
zero, but the diffracted fields exist. This condition can be satisfied by multiplying the current

density in Eq. (11) by the term of sin[(3— ¢, )/ 2] since this term will eliminate the reflected
GO fields by going to zero at the stationary point of the reflection integral. This case was
discussed in Section 2. The analysis made in the second section show that sin[(3+¢,)/2]
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affects the GO reflected fields directly at the stationary phase point. The reflected fields for a
PEC half plane is different from zero since sin[(5+¢,)/2] is equal to sing, at the point of

reflection, but when the term of sin[(8—¢,)/2] is multiplied with sin[(8+¢,)/2], the

reflected fieldsat S, will be canceled for the black half plane case. The current densities can
be written as

j%=é1;sinﬂ;¢°sin’B_Zgjo gleceosdy (21.9)
0
5 =—Elecos?=% & snf=% |sn B givcema (21.b)
ms 1 X 2 y 2 2

for an electric polarized plane wave. Equation (21.d) is obtained by multiplying Eq. (11) by
sin[(ﬂ—¢0)/ 2]. Equation (21.b) can be written by considering Eq. (20.b) and the incident
electric polarized plane wave.

The boundary conditions for a black half plane can be obtained by taking into account the
PEC or perfectly magnetic conducting (PMC) surfaces. The boundary conditions for a black
half plane can be written as

—

J. =fxH;

=0 (22.9)

S

<E.

1)

= 0 (22.b)
by considering the conditions for a PEC surface. The tangential component of the electric
field is equal to zero on a PEC body. The electric surface current must be also equal to zero
when a black body is considered. The MTPO surface currents can be constructed as

—

J.=HA xH; 20 (23.8)
A, X E, =0 (23.b)
by considering Eq.(20.8). The electric surface current is equal to
= . 2E . . B- o
J_ =8¢ 'smﬂ+¢°smﬂ Po gieicsa (24)
Z, 2 2
for this case. Theintegral can be written as
KE. iZ% . pB-9, . IR
E,=—— eJ“J-e"‘X““S‘”“sm’B b nPrth e ™ gy (25)
N2 2 2 kR

for the scattered electric field by using Eq. (24) in Eq. (1).
The boundary conditions for ablack half plane can aso be represented as

AxH.| =0 (26.9)
S
J=-ixE| =0 (26.0)
S
#7852 - $15.00 USD Received 17 June 2005; revised 29 August 2005; accepted 28 August 2005

(C) 2005 OsA 19 September 2005/ Voal. 13, No. 19/ OPTICS EXPRESS 7281



when a PM C surface is considered. These conditions can be expressed as

AxH,

<= 0 (27.9)

Jj =

ms

= %0 (27.b)
for the MTPO approach. The magnetic surface current can be written as
J_ =-2E (e cosﬂ % _g sinﬂ_z%jsin ﬂ_z% st (29)

by considering Eq. (21.b). The electric field can be calculated by using the equation of
E= —(Vx F )/ &, Where the vector potential can be represented as

I PN LS .
:-;jstm?ds. (29)

The scattered electric field can be found as

#S *J* ]Q_V [ —]kRJdX (30)

by evaluating the z' part of the integral, in Eq. (29), as in Ref. [5]. The Debye asymptotic
expansion of the Hankel function, which comes from the evaluation of the z' part, is used.
The rotational operation can be performed as

(R B~ B0 R B-0|_. e ZBro
k\/_(axSl 2 ay 2 ] Jk\/@ 2 (31)

for (OR/9x)=—cosB and (OR/dy)=sinp for the geometry in Fig. 1. The curl is taken
according to the coordinates of the observation point. As aresult one obtains

— kE jkx'cos gy ﬁ_¢o ﬁ+¢o JkR X'
E,=- \/Ee _[e sin > 5 \/_R (32

for the scattered field from a black half plane. It is apparent that the three approaches are
equivalent. The easiest method can be chosen according to the problem.

4. Asymptotic evaluation of theintegrals

The MTPO scattering integrals will be evaluated asymptotically in order to obtain the GO and
edge diffracted fields. The reflection integrals, obtained in the previous section will be used.
Thetotal MTPO integrals can be written as

_ KE [} eceosg, g B0 €7 [ giocess ﬂ_% ﬂ+¢0ejm
Etz_Ee [[e % gnt 5 J_d je “sin . > ]
(33)

for the black half plane problem. The first integral of Eq. (33) represents the incident scattered
fields and was evaluated as
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LT
—j=

e 4 efikp
2\ 27 cos(/j_;0 \/E

in Ref. [5]. & is the detour parameter of the incident diffracted field, which is equal to

- 2ko Cos[(¢— @)/ 2]. As mentioned in Section 2, the second integral of Eq. (33) has two

stationary phase points and the contribution of these points are equal to zero according to the
formula, given in Eq. (6). The effect of the edge point can be analyzed from Eq. (9). The
resultant field can be written as

E, =e>aly(-£) (34)

e 4 e_jkp
Ey = (35)
* 2J2r \Jkp
and one obtains
eﬁj% 1 gl

E.=

(36)

1—
Woz|  o? % ko
2

for the total diffracted field. The boundary condition, in Eq. (18), can be written as
E, o2r = E, |¢=0 ,. foran electric polarized plane wave illuminated black half plane. It is

apparent that Eq. (36) does not satisfy this condition. A corrected form can be obtained as

e Jants) 1 ew

Eye = (37)
* 2l cos¢2O cos? =% _2¢° ko

where sgn(x) shows the signum function, which is equal to -1 for x<0 and 1 for x>0. This
function is used since the incident diffracted field changes its sign at the shadow boundary
(¢p=m+¢,). The total diffracted field in Eq. (30) satisfies the boundary condition, in Eq.

(18). The diffracted fields, in Eqgs.(36) and (37) approach to infinity at the shadow boundary.
For this reason uniform field expressions will be obtained. The incident diffracted field
component can be expressed as

-i% - 2k cos
E - € looos(o-0,) (38)

¢ 2\/; ¢ - ¢0
A2 00372

290
2

by using the trigonometric identity of 1= 2c0s?(x/2)— cos2x . Equation (38) can be written
in terms of the first term in the asymptotic expansion of the Fresnel integral as

E, :-F(_,/zkp os? jeJ‘WW-%) (39
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where F(x) is equal to e /%) /(Zx/;x). The uniform diffracted field can be represented
as

E,, =—F(£|)sgn(& Je'o==e-#) (40)

by using the identity of F(x)= F (x)—u(-x)=F(x)san(x). F(x) is the Fresnel integral,
which can be defined as

F(x)= Te“"zdt. (41)

The uniform total field can be given as

T
—-j=

b son(~¢)
2\/5005((1)%) \/E

for a black half plane, illuminated by an electric polarized plane wave. The surface current of
Eq. (24) can be rewritten as

e ikp

E, =E€¥™"F() (42)

S'nﬂ+¢osinﬂ_¢o
Jo=8 2 ; 2_eremtgyn(- &) (43)

Cos~
2

by considering the modified reflected diffracted field in Eq. (37).

5. Numerical results

The total diffracted fields in Egs. (36) and (37) and the total scattered fields will be plotted.
These field expressions will be compared with the Sommerfeld solution, given in Ref. [7].
This solution can be written as

ESz — eikpw8(¢—¢o)|: [_ W COS¢ _2¢0 ) (44)

where the diffracted field of Eq. (44) can be evaluated as

E, =ev=aE UJ 2kp cos(b;zqjo j sgn(— J2kp cosqj;z%j . (45)

by subtracting the incident field from Eq.(44) and using the identity of
F(x)-u(-x)= F(|x|)sgn(x) . The amplitude of the incident wave is equal to 1. It is apparent
that Eq. (45) isthe incident diffracted field in Eq. (28).
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Fig. 3. Comparison of MTPO and incident diffracted fields
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Fig. 4. Comparison of MTPO and incident total fields

Figure 3 shows the variation of the diffracted fields, in Eq. (36) versus the observation
angle. The angle of incidence (¢0) is taken as 60° and p is equal to 64 where A isthe
wavelength. It can be observed that MTPO total diffracted field approaches to zero for
¢ =2r . This behavior satisfies the boundary condition given in Eq. (18). The same condition
can be seen in Fig. 4, which represents the variation of the total scattered fields. There is a
problem at ¢ =0 since the diffracted fields do not satisfy the related condition at the upper
surface of the half plane. This problem is eliminated by obtaining the corrected reflected
diffracted fields, in Eq. (37), which obey the condition of E, =— Edi| . The total

¢=021 $=0,27
scattered field can be congtructed by adding the incident wave to Eq. (37). The uniform
expression of thisfield is givenin Eq. (42).
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Fig. 5. MTPO and incident total diffracted fields

Figure 5 depicts the variation of total diffracted fields versus the observation angle. It can
be seen that the corrected MTPO diffracted field, given in Eq. (37), satisfies the boundary

conditions and aso is equal to zero for ¢ =7 —¢@,. This value represents the reflection
boundary.

— Incident tatal field
=== Corrected MTPO total field
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Fig. 6. MTPO and incident total fields

Figure 6 shows the variation of the total scattered fields with respect to the observation
angle. It can be observed that the total MTPO field, given in Eq. (42), is equal to one, which is
the value of the incident field at ¢ = 0. The field approachesto zerofor ¢ = 27 .

MTPO diffracted field can aso be expressed in terms of Fresnel function. The reflected
diffracted field in Eq. (37), can be expressed as

_jf -j ZprSZ&
€ 4 jkpcosg,
E, = T P et ggn(- &) (46)
7T J2kp cosEo
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by using the trigonometric identity of 1= 2c0s?(x/2)— cos2x . Equation (46) can be written
in terms of the first term in the asymptotic expansion of the Fresnel integral as

E, =—F (— A 2kp cosqj—zoje“"’ b sgn(- &) (47)
The diffracted field can be expressed as

Ey = —FUW cos¢—2O

by using the identity of F(x)= F(x)—u(-x)= F(]xl)sgn(x).

jsgn(— J2ko cos%’jsgn(— &l (ag)
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Fig.7 MTPO total diffracted fields

Figure 7 shows the comparison of the reflected diffracted fields, in Egs. (37) and (48). It
can be seen that they are harmonious.

6. Conclusion

In this work, electromagnetic scattering by a black half plane is examined with the method of
MTPO. The surface currents are defined by using the Kottler's approach for the boundary
conditions of a black screen. MTPO integral for the aperture part does not change but the
integral of the black half plane is constructed by benefiting from the surface current, defined
from the boundary conditions. The integrals are evaluated asymptotically by the methods of
the stationary phase and the edge point. The numerical plot of the diffracted field shows that
the evaluated edge diffraction coefficient of the black half plane approaches to zero for
¢ =2, but nearly doublesitsvalue a ¢ = 0. The reason lies under the behavior of the edge

diffraction coefficient. The coefficient has a negative value for the angle values smaller than
the transition region value and takes positive values for greater angles. The diffraction
coefficient in Eqg. (36) is reconstructed in order to provide the mentioned property by
considering the condition, given in Eqg. (18). The resultant field expression satisfies the
boundary conditions on the black half plane. The total diffracted field is equal to zero on the
upper and lower surfaces of the black half plane and also goes to zero at the reflection
boundary. A new surface current density is defined in Eq. (43) according to the corrected field
expression.
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