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Background
As you know, fractional dynamical systems be used in modeling of some real pro-
cesses and there are many published works about the existence of solutions for many 
fractional differential equations (see for example Baleanu et  al. 2013a, b, c; Chai 2013 
and the references therein) and inclusions (see for example, Benchohra and Hamidi 
2010; Agarwal et  al. 2013; Ahmad et  al. 2013; Nieto et  al. 2013; Ouahab 2008; Phung 
and Truong 2013; Bragdi et  al. 2013 and the references therein). For finding more 
details about elementary notions and definitions of fractional differential equations 
and inclusions one can study well-known books (see for example Aubin and Ceuina 
1984; Deimling 1992; Kilbas et  al. 2006; Kisielewicz 1991; Podlubny 1999). Recently, 
it has been published many useful works about modeling of fractional differential 
equations via providing different applications in some fields (see for example Atan-
gana 2016; Atangana and Alkahtani 2016; Atangana and Koca 2016a, b). In this arti-
cle, we first review the existence solution for the fractional hybrid derivative inclusion 
cDα

(
y(s)

g(s,y(s),Iα1y(s),...,Iαn y(s))

)

∈ G(s, y(s), Iβ1y(s), . . . , Iβk y(s)) with boundary conditions 

y(0) = y0 and y(1) = y1, where 1 < α ≤ 2, α1, . . . ,αn > 0, β1, . . . ,βk > 0, y0, y1 ∈ R, cDα 
denotes Caputo fractional derivative of order α, g : J × R

n → R− {0} is continuous and 
G : J × R

k → P(R) is a multifunction via some properties. Also, we review existence 
and dimension of the solution set of fractional derivative inclusion

with boundary condition y(0)+
∑k

i=1
cDβi y(1)+

∑k
i=1 I

γi y(1) = 0, where 
0 < βi < α ≤ 1 and 0 < γi < 1 for i = 1, . . . , k, G : J×R

2k+3 → P(R) is a multifunc-
tion via some properties, γ , � : J × J → [0,∞) are two mappings with the properties 

cDαy(s) ∈ G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)

Abstract 

We investigate in this manuscript the existence of solution for two fractional differential 
inclusions. At first we discuss the existence of solution of a class of fractional hybrid 
differential inclusions. To illustrate our results we present an illustrative example. We 
study the existence and dimension of the solution set for some fractional differential 
inclusions.
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sups∈J |
∫ s
0 �(s, t)ds| < ∞ and sups∈J |

∫ s
0 γ (s, t)ds| < ∞ and the functions φ and ψ are 

defined by (φy)(s) =
∫ s
0 γ (s, t)y(t)dt and (ψy)(s) =

∫ s
0 �(s, t)y(t)dt.

Preliminaries
Suppose that (X , d) be a metric space. Denote by P(X ) and 2X the class of all sub-
sets and the class of all nonempty subsets of X  respectively. Here, Pcl(X ), Pbd(X ) , 
Pcv(X ) and Pcp(X ) denote the class of all closed, bounded, convex and com-
pact subsets of X  respectively. A mapping Q : X → 2X is called a multifunction 
on X  and x ∈ X  is called a fixed point of Q whenever x ∈ Qx (Deimling 1992). A 
multifunction Q : X → P(X ) is called lower semi-continuous whenever the set 
Q−1(A) := {x ∈ X : Qx ∩ A �= ∅} is open for each open subset A of X  (Kisielewicz 
1991). If the set {x ∈ X : Qx ⊂ A} is open for each open set A of X , then we say that 
Q is upper semi-continuous (Kisielewicz 1991). A multifunction Q : X → P(X ) is 
called compact whenever Q(S) is a compact for each bounded subsets S of X  (Aubin 
and Ceuina 1984). A multifunction Q : J → Pcl(R) is said to be measurable when-
ever the function s �→ d(y,Q(s)) = inf{|y− z| : z ∈ Q(s)} is measurable for all y ∈ R 
and s ∈ J = [0, 1] (Deimling 1992). The Pompeiu–Hausdorff metric H = Hd on 
2X × 2X into [0,∞) is defined by H(A,B) = max{supa∈A d(a,B), supb∈B d(A, b)},  
where d(A, b) = infa∈A d(a; b) (Berinde and Pacurar 2013). Then (Pbd,cl(X ),H) is a 
metric space and (Pcl(X ),H) is a generalized metric space (Berinde and Pacurar 2013). 
A multifunction Q : X → Pcl(X ) is called a contraction whenever there exists γ ∈ (0, 1) 
such that Hd(Q(x),Q(y)) ≤ γd(x, y) for all x, y ∈ X  (Covitz and Nadler 1970). Covitz 
and Nadler (1970) proved that each closed valued contractive multifunction on a com-
plete metric space has a fixed point. We say that Q : J × R

k → 2R is a Caratheodory 
multifunction whenever s �→ Q(s, x1, x2, . . . , xk) is measurable for all x1, x2, . . . , xk ∈ R 
and (x1, x2, . . . , xk) �→ Q(s, x1, x2, . . . , xk) is an upper semi-continuous map for almost all 
s ∈ J  (see Aubin and Ceuina 1984; Deimling 1992; Kisielewicz 1991). Also, a Caratheo-
dory multifunction Q : J × R

k → 2R is called L1-Caratheodory whenever for each ρ > 0 
there exists φρ ∈ L1(J ,R+) such that

for all |x1|, |x2|, . . . , |xk | ≤ ρ and for almost all s ∈ J  (see Aubin and Ceuina 1984; Deim-
ling 1992; Kisielewicz 1991).

Lemma 1 (Deimling 1992) If G : X → Pcl(Y) is upper semi-continuous, then Gr(G) is 
a closed subset of X × Y. If G is completely continuous and has a closed graph, then it is 
upper semi-continuous.

Lemma 2 (Lasota and Opial 1965) Suppose that X  is a Banach space, 
G : J × X → Pcp,cv(X ) an L1-Caratheodory multivalued and � a linear continuous map-
ping from L1(J ,X ) to C(J ,X ). Then the mapping �oSG : C(J ,X ) → Pcp,cvC(J ,X ) defined 
by (�oSG)(x) = �(SG,x) is a closed graph mapping in C(J ,X )× C(J ,X ).

Theorem 3 (Dhage 2006) Suppose that X  is a Banach algebra space, S ∈ Pbd,cl,cv(X ) 
and A : S → Pcl,cv,bd(X ) and B : S → Pcp,cv(X ) two multifunctions satisfying the follow-
ing conditions

� Q(s, x1, x2, . . . , xk) �= sup{|v| : v ∈ Q(s, x1, x2, . . . , xk)} ≤ φρ(s)
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1. A is Lipschitz with a Lipschitz constant k,
2. B is upper semi-continuous and compact,
3. AxBx is a convex subset S for all x ∈ S,
4. Mk < 1, where M = �B(S)� = sup{�Bx� : x ∈ S}.
Then, there exists y ∈ S such that y ∈ AyBy.

Lemma 4 (Agarwal et  al. 2013) Suppose that G : [0, 1] → Pcp,cv(R) is a measurable 
map such that the Lebesgue measure µ of the set {s : dimG(s) < 1} is zero. Then there are 
arbitrarily many linearly independent measurable selections x1(.), . . . , xm(.) of G.

Theorem 5 (Agarwal et al. 2013) Suppose that C is a nonempty closed convex subset of 
Banach space X . Let G : C → Pcp,cv(C) b a γ-contraction. If dimG(x) ≥ m for all x ∈ C, 
then dim Fix(G) ≥ m.

Main results 
First, we review the fractional hybrid differential inclusion

with the boundary conditions y(0) = y0 and y(1) = y1, where 1 < α ≤ 2, α1, . . . ,αn > 0 , 
β1, . . . ,βk > 0, y0, y1 ∈ R, cDα denotes Caputo fractional derivative of order α, 
g : J × R

n → R− {0} is continuous and G : J × R
k → P(R) is a multifunction via some 

properties.

Lemma 6 Suppose that x ∈ C(J ,R), α ∈ (1, 2] and α1, . . . ,αn > 0. The unique solution 
of the fractional differential problem cDα

(
y(s)

g(s,y(s),Iα1y(s),...,Iαn y(s))

)

= x(s) with the bound-
ary value conditions y(0) = y0 and y(1) = y1 is given by

Proof The general solution of the equationcDα
(

y(s)
g(s,y(s),Iα1y(s),...,Iαn y(s))

)

= x(s) is  

y(s) = g(s, y(s), Iα1y(s), . . . , Iαny(s))[Iαx(s)+ c0 + c1s], where c0, c1 ∈ R are arbitrary  

constants (see Kilbas et  al. 2006; Podlubny 1999). By using the boundary conditions,  

we get y(0) = g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)c0 = y0 and y(1) = g(1, y(1), Iα1y(1), . . . , Iαny(1))

(Iαx(1)+ c0 + c1) = y1. Hence, c0 = y0
g(0,y(0),0, . . . , 0

︸ ︷︷ ︸
n

)
 and c1 =

y1
g(1,y(1),Iα1y(1),...,Iαn y(1))

−Iαx(1)− y0
g(0,y(0),0, . . . , 0

︸ ︷︷ ︸
n

)
. This completes the proof.  �

(1)cDα

(
y(s)

g(s, y(s), Iα1y(s), . . . , Iαny(s))

)

∈ G
(
s, y(s), Iβ1y(s), . . . , Iβk y(s)

)

y(s) = g(s, y(s), Iα1y(s), . . . , Iαny(s))

×






Iαx(s)+

(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)
+

sy1

f (1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαx(1)






.
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y ∈ Y = C(J ,R) is solution for the problem (1) whenever it satisfies the boundary con-
ditions and there exists a function v ∈ SG,y such that

where SG,y = {v ∈ L1[0, 1] : v(s) ∈ G(s, y(s), Iβ1y(s), . . . , Iβk y(s)) for almost all s ∈ J }.

Theorem  7 Let G : J × R
k+1 → Pcp,cv(R) be a Caratheodory multifunction, 

g : J × R
n+1 → R− {0} is a continuous and bounded function with bound K and there 

exist continuous functions p,m : J → (0,∞) such that �G(s, y1, y2, . . . , yk)� ≤ m(s) and 
|g(s, y1, y2, . . . , yn+1)− g(s, x1, x2, . . . , xn+1)| ≤ p(s)

∑n+1
i=1 |yi − xi| for all s ∈ J . If

then the problem (1) has a solution.

Proof Define S = {y ∈ Y : �y� ≤ L}, where

clearly S is a closed, bounded and convex subset of the Banach algebra space Y. Now, 
consider the multivalued operators A,B : S → P(Y) by

and

Thus, the problem (1) is tantamount to the problem y ∈ A(y)B(y). We prove that the 
multifunctions A and B well-defined the conditions of Theorem 3. Note that, the opera-
tor B = θ ◦ SG, where θ is the continuous linear operator on L1(J ,R) into Y defined by

y(s) = g(s, y(s), Iα1y(s), . . . , Iαny(s))

×






Iαv(s)+

(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)
+

sy1

f (1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv(1)






.

�p�∞
�

1+
1

Ŵ(α1 + 1)
+

1

Ŵ(α2 + 1)
+ · · · +

1

Ŵ(αn + 1)

�







2�m�∞
Ŵ(α + 1)

+

�
�
�
�
�
�
�
�

y0

g(0, y(0), 0, . . . , 0
� �� �

n

)

�
�
�
�
�
�
�
�

+
�
�
�
�

y1

g(1, y(1), Iα1y(1), . . . , Iαn y(1))

�
�
�
�







< 1,

L = K







2�m�∞
Ŵ(α + 1)

+

�
�
�
�
�
�
�
�

y0

g(0, y(0), 0, . . . , 0
� �� �

n

)

�
�
�
�
�
�
�
�

+
�
�
�
�

y1

g(1, y(1), Iα1y(1), . . . , Iαny(1))

�
�
�
�






.

Ay(s) =
{
g(s, y(s), Iα1y(s), . . . , Iαny(s))

}

By(s) =







u ∈ Y : there exists v ∈ SG,y such that u(s) = Iαv(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)

+
sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv(1) for all s ∈ J







.
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Let y ∈ S be arbitrary and {vn} a sequence in SG,y . Then, vn(s) ∈ G(s, y(s), Iβ1y(s), . . . , Iβk y(s)) 
for almost s ∈ J . Because G(s, y(s), Iβ1y(s), . . . , Iβk y(s)) is compact for all s ∈ J , there exists 
a convergent subsequence of {vn(s)} (we show it again {vn(s)}) to some v ∈ SG,y. Since θ 
is continuous, θvn(s) → θv(s) pointwise on J. Because we will show that the convergence 
is uniform, we have to prove that{θvn} is an equi-continuous sequence. Suppose that 
τ < s ∈ J . So, we have

Hence the right hand of above inequalities tends to 0 as s → τ and so the sequence {θvn} 
is equi-continuous. By using the Arzela–Ascoli theorem, it has a uniformly convergent 
subsequence. Thus, there is a subsequence of {vn} (we show it again by {vn}) such that 
θvn → θv. Hence, θv ∈ θ(SG,y). Thus, B = θ(SG,y) is compact for all y ∈ S. Now, we show 
that By is convex for all y ∈ S. Let y ∈ S and u,u′ ∈ By. Choose v, v′ ∈ SG,y such that

for almost all s ∈ J . Let 0 ≤ � ≤ 1. Then, we have

Since G is convex valued, �u+ (1− �)u′ ∈ By. Cleary, A is bounded, closed and convex 
valued. We prove that AyBy is a convex subset of S for all y ∈ S. Suppose that y ∈ S and 
u,u′ ∈ AyBy. Choose v, v′ ∈ SG,y such that

θv(s) = Iαv(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv(1).

|θvn(s)− θvn(τ )| ≤
�m�∞(sα − τα)

Ŵ(α + 1)
)+ (s − τ )|

y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)

+
y1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− Iαvn(1)|.

u(s) = Iαv(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv(1),

u′(s) = Iαv′(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv′(1)

�u(s)+ (1− �)u′(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1[�v(t)+ (1− �)v′(t)]ds +
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)

+
sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))

−
s

Ŵ(α)

∫ 1

0

(1− t)α−1[�v(t)+ (1− �)v′(t)]dt.
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for almost all s ∈ J . Hence, we get

Since G is convex valued, �u+ (1− �)u′ ∈ AyBy. So, AyBy is convex subset of Y for all 
y ∈ Y. But, we have

for all s ∈ J . So, u ∈ S and AyBy is a convex subset of S for all y ∈ S. Here, We show 
that operator B is compact. For showing this, it is enough to prove that B(S) is uni-
formly bounded and equi-continuous. Let u ∈ B(S). Choose v ∈ SG,y such that 

u(s) = g(s, y(s), Iα1y(s), . . . , Iαny(s))




Iαv(s)+ (1−s)y0

g(0,y(0),0, . . . , 0
� �� �

n

)
+ sy1

g(1,y(1),Iα1 y(1),...,Iαn y(1)) − sIαv(1)





 

for some y ∈ S. Hence,

and so �u�∞ = maxs∈J |u(s)| ≤






2�m�∞
Ŵ(α+1) + | y0

g(0,y(0),0, . . . , 0
� �� �

n

)
| + | y1

g(1,y(1),Iα1y(1),...,Iαn y(1)) |




. 

In this part, prove that B maps S to equi-continuous subsets of Y. Sup-

pose that s, τ ∈ J  with τ < s, y ∈ S and u ∈ By. Choose v ∈ SG,y such that 

u(s) = Iαv(s)+ (1−s)y0
g(0,y(0),0, . . . , 0

︸ ︷︷ ︸
n

)
+ sy1

g(1,y(1),Iα1y(1),...,Iαn y(1)) − sIαv(1). Then, we have

u(s) = g
�
s, y(s), Iα1y(s), . . . , Iαn y(s)

�







Iαv(s)+

(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαn y(1))
− sIαv(1)







,

u′(s) = g
�
s, y(s), Iα1y(s), . . . , Iαn y(s)

�







Iαv′(s)+

(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)
+

sy1

g(1, s(1), Iα1 s(1), . . . , Iαn y(1))
− sIαv′(1)








�u(s)+ (1− �)u′(s) = g
(
s, y(s), Iα1y(s), . . . , Iαny(s)

)
[

1

Ŵ(α)

∫ s

0

(s − t)α−1[�v(t)+ (1− �)v′(t)

]

dt

+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))

−
s

Ŵ(α)

∫ 1

0

(1− t)α−1[�v(t)+ (1− �)v′(t)]dt.

|u(s)| =

�
�
�
�
�
�
�
�

g
�
s, y(s), Iα1y(s), . . . , Iαn y(s)

�






Iαv(s)+

(1− s)y0

g(0, y(0), 0, . . . , 0
� �� �

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαn y(1))

−sIαv(1)]
�
� ≤ K







2�m�∞
Ŵ(α + 1)

+

�
�
�
�
�
�
�
�

y0

g(0, y(0), 0, . . . , 0
� �� �

n

)

�
�
�
�
�
�
�
�

+
�
�
�
�

y1

g(1, y(1), Iα1y(1), . . . , Iαn y(1))

�
�
�
�







= L

|u(s)| ≤







2�m�∞
Ŵ(α + 1)

+

�
�
�
�
�
�
�
�

y0

g(0, y(0), 0, . . . , 0
� �� �

n

)

�
�
�
�
�
�
�
�

+
�
�
�
�

y1

g(1, y(1), Iα1y(1), . . . , Iαny(1))

�
�
�
�






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So the right side of inequality towards to 0 as s → τ. Hence by using the Arzela–Ascoli 
theorem, B is compact. Here, we show that B has a closed graph. Suppose that yn ∈ S 
and un ∈ Byn for all n such that yn → y′ and un → u′. We show that u′ ∈ By′. For each 
natural number n, choose vn ∈ SG,yn such that

for all s ∈ J . Again, consider the continuous linear operator θ : L1(J ,R) → Y such that

By using Lemma 2, θoSG is a closed graph operator. Since yn → y′ and un ∈ θ(SG,yn) for 
all n, there is v′ ∈ SG,y′ such that

Hence, u′ ∈ By′. This implies that, B has a closed graph and thus the operator B is upper 
semi-continuous. Now, we show that A is a contractive multifunction. Note that,

for all x, y ∈ Y. So, A and B satisfy the conditions of Theorem 3 and thus the operator 
inclusions y ∈ AyAy has a solution in S. Therefore, the problem (1) has a solution.  �

To illustrate our main results, we present the following example:

Example 1 Here, we investigation the problem

with the boundary conditions y(0) = π
2  and y(1) = 0. Put α = 1

2, α1 =
√
2 , 

β1 = 1
4, n = k = 1, y0 = π

2 , y1 = 0, g(s, y, x) = (s+1)2

60 sin y+ |x|
1+|x| + 3, 

|u(s)− u(τ )| ≤
(
�m�∞(sα − τα)

Ŵ(α + 1)

)

+ (s − τ )

∣
∣
∣
∣
∣
∣
∣
∣

y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)

+
y1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− Iαv(1)

∣
∣
∣
∣
.

un(s) = Iαvn(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαvn(1)

θ(v)(s) = u(s) = Iαv(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv(1).

u′(s) = Iαv′(s)+
(1− s)y0

g(0, y(0), 0, . . . , 0
︸ ︷︷ ︸

n

)
+

sy1

g(1, y(1), Iα1y(1), . . . , Iαny(1))
− sIαv′(1).

H(Ay,Ax) = �Ay−Ax� = max
s∈J

∣
∣g(s, y(s), Iα1y(s), . . . , Iαny(s))− g(s, x(s), Iα1x(s), . . . , Iαnx(s))

∣
∣

≤ max
s∈J

(|p(s)||y(s)− x(s)|)
(

1+
1

Ŵ(α1 + 1)
+

1

Ŵ(α2 + 1)
+ · · · +

1

Ŵ(αn + 1)

)

= �p�∞
(

1+
1

Ŵ(α1 + 1)
+

1

Ŵ(α2 + 1)
+ · · · +

1

Ŵ(αn + 1)

)

�y− x�∞

cD
1
2






y(s)

(s+1)2

60
sin y(s)+ |I

√
2y(s)|

1+|I
√
2y(s)|

+ 3




 ∈

�

−1, s2 sin y(s)+ cos(I
1
4 y(s))+ 1

�

(∗)
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G(s, y, x) = [−1, s2 sin y+ cos x + 1], m(s) = s2 + 2 and p(s) = (s+1)2

60
 for s ∈ [0, 1]. Note 

that, �G(s, y, x)� ≤ s2 + 2,

and �p�∞
(

1+ 1

Ŵ(α1+1)

)(
2�m�∞
Ŵ(α+1)

+ | y0
g(0,y(0),0) | + | y1

g(1,y(1),Iα1 y(1)) |
)

= 0.8784698182 < 1 . By using 

the Theorem 7, the problem (∗) has a solution.
Now, we review existence and dimension of the solution set of the fractional differen-

tial inclusion problem

with boundary condition y(0)+
∑k

i=1
cDβi y(1)+

∑k
i=1 I

γi y(1) = 0, where 0 < βi < α ≤ 1 
and 0 < γi < 1 for i = 1, . . . , k, G : J×R

2k+3 → P(R) is a multifunction via some properties, 
γ , � : J × J → [0,∞) are two mappings with the properties sups∈J |

∫ s
0 �(s, t)ds| < ∞ and 

sups∈J |
∫ s
0 γ (s, t)ds| < ∞ and the functions φ and ψ are defined by (φy)(s) =

∫ s
0 γ (s, t)y(t)dt 

and (ψy)(s) =
∫ s
0 �(s, t)y(t)dt.

Lemma 8 Suppose that v ∈ C(J ,R), α ∈ (0, 1] and βi, γi ∈ (0, 1) with α − βi > 0 for 
1 ≤ i ≤ k. Then solution of the problem cDαy(s) = v(s) with the boundary condition 
y(0)+

∑k
i=1

cDβi y(1)+
∑k

i=1 I
γi y(1) = 0 is

Proof The general solution of the problem cDαy(s) = v(s) is formed by

where c0 is arbitrary constant and t ∈ J  (Podlubny 1999). Thus, we obtain

and

for all 1 ≤ i ≤ k. By using the boundary condition, we get

∣
∣g(s, y, x)− g(s, y′, x′)

∣
∣ ≤

(s + 1)2

60

(∣
∣y− y′| + |x − x′

∣
∣
)

(2)cDαy(s) ∈ G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)

y(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

y(s) = Iαv(s)+ c0 =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt + c0,

cDβi y(s) = Iα−βi v(s) =
1

Ŵ(α − βi)

∫

0

s(s − t)α−βi−1v(t)dt

Iγi y(s) = Iα+γi v(s)+
c0s

γi

Ŵ(γi + 1)
=

1

Ŵ(α + γi)

∫ s

0

(s − t)α+γi−1v(t)dt +
c0s

γi

Ŵ(γi + 1)

c0 =
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.
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Hence,

This completes the proof.  �

An element y ∈ C(J ,R) is a solution for the problem (2) whenever it satisfies the 
boundary condition and there is a function v ∈ L1(J ) such that

for almost all s ∈ J  and

Put Y = {y : y, cDβi y ∈ C(J ,R) for each i ∈ {1, . . . , k}} with the norm

(Y , ‖.‖) is a Banach space (Su 2009). Define selection set of G at y ∈ Y by

Theorem 9 Suppose that m ∈ L1(J ,R+), l = (�1 +
∑k

i=1�
i
2) < 1, where

�i
2 = �m�1

(

1+ �0 + γ0 +
∑k

i=1
1

Ŵ(γi+1)

)
1

Ŵ(α−βi)
 for i = 1, . . . , k, F : J × R

2k+3

→ Pcv,cp(R) is a multifunction such that the map s ⊢ G(s, y1, y2, . . . ,2k+3 ) is measurable,

and H(G(s, y1, y2, . . . , y2k+3)),G(s, x1, x2, . . . , x2k+3)) ≤ m(s)
∑2k+3

i=1 (|yi − xi|) for almost 
all s ∈ J  and ∈ x1, x2, . . . , x2k+3, y1, y2, . . . , y2k+3 ∈ R. Then the inclusion problem (2) has 
a solution.

Proof Note that, the multivalued map

y(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

v(s) ∈ G(s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s))

y(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

�y� = sup
s∈J

|y(s)| +
k∑

i=1

sup
s∈J

|cDβi y(s)|.

SG,y : =
{

v ∈ L1(J ,R) : v(s) ∈ G(s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s),

Iγ1y(s), . . . , Iγk y(s)) for almost all s ∈ J
}

.

�1 = �m�1

(

1+ �0 + γ0 +
k∑

i=1

1

Ŵ(γi + 1)

)(

1

Ŵ(α)
+

1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

1

Ŵ(α − βi)
+

1

Ŵ(α + γi)

)

,

�G(s, y1, y2, . . . ,2k+3 )� = sup{|v| : v ∈ G(s, y1, y2, . . . ,2k+3 )} ≤ m(s)
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is measurable and closed valued for all y ∈ Y. Hence, it has a measurable selection and 
so the set SG,y is nonempty. Now, consider the operator ϒ : Y → 2Y defined by

where

for all s ∈ J . Here, we prove that ϒ(y) is a closed subset of Y for each y ∈ Y. Let y ∈ Y 
and {un}n≥1 be a sequence in ϒ(y) with un → u. For each n, choose vn ∈ SG,y such that

for almost all s ∈ J . because G has compact values, {vn}n≥1 has a subsequence which con-
verges to a v ∈ L1(J ,R). We write it again by {vn}n≥1. Clearly v ∈ SG,y and

for all s ∈ J . This implies that u ∈ ϒ(x). Thus, the multifunction ϒ has closed values. Now, 
we show that ϒ is a contractive multifunction with constant l = (�1 +

∑k
i=1�

i
2) < 1. 

Suppose that x, y ∈ Y and h1 ∈ ϒ(x). Consider v1 ∈ SG,x such that

for almost all s ∈ J . Since

s ⊢ G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)

ϒ(y) =
{
ξ ∈ X : there is v ∈ SG,y : ξ(s) = ν(s) for all s ∈ J

}
,

ν(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

un(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1vn(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1vn(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1vn(t)dt

)

un(s) → u(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

h1(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v1(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v1(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v1(t)dt

)

H

(

G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)
,

G
(
s, x(s), (φx)(s), (ψx)(s), cDβ1x(s), . . . , cDβk x(s), Iγ1x(s), . . . , Iγk x(s)

))

≤ m(t)
(
|y(s)− x(s)| + |(φy)(s)− (φx)(s)| + |(ψy)(s)− (ψx)(s)|

+
k∑

i=1

∣
∣cDβi y(s)− cDβi x(s)

∣
∣+

k∑

i=1

∣
∣Iγi y(s)− Iγi x(s)

∣
∣

)
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for almost all s ∈ J , there is

such that

for almost all s ∈ J . Define the multifunction � : J → 2R by

The multifunction

is measurable. Thus, we can choose v2 ∈ SG,y such that

for almost all s ∈ J . Now, define h2 ∈ ϒ(y) by

So

and |cDβi h1(s)− cDβi h2(s)| ≤ 1
Ŵ(α−βi)

∫ s
0 (s − t)α−βi−1|v1(t)− v2(t)| ≤ �i

2�x − y� and so 
we get �h1 − h2� ≤ (�1 +

∑k
i=1�

i
2)�x − y� = l�x − y�. This implies that the multifunc-

tion N is a contraction via closed values. By using the well-known theorem of Covitz and 
Nadler, N has a fixed point which is a solution for the inclusion problem (2).  �

ν ∈
(
G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

))

|v1(s)− ν| ≤ m(s)

(

|y(s)− x(s)| + |(φy)(s)− (φx)(s)| + |(ψy)(s)− (ψx)(s)|

+
k∑

i=1

∣
∣cDβi y(s)− cDβi x(s)

∣
∣+

k∑

i=1

∣
∣Iγi y(s)− Iγi x(s)

∣
∣

)

�(s) =
{

ν ∈ R : |v1(s)− ν| ≤ m(s)

(

|y(s)− x(s)| + |(φy)(s)− (φx)(s)| + |(ψy)(s)− (ψx)(s)|

+
k∑

i=1

∣
∣cDβi y(s)− cDβi x(s)

∣
∣+

k∑

i=1

∣
∣Iγi y(s)− Iγi x(s)

∣
∣

)

for almost all s ∈ J

}

.

�(.)
⋂(

G
(
., y(.), (φy)(.), (ψy)(.), cDβ1y(.), cDβ2y(.), . . . , cDβk y(.), Iγ1y(.), Iγ2y(.), . . . , Iγk y(.)

))

|v1(s)− v2(s)| ≤ m(s)

(

|y(s)− x(s)| + |(φy)(s)− (φx)(s)| + |(ψy)(s)− (ψx)(s)|

+
k∑

i=1

∣
∣cDβi y(s)− cDβi x(s)

∣
∣+

k∑

i=1

∣
∣Iγi y(s)− Iγi x(s)

∣
∣

)

h2(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v2(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v2(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v2(t)dt

)

.

|h1(s)− h2(s)| ≤
1

Ŵ(α)

∫ s

0

(s − t)α−1|v1(t)− v2(t)|dt

+
1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1|v1(t)− v2(t)|dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1|v1(t)− v2(t)|dt
)

≤ �1�y− x�
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Lemma 10 Suppose that m ∈ L1(J ,R+), G : J × R
2k+3 → Pcv,cp(R) is a multifunction 

such that the map s ⊢ G(s, y1, y2, . . . , y2k+3) is measurable,

for almost all s ∈ J  and ∈ y1, y2, . . . , y2k+3 ∈ R and ϒ : Y → P(Y) is defined by

where

Then, ϒ(y) ∈ Pcp.cv(Y) for all y ∈ Y.

Proof Note that the operator ϒ = θ ◦ SG, where θ is the continuous linear operator on 
L1(J ,R) into Y which is defined by

Suppose that y ∈ Y and {vn} is a sequence in SG,y. so,

for almost s ∈ J . Since

is compact for all s ∈ J , there exists a convergent subsequence of {vn(s)} (we show it 
again by {vn(s)}) which converges to some v ∈ SG,y. Since θ is continuous, θvn(s) → θv(s) 
pointwise on J. Because we show that the convergence is uniform, we must prove that 
{θvn} is an equi-continuous sequence. Let τ < s ∈ J . Then

Note that, the right side of the inequality towards to zero when τ → s. So, the sequence 
{θvn} is equi-continuous and so by using the Arzela–Ascoli theorem there is a uniformly 
convergent subsequence. Thus, there exists a subsequence of {vn} (we show it again by 
{vn}) such that θvn → θv. This implies that θv ∈ θ(SG,y). Hence, ϒy = θ(SG,y) is compact 

�G(s, y1, y2, . . . , y2k+3)� = sup{|v| : v ∈ G(s, y1, y2, . . . , y2k+3)} ≤ m(s)

ϒ(y) =
{
ξ ∈ Y : there is v ∈ SG,y : ξ(s) = ν(s) for all s ∈ J

}
,

ν(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

θv(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

vn(s) ∈ G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)

G
(
s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), . . . , cDβk y(s), Iγ1y(s), . . . , Iγk y(s)

)

|θvn(s)− θvn(τ )| =
∣
∣
∣
∣

1

Ŵ(α)

∫ s

0

(s − t)α−1vn(t)dt −
1

Ŵ(α)

∫ τ

0

(τ − t)α−1vn(t)dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

1

Ŵ(α)

∫ τ

0

((s − t)α−1 − (τ − t)α−1)vn()dt| + |
1

Ŵ(α)

∫ s

τ

(s − t)α−1vn(t)dt

∣
∣
∣
∣
.
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for all y ∈ Y. Now, we prove that ϒy is convex for each y ∈ Y. Let h, h′ ∈ ϒy. Choose 
v, v′ ∈ SG,y such that

and

for almost all s ∈ J . Let 0 ≤ � ≤ 1. Then, we have

Since SG,y is convex, �h+ (1− �)h′ ∈ ϒy. This completes the proof.  �

One can check that the fixed point set of ϒ is equal to the set of all solutions of the 
problem (2).

Theorem 11 Suppose that m ∈ L1(J ,R+), G : J × R
2k+3 → Pcv,cp(R) is a multifunction 

such that the map s ⊢ G(s, y1, y2, . . . , y2k+3) is measurable,

and �G(s, y1, y2, . . . , y2k+3)� = sup{|v| : v ∈ G(s, y1, y2, . . . , y2k+3)} ≤ m(s) for almost all 
s ∈ J  and x1, x2, . . . , x2k+3, y1, y2, y2k+3 ∈ R. If Lebesgue measure of the set

is zero and l < 1, then the set of all solutions of the problem (2) is infinite dimensional, 
where l is defined in Theorem 9.

Proof Define the operator ϒ by

h(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

h′(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v′(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(
1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v′(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v′(t)dt

)

�h(s)+ (1− �)h′(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1(�v(t)+ (1− �)v′(t))ds

+
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1(�v(t)+ (1− �)v′(t))dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1(�v(t)+ (1− �)v′(t))dt

)

.

H
(
G(s, y1, y2, . . . , y2k+3),G(s, x1, x2, . . . , x2k+3)

)
≤ m(s)

2k+3∑

i=1

|yi − xi|

{
s : dimG(s, y1, y2, . . . , y2k+3) < 1 for some y1, y2, . . . , y2k+3 ∈ R

}

ϒ(y) =
{
ξ ∈ Y : there exists v ∈ SG,y such that ξ(s) = ν(s) for all s ∈ J

}
,
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where

By using Lemma 10, ϒx ∈ Pcp,cv(Y) for each y ∈ Y. Like to the Theorem 9, ϒ is contrac-
tion. we show that dimϒy > m for each y ∈ Y and m ≥ 1. Let y ∈ Y and

for all s ∈ J . By using Lemma 4, there exist linearly independent measurable selections 
v1, . . . , vm for F. Put

for i = 1, . . . ,m. Assume that 
∑m

i=1 aihi(s) = 0 for almost s ∈ J . By using the Caputo 
derivatives, we get 

∑m
i=1 aivi(s) = 0 for almost s ∈ J . Hence, a1 = . . . , an = 0. This 

implies that h1, . . . , hm are linearly independent. Thus, dimϒy ≥ m. Now by using 
Theorem 5, the set of fixed points of ϒ is infinite dimensional.  �

Conclusions
The existence of solution for fractional differential inclusions is an important task which 
can be used successfully in solving real world problems from many fields of science and 
engineering. Thus, in our paper we analyze firstly the existence of solution of a given 
class of fractional hybrid differential inclusions. An example was give in order to show 
the reported results Secondly we concentrate our attention on proving the existence and 
dimension of the solution set for some fractional differential inclusions. These results are 
useful for the numerical studies involving the investigated equations.
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ν(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1v(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1v(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)dt

)

.

F(s) = G(s, y(s), (φy)(s), (ψy)(s), cDβ1y(s), cDβ2y(s), . . . , cDβk y(s), Iγ1y(s), Iγ2y(s), . . . , Iγk y(s))

hi(s) =
1

Ŵ(α)

∫ s

0

(s − t)α−1vi(t)dt +
−1

1+
∑k

i=1
1

Ŵ(γi+1)

k∑

i=1

(

1

Ŵ(α − βi)

∫ 1

0

(1− t)α−βi−1vi(t)dt

+
1

Ŵ(α + γi)

∫ 1

0

(1− t)α+γi−1v(t)idt

)
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