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Abstract

The first-order formulation of th& /K symmetric space sigma model of the scalar cosets of
the supergravity theories is discussed when there is coupling: ef L)-form matter fields. The
Lie superalgebra which enables the dualized coset formulation is constructed for a general scalar
cosetG/K with matter coupling wher& is a non-compact real form of a semi-simple Lie group
andK is its maximal compact subgroup.
0 2004 Elsevier B.V. All rights reserved.

PACS:04.65.+e; 12.60.Jv; 11.15.-¢; 11.10.Lm

1. Introduction

The non-linear nature of the scalar sectdrshe maximal supergravities has been en-
larged to formulate the non-gravitational bosonic field equations as non-linear realizations
in [1,2]. The coset formulation of the scalars is improved to cover the other bosonic fields
as well. The method dfL,2] includes the dualisation of the field content and the construc-
tion of a Lie superalgebra which generates the doubled coset element whose Cartan form
would lead to the original field equations by satisfying the Cartan—Maurer equation. After
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the determination of the algebra structure it is possible to express the first-order field equa-
tions as a twisted self-duality condition vehi the dualized Cartan form satisfies [84-5]

a more general coset formulation of the I[8-8], the IIB [9-11] and theD = 11 [12]
supergravity theories is introduced to include the gravity as well.

The scalar sectors of a wide class of supergravities, in particular the scalar sectors of
all the pure and the matter coupldd> 2 extended supergravities i = 4,5,6,7,8,9
dimensions as well as the maximally extended supergravitig3 #4111 can be formu-
lated as symmetric space sigma models. The global symmetry géoopshe scalar also
the bosonic sectors of the lower-dimensional Kaluza—Klein descendant supergravities of
the D = 11 supergravity (the maximal supergravities) are semi-simple split real forms
(maximally non-compact). For this reason the scalar coset manifgldswherek is the
maximal compact subgroup 6f are Riemannian globally symmetric spagt3] and they
can be parameterized by the Borel subalgebr& ofn general, especially for the mat-
ter coupled supergravities, the scalar coset manif6ig& are based on non-sgliglobal
symmetry groups5. In this case one has to use the solvable Lie algebra gd4geo
parameterize the Riemannian globally symmetric space scalar coset manif&ld

In [15] the G/K symmetric space sigma model is discussed in detail when the global
symmetry groupG is in general, a non-compact semi-simple real form. The dualisation
and the first-order formulation of the general non-split symmetric space sigma model is
also performed ifi15]. In this work we consider the coupling of other fields to the scalar
coset Lagrangian of the general non-sglitKk symmetric space sigma model. We will
perform the complete dualisation of the fields and the first-order formulation when there
is coupling of otherg — 1)-form matter fields to the scalar cosgt K. We will construct
the dualized coset element which will realize the field equations of the scalar coset which
is coupled to theig — 1)-form fields. We will assume the most general non-split scalar
coset case which is discussed1b—-17] Beside the scalar fields there will be a number
of m-form field strengths whose number is fixed by the dimension of the fundamental
representation of the Lie algebga of G. As it will be clear in the next section the dimen-
sion of the representation and the number of the coupling fields must be the same so that
the coupling kinetic term between the scalar coset and the matter fields in the Lagrangian
can be constructed within an appropriate representation of the global symmetry@roup
[16,17] We will follow the standard dualisation method[df2] by introducing auxiliary
dual fields and by assigning generators to the original and the dual fields. The first objective
of this work will be to derive the Lie superalgebra structure which generates the doubled
coset element. The first-order formulation will then be presented as a twisted self-duality
equatior{1,2] by using the derived algebra struct and by calculating explicitly the dou-
bled field strength. The dualisation method presentdd,2] is the non-linear realization
of the relative supergravity theory, it is also another manifestation of the Lagrange multi-
plier methods in which the dual fields cospond to the Lagrange multipliers which are
introduced to construct the Bianchi Lagrangians. For this reason the Cartan form which is
generated by the dualized coset element,amiy realizes the original second-order field

1 By non-split we mean tha® is a non-compact real form of a semi-simple Lie group but it is not necessarily
maximally non-compact (split).
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equations of the matter coupled scalar coset by satisfying the Cartan—Maurer equation
but also yields the first-order field equations via a twisted self-duality equtjariL5]
This first-order formulation corresponds to the construction of the dualized Lagrangian by
adding the Bianchi terms to the Lagrangiarttoé original fields and consequently to the
derivation of the first-order algebraic field equations of the original fields in terms of the
Lagrange multiplier (dual) fieldg 8].

We start by discussing the Lagrangian arativing the field equations in Sectich
In Section3 we work out the dualisation and we construct the algebraic structure which
realizes the field equations and finally we obtain the first-order field equations.

2. The symmetric space sigma model and the couplings

The scalar sectors of a wide class of sgpavity theories are formulated 85 K sym-
metric space sigma moddlk,2,16,17] The groupG is the global symmetry group of the
corresponding scalar Lagrangian and it is a non-compact real form of a semi-simple Lie
group. The local symmetry grouf is the maximal compact subgroup 6f. The coset
spaceG/K is a Riemannian globally symmetric space for all the possibimvariant
Riemannian structures oi/K [13]. There is a legitimate parametrization of the coset
representatives by using the solvable Lie algebr& ¢1.3,14] If hy is the subalgebra of
the Cartan subalgebhg of go (the Lie algebra ofy) which generates the maximal R-split
torus inG [13-16]let fori =1,...,r {H;} be the generators ¢fy and also le{ E,,} be
the subset of the positive root generatorgg@éuch thain € Al.. The roots inA;}; are the
non-compact roots with respect to the Cartan involuéiamhich is induced by the Cartan
decomposition

go =Ko @ Uo, (2.1)

wherekg is the Lie algebra oK andug is a vector subspace gp [13,15] The positive

root generator§E,, } generate a nilpotent Lie subalgelmaof go [16]. The coset represen-
tatives ofG/K which are the image points of the map from thedimensional spacetime
(we assuméd > 2 in order that the dualisation analysis of the next section would be mean-
ingful and we will take the signature of the spacetime-as, +, ...)) into the groupG

can be expressed as

V(x) = 29 OHi X" (O En (2.2)

This is called the solvable Lie algebra parametrizafiig. We should state that we make
use of the Iwasawa decomposition

go =Ko ® so =ko @ hy @ ng, (2.3)

wheres is the solvable Lie subalgebra gf which is isomorphic taig as a vector space
[13,15] The diffeomorphism fronaig onto the Riemannian globally symmetric spagek
[13] enables the construction of the parametrizatiof2iR).

An involutive automorphism € Aut(gp) of a semi-simple real Lie algebrp is called
a Cartan involution if the induced bilinear forBy (X, Y) = —B(X, 0(Y)) whereB is the
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Killing form on go is strictly positive definitevX, Y € go. If the semi-simple complex
Lie algebrag = gg is the complexification ofjp then the set of elementsof g which is
generated as

t= kQ+iUQ, (24)

through the complexification adp, is a compact real form aj whose conjugation will
be denoted by . We should bear in mind thagp has the set equivalent imagesga= gg
whose realizations igg x go are isomorphic tgpo. In this waykg andug can be considered
as subsets gf and thert which is a subset df is also a subset of one of the imagegef
in g. Thus under the realization gf t? corresponds to a subalgebragaf The real semi-
simple Lie algebray is also a real form of its complexificatiamso that we may define
o as the conjugation af with respect tagp. The mapd = o - 7 = 7 - o is an involutive
automorphism ofy. In facté is a Cartan involution of. TheR-linear restriction ob on
the image ofyp in g induces a Cartan involution agy which we will again denote by.
After the introduction of the Cartan involutighwe can easily define the roots tj... For
each element € h{j the dual space of the Cartan subalgefjaf go we can define the
elementa? € h} such thaw (H) = a(9(H)), YH € ho. If @ € A thena? € A as well.
Thus we have defined

Afe={alaeA™, a;éae}. (2.5)

The scalar Lagrangian is defined in terms of the internal mettie- v¥1 where we have
introduced the geneliaed transpose # which is over the Lie graisuch thatexp(g))* =
exp(g®) Vg € go. It is induced by the Cartan involutioh over the Lie algebrayp of G
(g* = —60(g)) [1,15,17] Thus in terms of the internal metri¢t the globallyG-invariant
and the locallyK -invariant scalar Lagrangidi,?] is

1
Esca|ar: Z tl’(d./\/l_l N *dM) (26)

The G/K symmetric space sigma model is studied in detajllBl. Thus referring td15]
we can calculate the Cartan foigg = dv v~ generated by the mg@.2)as
1

Go= Edqbi Hi +E'Qdy. (2.7)

We have used thatH;, E,] = a; E,. The row vectorE’ has the component€’), =

30 E,. The column vectod x is (d x*). We have also defined the mat&kas

%S " . -

wherewy = x*K g with the structure constants]; defined agE,, Egl = K4 E, . Here
both andw aren x n matrices where is the number of the roots in . [15].

We will consider the coupling ofin — 1)-form potential field§ A’} to theG/K scalar
coset where the number of the coupling fields is determined such that they form a funda-

mental representation gh. The quadratic terms due to this coupling which must be added
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to the scalar Lagrangidi2.6) are the combinations of the internal mettd and the field
strengthsF! = d A!

1
ﬁmz—éMlek/\*Fl:—EF/\M*F. (2.9)

As it is clear from aboveM andv are in an appropriate representation (i.e., fundamental
representation afp) which is compatible with the number of the coupling fields. Thus the
total Lagrangian becomes

L‘_—tr(d/\/l /\*d/\/l)—}F/\M*F (2.10)

The Cartan involutiom induced by the Cartan decompositi¢thl)is an involutive auto-
morphism ofgg for this reason it has two eigenspaées 6~ with eigenvaluest1. The
Cartan involutiorg induces the eigenspace decomposition of the Lie alggbas

Q=0"T®6. (2.11)

The elements of ™ are called compact while the elementgof are called non-compact.
If the subgroup ofG generated by the compact generators is an orthogonal group then in
the fundamental representation the generators can be chosen sugh=tgit. Therefore
# coincides with the ordinary matrix transpose avdbecomes a symmetric matrix in the
representation we choose. We will assume this case in our further analysis bearing in mind
that for the general case higher-dimensional representations are possible in which we can
still takeg” = g [17].

By following the analysis of15—17]and by usind2.7)we can derive the field equations

for the coupling potentialgéA¥}, the axions x™} and the dilatong’} of the Lagrangian
(2.10) Thus the corresponding field equations are

d(./\/lk[ *Fl) =0,

i 1 i :
d(e%m’ *UV) = —Eyje%m’ de? AxUY

1 i lp i
+ Y ez 2PN, _qU” AxUP,

a—PB=—y
(*dqb Z anWb U® A28 4 U
aeAnc
1 .
+ (—1)D+1§((Hi)nzv;2v§)F/ A*F™, (2.12)

wherei, j =1,...,r anda, B, y € Af.. The roots inA. and their corresponding genera-
tors{E,,} are assumed to be enumerated. We have also defined the Ué‘cteszg dx?.
Furthermore the matricegH;),;} are the representatives of the Cartan generdthrs
under the representation chosen. We use the notpEgnEg] = Ny g Eos. We should
remark that in the dilaton equation {@.12)the contribution from the coupling fieldsi*}

is expressed in terms of the original fields rather than their weight expansions unlike the
expressions if16,17] For notational convenience we raise or lower the indices of the
matrices by using an Euclidean metric.
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3. Dualisation and thefirst-order formulation

In this section we will adopt the method [i,2] to establish a coset formulation and
to derive the first-order field equations for the Lagrang@i0) Basically we will im-
prove the analysis presented for the non-split scalar cog&bjrio the case when there is
matter field coupling to the non-split scalar coset. We will first define a Lie superalgebra
which will realize the doubled coset element. We assign the generfdipr&,,, V;} to
the fields{¢', x™, A/}, respectively. We assume thdf;, E,,} are even generators within
the superalgebra structure since the coupfields are scalars and they have even rank.
The generator§V;} are even or odd whether the rank of the coupling figldls) namely
(m — 1) is even or odd. The next step is to introduce the dual figjdsz™, A7} which
would arise as a result of the local integration of the field equai{@ri®) The first two
are(D — 2)-forms and the last ones af® — m — 1)-forms. We also assign the dual gen-
erators{H;, E,, V } to these dual fields, respectively. The dual generators are even or odd
depending onD andm in other words according to the rank of the dual fields they are
assigned to. We will derive the structure oéthie superalgebra generated by the original
and the dual generators we have introducethso it will enable a coset formulation for
the Lagrangiarf2.10) Similar to the non-linear coset structure of the scalars presented in
the last section we can define the map

m J J 10|
W e2¢HeX En yAIVj JATV; 3" Em 39 i (3.1)

which can be considered as the parametriratiba coset via the differential graded al-
gebra[2] generated by the differential forms on thedimensional spacetime and the Lie
superalgebra of the original and the dual generators we propose. We are not intending to
detect the group theoretical structure of this coset, rather we will only aim to construct the
Lie superalgebra of the original and the dual generators which function in the parametriza-
tion (3.1). If one knows the structure constants of this algebra one can calculate the Cartan
form G’ = dv'v'~1 which is induced by the maf8.1). Due to its definition the Cartan

form G’ obeys the Cartan—Maurer equation

dG' —G' AG' =0. (3.2)
By following the outline of[1,2] the structure constants of the Lie superalgebra will be
chosen so that when we calculate the Cartan @fihwill lead us to the second-order field
equationg2.12)via the identity(3.2) and it will satisfy the twisted self-duality equation
*G' = SG’" where the action of the pseudo-involuti§rj2] on the generators is taken as

SH;=H;, SEy=En, SE,=-LPE,,  SH=-1"H,
SV = Vj, SVj = (—1)m<D7m)+le. (3.3)

We know that the twisted self-duality equation will give us the locally integrated first-
order field equations which can be obtained fr@il2) by extracting an overall exterior
derivative operator on both sides of the equatifng,15,18] This local integration pro-
duces auxiliary fields which are the dual éislwe introduce. The dualisation method is
nothing but another manifestation of the Lagrange multiplier method while the dual fields
correspond to the Lagrange multiplier fields et are introduced to construct the La-
grange multiplier Lagrangian terms of the Bianchi identities of the original field strengths
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[18]. We may first calculate the Cartan forgh = dv'v/~1 from the map(3.1) in terms

of the unknown structure constants of the Lie superalgebra of the original and the dual
generators. We intend to construct an algebraic structure so that the Cartan form satisfies
the twisted self-duality equationg’ = SG’. In a sense the twisted self-duality equation
would correspond to the equation of motion of the dualized Lagrarigjart this stage

we will assume that the Lie superalgebra of the original and the dual generators has a gen-
eral structure in which the commutator or the anti-commutator of two original generators
gives another original generator, an original and a dual generator leads to a dual generator
while two dual generators vanish under the algebra product. When we calculate the struc-
ture constants of the Lie superalgebraiehhgenerates the correct Cartan foghwhich

leads to the field equatiorf8.12)in (3.2)we will see that they obey such a general scheme
indeed. We may use the proposed twistedftdehlity property of the dualized Cartan form
primarily to write it only in terms of the dginal fields because as it is clear frdfh3)the
pseudo-involution sends the original gestters to the dual ones and the dual ones to the
originals with a sign factor. Thus by using the formulas

deXe X =dx 1XdX 1X X,dX
e e = +§[ ) ]+§[ 9[ ) ]]+"'a

1
XYe X =Y+ (X, Y]+ = [X. (X, Y]]+, (3.4)

al

effectively and by applying #ntwisted self-duality conditiorG’ = SG’, the calculation of
the Cartan forng’ = dv/v'~1 only in terms of the original fields yields

1 . - — — — 1 A
G = Edqb‘ H; +E'Qdyx + VeYeB dA + 5(—1)9 xd¢' H;

+ (—1)Pe39 Q8w dyP Eq + (1™ P IV UeB 4 dA, (3.5)
We have defined the yet unknown structure constants as
[Hi, Val=6,,Vi,  [Ew,Vj1=8;Vi. (3.6)
The matriced) andB in (3.5)are

1 . .
W)y =360, Bn=x"Bm- (3.7)

We introduce the row vectong andV as (V;) and (Vj), respectively, the column vector

dA is (dA’). We have also taken
[V, Vn}:0 (38)

In (3.5)we have made use of the result§1H] in the calculation of the scalar sector of the
Cartan formg’ = dv' v/~ 1.

Now inserting the Cartan forr(8.5) (which is written only in terms of the original
fields by primarily applying the twisted geduality condition) in the Cartan—Maurer iden-
tity (3.2)should result in the second-order field equati(thd?2) [2,15] This main feature
of the coset formulation enables us to derive the commutation and the anti-commutation
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relations of the original generators which are already encod€8l%)and the commuta-

tors and the anti-commutators of the dual and the mixed (an original and a dual) generators
which arise in the calculation ¢8.2)within the graded differential algebra structure of the
differential forms and the generators. Thus a straightforward calculatigh2yfby insert-

ing (3.5)and then the comparison of the result with the second-order field equéiaas

gives us the desired structure constants of the commutators and the anti-commutators. We
have

[Hj» Ea]zaan» [Eq, Eﬁ]zNa,ﬁEa+ﬂ»
(Hy, Vil=(H)fVk,  [Ea, Vil=(EQ)]V;,

1 r
[Hj. Bl =~0jEa.  Ea.Eal=73) o],
j=1

[Eo. Egl=Na,—gE,, a—B=—y, a#p,
~ I 5 ~ I
(Hi. Vil=—(H) Vi, [Ea, Vil=—(EL), i,

- 1 ~
Vi, Vid = (=DP7" 2 > (HiuHi, (3.9)

where the indices of the Cartan generators and their dualsaie=1, ..., ande, 8,y €

Af.. The matrices{(Ea){, (H,){) above are the representatives of the corresponding gen-
erators((Ey), (H)). Also (EL)], (H)!) are the matrix transpose ofE,)/, (H)]). We

should state once more that the dimension of the matrices above namely the dimension of
the fundamental representationgefis equal to the number of the coupling fields and their
corresponding generators since this is howhage defined and constructed the coupling

of the matter fieldsA¥ to the scalar cosef/K in the Lagrangiar2.10) The remaining
commutators or the anti-commutators of the original and the dual generators which are not
listed in(3.9) vanish indeed. We observe that as we have assumed before the Lie superal-
gebra we have constructed(®.9) has the general form

[0,DycD, [0,0}co,
[D, D} =0, (3.10)
where0 is the set of the original anB is the set of the dual generators.
Now that we have determined the structure constants of the algebra generated by the
original and the dual generators we can explicitly calculate the Cartangbeaydv’v'~1

in terms of both the original and the dual fields. By using the identitig8 i) also the
structure constants given {8.9) effectively we have

1. - -~ = > - = = 1
G'=5d¢' Hi +EQdx +TefrS+vvdA+ V() 'dA
r 1 o
+ (=1ymP=m) Z Z(Hp)uA* ANdA H;. (3.11)
i=1 4
In addition to the definitions given in Sectiéhwe have introduced the row vectoys
andV as (1) and (1), respectively. The column vectodg anddA are (F¥) and ¢A).
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Besides we have the row vector of the duals of the solvable Lie algebra generatoesof

Ti=Hfori=1,...,r andT,,4 = E, for @ € A}l.. The column vectoSS is defined as
S =1d¢' fori=1,...,r andS** =d3* for o € A We have introduced the matrices
I' andA as

1. ;
Fi=50'8m  Av=x"fun: (3.12)

Here we have used the structure constéglts and{ £, } from their definitions in
[Ea. Tul = foTue  [Hi Tl =&}, T (3.13)

They can directly be read froif3.9). If one insert{3.11)in the Cartan—Maurer equa-
tion (3.2) one would obtain the secoratder field equations anti¢ Bianchi identities of
the original fields in terms of the original and dual fields which are the Lagrange multi-
pliers[2,18]. One can use the twisted self-duality equation wi{gi1)obeys and which
gives the first-order equations to eliminate the dual fields and then write the second-order
field equations solely in terms of the original fields namely one would réadt2) This
is analogous to what we have done in the derivation of the algebra structure. We have
obtained the second-order field equations in terms of the structure constants of the alge-
bra by inserting3.5) in (3.2) and then we have compared the result W2l 2)to read
the structure constants. The second-order field equations in terms of the structure con-
stants that are mentioned above do not contain the dual, Lagrange multiplier fields since
we have used primarily the twisted self-dualityndition that relates the dual fields to the
original ones and we have written the Cartan f@fronly in terms of the original fields
in (3.5).

Since we have obtained the explicit form of the Cartan f@fnin (3.11)we can use
the twisted self-duality equationG’ = SG’ to find the first-order field equations of the
Lagrangian(2.10) The validity of the twisted self-duality equation is justified in the way
that we have primarily assumed th@tobeys it when we derived the structure constants
which are chosen such that they give the correct Cartan dnwhich leads to the second-
order field equationg.12)in (3.2). Therefore directly fronf3.11)the twisted self-duality
equation:G’ = SG’ yields

v[k *dAl — (_1)m(D7m)+l((vT)*1);< dAl,
e%ai(,bi (Q);x+r wdy' = (_1)D(6F6A)7+réj’
1 . . 1 _

> d¢' = (—1)D(ereA)[jS’ + (—1)m(D_”')+D‘—1(H[)k1Ak AdAL (3.14)

The exterior differentiation of3.14) gives the second-order field E(.12)indeed. We
should remark once more that the rootsAfy, and the corresponding generatfrs,} are
enumerated. We can also express @dl4)in a more compact form as

M xdA = (=1 P—m+1gA

«W =P+ (—1)PeT A, (3.15)
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where we define the column vectdras

1.
\Il’:iddf fori=1,...,r,

Wt = 0299 Q% dy! fora € A (3.16)
Also the vecton3 is
P = (—1)m(D_”’)+D%(H[)k1Ak ANdAT fori=1,...r,
Pt =0 forae Al (3.17)

4, Conclusion

After a concise discussion of the symmetric space sigma model with its algebraic back-
ground we have defined the couplingmfform field strengths to the scalar Lagrangian in
Section2. We have also obtained the field equations following the outling®f17] In
Section3 we have adopted the dualisation methodl1g2] to establish a coset formulation
of the theory and to explore the Lie superalgebra which leads to the first-order equations of
motion as a twisted self-duality condition. Thalidity of the twisted self-duality property
of the Cartan form is implicitly justified by our construction of the algebra since beside
using the second-order field equations and the Cartan—Maurer equation we have also as-
sumed that the Cartan form obeys the twisted self-duality equation in expressing it only in
terms of the original fields during the derivation of the structure constants of the algebra.
As a result we have constructed a coset element by defining a Lie superalgebra structure
and we have shown that both the first and the second-order field equations can be directly
obtained from the Cartan form of the coset element.

This work can be considered as an extension of the results which are obta[dé&dl in
The dualisation of th& /K symmetric space sigma model is performedlis] when the
global symmetry group is a non-split semi-simple real form. Here we have studied the
dualisation of the non-split scalar coset when it is coupled to other matter fields. We have
constructed a framework in which the dualisation analysig6f is improved to include
the coupling matter fields. As a result we have obtained a general scheme which can be
effectively used in the coset realizationstloé whole set of matter coupled supergravities.

The formulation given in this work assumes a general non-split scalar Gydétin
D > 2 spacetime dimensions. The coupling potentials are assumed o be {-forms.

As it is clear from the construction, the rdtsuare general and they are applicable to a
wide class of supergravity theories which contain similar coupling$19 the bosonic
sector of the ten-dimensional simple supergravity which is coupled #belian gauge
multiplets is compactified on the Euclidean tf% 2 and the resulting theories in various
dimensions have scalar cosets with couplings based on global symmetry groups which are
non-compact real forms of some semi-simple Lie groups. Therefore the results presented
here are applicable on them.

One can improve the dualized coset formulation presented here by including the gravity
and the Chern—Simons terms as well. This would extend the algebra structure obtained
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here. The group theoretical aspects of the coset formulation and the symmetry properties
of the first-order equations which are not considered in this work also need to be examined.
One can also study the Kac—Moody symmetry sch{3n8] of the matter coupled scalar
cosets.
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