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Abstract:  The scattered fields from a black half plane which absorbs all the 
incoming electromagnetic energy are evaluated by defining a new modified 
theory of physical optics surface current. This current eliminates the 
reflected fields, coming from the first stationary point of the reflection 
integral and only creates a reflected diffracted field. The incident scattered 
fields are found from the same integral, written for the perfectly conducting 
half plane. The scattered fields are evaluated by using the stationary phase 
method and edge point technique. The evaluated fields are plotted 
numerically.    
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1. Introduction 

A black screen that absorbs all the electromagnetic energy illuminating its surface and causes 
no reflection and transmission is a theoretical concept. An approximate approach to this 
problem is introduced by Kirchhoff and expanded by Kottler [1]. Kottler defined jump 
conditions across the black screen which relates the two sides of the screen to each other. 
Sommerfeld developed a different approach in the context of his mathematical theory of 
diffraction [2]. He thought the absorbed waves by the screen as traveling fields through the 
other sheets of the Riemann surfaces. So there is no reflection to the real space which is at the 
first Riemann surface, but the waves go through the conceptual spaces which forms the other 
Riemann surfaces. Nye and co-workers constructed some experiments in order to compare the 
related theories [3, 4].         

This paper aims to deal with the problem of the black half plane by using the method of 
modified theory of physical optics (MTPO) [5]. The MTPO reflected field from a perfectly 
conducting (PEC) half plane will be considered and its general construction in terms of the 
critical points will be examined. Their relation with the geometrical optics (GO) and 
diffracted fields will be described. A new MTPO surface current will be defined by using the 
knowledge, obtained from the behavior of the MTPO integral. The total field (incident and 
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diffracted) will be constructed by considering the MTPO surface current in the scattering 
integrals. These integrals will be evaluated asymptotically and the results will be plotted.  

A time factor jwte  is assumed and suppressed throughout the paper. 

2. General construction of the MTPO integral 

The MTPO reflection integral for a PEC half plane can be written as 
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for an electric polarized incident plane wave [5]. iE  is the amplitude of the incident plane 

wave, the expression of which can be written as ( )[ ] zi eyxjkE
�

00 sincosexp φφ + . The 
geometry of the problem is given in Fig.1. 
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Fig. 1. Reflection geometry from a PEC half plane 
 

It is possible to express Eq. (1) in the form of 
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where r
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 denotes the coordinates of the observation point. k is the wave-number and has a 
large value for high frequencies ( )1>>k . The amplitude and phase functions of the integral 
in Eq. (2) can be defined as 
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respectively. The critical points of Eq. (2) can be classified into two groups as the stationary 
phase points and the edge point. The stationary phase points are evaluated by equating the 
first derivative of Eq. (3.b) to zero. The equation of 

                                                           0coscos 0 =− βφ                                                         (4) 
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is obtained as a result of the procedure pointed out above. The details of this operation are 
given in Ref. [5]. The stationary phase points can be found as 

                                                      0201 2, φπβφβ −== ss                                                   (5) 

which are in the physical limits ( )πφ 20 ≤≤  of the problem. The contribution of these points 
can be evaluated by using the formula of 
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where sx  and ( )sxg ''  are the values of 'x  and the second derivative of the phase function at 
the stationary point [6]. Equation (6) is equal to  

                                                            ( )0cos φφρ +−≈ jk
ieEI                                                        (7) 

for the first stationary phase point ( )1sβ . It is apparent that Eq. (7) shows the reflected GO 

waves from the PEC surface. Equation (6) is equal to zero at 2sββ = . This is the result of the 

term of ( )[ ]2/sin 0φβ +  in Eq. (1). This term comes from the MTPO surface current [5]. The 

expression of 0sinφ  takes the place of the related term in the physical optics (PO) integral. 
For this reason, two scattered fields are observed at the plots of the PO integral.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 2. Comparison of the PO and MTPO integrals for the places of the stationary points   
 
Figure 2 shows the comparison of the PO and MTPO integrals. The angle of incidence 

( )0φ  is taken as 3/π  and the observation point is at λ6 . The first fields for 0φπφ −≤  

coincide, but PO gives a second GO field for 0φπφ +≥  where the MTPO integral 

approaches to zero. The field expression for 0φπφ +≥  represent the transmitted waves from 
the half plane. It is apparent that this field does not exist for the PEC half plane case.  

It is clear from the above analysis that GO fields are related with the stationary phase 
points. The first stationary point gives the reflected fields. The stationary point of 2sβ  
represent the transmitted rays from the half plane. This result is important for the following 

01 φβ =s 02 2 φπβ −=s
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analysis of the black half plane. The integral representation of the transmitted field can be 
expressed as 
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where the term of ( )[ ]2/sin 0φβ −  eliminates the reflected waves in Eq. (6). 

  The coordinates of the edge point can be defined as 0'=x  and φπβ −= . The 
influence of the edge point can be evaluated by using the formula of 
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where ex  is the value of 'x  at the edge point of the integral. ex  is equal to 0 for Eq. (2). This 
expression gives the field of 
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when applied to Eq. (2). Eq. (10) shows the exact reflected diffracted fields from a PEC half 
plane. The term of ( )[ ]2/cos 0φφ −  comes from ( )[ ]2/sin 0φβ +  and creates a transition 

region at the reflection boundary of 0φπφ −= . 

3. Boundary conditions for a black half plane 

There is not any rigorous boundary condition, which will enable the exact solution, in 
literature for a black screen. The surface conditions will be examined in the point of view of 
PO in this section. According to the PO approach, the reflected waves are the result of the 
surface currents, which are created by the incident field on the scattering surface. There is an 
electric current density on the surface for the PEC half plane case and there will flow a 
magnetic current on a perfectly permeable surface. These current densities create the reflected 
electromagnetic fields. The MTPO surface current can be written as 
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for a PEC surface illuminated by an electric polarized incident plane wave. The related current 
density can be represented as 
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when an incident magnetic polarized wave is considered. The surface currents will be 
constructed according to the approach of Kottler. 

The method of MTPO considers two scattering integrals, the asymptotic evaluation of 
which give the GO and diffracted waves. The first one is the aperture integral, which gives the 
incident GO ( iu ) and incident diffracted ( diu ) fields as 

                                                            diiA uuu +=                                                        (13) 
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where u denotes the electric or magnetic field component. The second integral represents the 
reflected GO ( ru ) and reflected diffracted ( dru ) fields by the formula of 

                                                         drrS uuu += .                                                        (14) 

According to Kottler, the boundary condition on a black screen can be written as 

                                                        iSS
uuu =−

−+
                                                       (15) 

for S+ and S-  represent the upper and lower surfaces of the black screen, respectively.  The 
term of u is equal to the sum of Au  and Su . The condition in Eq. (15) can be expressed as 

                                               ( ) ( ) iSdiSSdiiS uuuuuu =+−++
−+

                                     (16) 

by using Eqs. (13) and (14) in Eq. (15). Since S- represents the shadow region, iu  is not used 
in the second term at the left-hand side of Eq. (16). The conditions of 

                                                      ( ) ( )
−+

+=+
SdiSSdiS uuuu                                              (17) 

or  

                                                                
∓∓ SdiSS uu −=                                                       (18) 

can be obtained when Eq. (16) is taken into account. There will be only diffracted fields in the 
term of Su , because the reflected waves vanish at the case of a black screen. The condition, in 
Eq. (18), can only be satisfied when the surface currents, flowing on the black screen, 
eliminate the reflected wave and give rise to the diffracted field.      

A black half plane absorbs all the electromagnetic energy falling on its surface and causes 
no reflection and transmission. This proposal is valid when the electric and magnetic current 
densities are equal to zero. The related equations can be written as 
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where TE
�

 and TH
�

 are the total electric and magnetic fields. Equations (19.a) and (19.b) 
cause the MTPO integral to be equal to zero and the diffracted fields can not be evaluated. In 
order to obtain fields, that satisfies the condition in Eq. (18), the current components in Eqs. 
(19.a) and (19.b) must be different from zero.  These equations will be represented as 
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for the MTPO reflection integrals. 1n
�

 is the modified unit normal vector of the surface. The 
main objective of the analysis is that the reflected fields from the black half plane are equal to 
zero, but the diffracted fields exist. This condition can be satisfied by multiplying the current 
density in Eq. (11) by the term of ( )[ ]2/sin 0φβ −  since this term will eliminate the reflected 
GO fields by going to zero at the stationary point of the reflection integral. This case was 
discussed in Section 2. The analysis made in the second section show that ( )[ ]2/sin 0φβ +  
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affects the GO reflected fields directly at the stationary phase point. The reflected fields for a 
PEC half plane is different from zero since ( )[ ]2/sin 0φβ +  is equal to 0sinφ  at the point of 

reflection, but when the term of ( )[ ]2/sin 0φβ −  is multiplied with ( )[ ]2/sin 0φβ + ,  the 

reflected fields at 1sβ  will be canceled for the black half plane case. The current densities can 
be written as 
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for an electric polarized plane wave. Equation (21.a) is obtained by multiplying Eq. (11) by 
( )[ ]2/sin 0φβ − . Equation (21.b) can be written by considering Eq. (20.b) and the incident 

electric polarized plane wave.  
The boundary conditions for a black half plane can be obtained by taking into account the 

PEC or perfectly magnetic conducting (PMC) surfaces. The boundary conditions for a black 
half plane can be written as 
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by considering the conditions for a PEC surface. The tangential component of the electric 
field is equal to zero on a PEC body. The electric surface current must be also equal to zero 
when a black body is considered. The MTPO surface currents can be constructed as 
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by considering Eq.(20.a). The electric surface current is equal to 
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for this case. The integral can be written as  
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for the scattered electric field by using Eq. (24) in Eq. (1). 
The boundary conditions for a black half plane can also be represented as 
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when a PMC surface is considered. These conditions can be expressed as 
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for the MTPO approach. The magnetic surface current can be written as 
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by considering Eq. (21.b). The electric field can be calculated by using the equation of 
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×∇−=  where the vector potential can be represented as  
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The scattered electric field can be found as 
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by evaluating the 'z  part of the integral, in Eq. (29), as in Ref. [5]. The Debye asymptotic 
expansion of the Hankel function, which comes from the evaluation of the 'z  part, is used. 
The rotational operation can be performed as 
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for ( ) βcos/ −=∂∂ xR  and ( ) βsin/ =∂∂ yR  for the geometry in Fig. 1. The curl is taken 
according to the coordinates of the observation point. As a result one obtains 
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for the scattered field from a black half plane. It is apparent that the three approaches are 
equivalent. The easiest method can be chosen according to the problem. 

4. Asymptotic evaluation of the integrals 

The MTPO scattering integrals will be evaluated asymptotically in order to obtain the GO and 
edge diffracted fields. The reflection integrals, obtained in the previous section will be used. 
The total MTPO integrals can be written as 
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(33) 

for the black half plane problem. The first integral of Eq. (33) represents the incident scattered 
fields and was evaluated as 
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in Ref. [5]. iξ  is the detour parameter of the incident diffracted field, which is equal to 

[ ]2/)(cos2 0φφρ −− k . As mentioned in Section 2, the second integral of Eq. (33) has two 

stationary phase points and the contribution of these points are equal to zero according to the 
formula, given in Eq. (6). The effect of the edge point can be analyzed from Eq. (9). The 
resultant field can be written as 
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and one obtains 
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for the total diffracted field. The boundary condition, in Eq. (18), can be written as 

πφπφ 2,02,0 ==
−= didr EE  for an electric polarized plane wave illuminated black half plane. It is 

apparent that Eq. (36) does not satisfy this condition. A corrected form can be obtained as 
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where ( )xsgn  shows the signum function, which is equal to -1 for x<0 and 1 for x>0. This 
function is used since the incident diffracted field changes its sign at the shadow boundary 
( 0φπφ += ). The total diffracted field in Eq. (30) satisfies the boundary condition, in Eq. 
(18). The diffracted fields, in Eqs.(36) and (37) approach to infinity at the shadow boundary. 
For this reason uniform field expressions will be obtained. The incident diffracted field 
component can be expressed as   
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by using the trigonometric identity of ( ) xx 2cos2/cos21 2 −= . Equation (38) can be written 
in terms of the first term in the asymptotic expansion of the Fresnel integral as 
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where ( )xF̂  is equal to ( ) ( )xe xj ππ 2/4/2 +− . The uniform diffracted field can be represented 
as 
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by using the identity of ( ) ( ) ( ) ( ) ( )xxFxuxFxF sgnˆ =−−≈ . ( )xF  is the Fresnel integral, 

which can be defined as 
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The uniform total field can be given as 

                           ( ) ( ) ( )i

jk
j

i
i

jk
iSu

k

eeE
FeEE ξ

ρφπ
ξ

ρ
π

φφρ −
⎟
⎠
⎞

⎜
⎝
⎛

+=
−−

− sgn

2cos22 0

4
cos 0                 (42) 

for a black half plane, illuminated by an electric polarized plane wave. The surface current of 
Eq. (24) can be rewritten as 
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by considering the modified reflected diffracted field in Eq. (37).     

5. Numerical results   

The total diffracted fields in Eqs. (36) and (37) and the total scattered fields will be plotted. 
These field expressions will be compared with the Sommerfeld solution, given in Ref. [7]. 
This solution can be written as 
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where the diffracted field of Eq. (44) can be evaluated as 
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by subtracting the incident field from Eq.(44) and using the identity of 

( ) ( ) ( ) ( )xxFxuxF sgn=−− . The amplitude of the incident wave is equal to 1. It is apparent 

that Eq. (45) is the incident diffracted field in Eq. (28).    
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Fig. 3. Comparison of MTPO and incident diffracted fields 

 

 
Fig. 4. Comparison of MTPO and incident total fields 

 
Figure 3 shows the variation of the diffracted fields, in Eq. (36) versus the observation 

angle. The angle of incidence ( )0φ  is taken as 060  and ρ  is equal to λ6  where λ  is the 
wavelength. It can be observed that MTPO total diffracted field approaches to zero for 

πφ 2= . This behavior satisfies the boundary condition given in Eq. (18). The same condition 
can be seen in Fig. 4, which represents the variation of the total scattered fields. There is a 
problem at 0=φ  since the diffracted fields do not satisfy the related condition at the upper 
surface of the half plane. This problem is eliminated by obtaining the corrected reflected 

diffracted fields, in Eq. (37), which obey the condition of 
πφπφ 2,02,0 ==

−= didr EE . The total 

scattered field can be constructed by adding the incident wave to Eq. (37). The uniform 
expression of this field is given in Eq. (42).     
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Fig. 5. MTPO and incident total diffracted fields 

 
Figure 5 depicts the variation of total diffracted fields versus the observation angle. It can 

be seen that the corrected MTPO diffracted field, given in Eq. (37), satisfies the boundary 
conditions and also is equal to zero for 0φπφ −= . This value represents the reflection 
boundary. 

 
Fig. 6. MTPO and incident total fields 

 
Figure 6 shows the variation of the total scattered fields with respect to the observation 

angle. It can be observed that the total MTPO field, given in Eq. (42), is equal to one, which is 
the value of the incident field at 0=φ . The field approaches to zero for πφ 2= .      

MTPO diffracted field can also be expressed in terms of Fresnel function. The reflected 
diffracted field in Eq. (37), can be expressed as 

                                       ( )i
jk

kjj

dr e
k

ee
E ξφρπ

φρ

φρπ

−=
−−

sgn

2
cos22

0

02

cos

0

2
cos2

4

                                 (46) 
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by using the trigonometric identity of ( ) xx 2cos2/cos21 2 −= . Equation (46) can be written 
in terms of the first term in the asymptotic expansion of the Fresnel integral as 

                                       ( )i
jk

dr ekFE ξφρ φρ −⎟
⎠

⎞
⎜
⎝

⎛−−= sgn
2

cos2ˆ 0cos0                               (47)  

The diffracted field can be expressed as 

                          ( ) 0cos00 sgn
2

cos2sgn
2

cos2 φρξφρφρ jk
idr ekkFE −⎟

⎠

⎞
⎜
⎝

⎛−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=           (48) 

by using the identity of ( ) ( ) ( ) ( ) ( )xxFxuxFxF sgnˆ =−−≈ .   

 
Fig.7 MTPO total diffracted fields 

 
Figure 7 shows the comparison of the reflected diffracted fields, in Eqs. (37) and (48). It 

can be seen that they are harmonious.  

6. Conclusion 

In this work, electromagnetic scattering by a black half plane is examined with the method of 
MTPO. The surface currents are defined by using the Kottler’s approach for the boundary 
conditions of a black screen. MTPO integral for the aperture part does not change but the 
integral of the black half plane is constructed by benefiting from the surface current, defined 
from the boundary conditions. The integrals are evaluated asymptotically by the methods of 
the stationary phase and the edge point. The numerical plot of the diffracted field shows that 
the evaluated edge diffraction coefficient of the black half plane approaches to zero for 

πφ 2= , but nearly doubles its value at 0=φ . The reason lies under the behavior of the edge 
diffraction coefficient. The coefficient has a negative value for the angle values smaller than 
the transition region value and takes positive values for greater angles. The diffraction 
coefficient in Eq. (36) is reconstructed in order to provide the mentioned property by 
considering the condition, given in Eq. (18). The resultant field expression satisfies the 
boundary conditions on the black half plane. The total diffracted field is equal to zero on the 
upper and lower surfaces of the black half plane and also goes to zero at the reflection 
boundary. A new surface current density is defined in Eq. (43) according to the corrected field 
expression.   
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