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Abstract:  The problem of diffraction from a perfectly conducting wedge is 
examined with the modified theory of physical optics (MTPO). The exact 
wedge diffraction coefficient is compared with the asymptotic edge waves 
of MTPO integral and related surface currents are evaluated. The scattered 
electric fields are expressed by using these current components. The total, 
incident and reflected diffracted fields are compared with the exact series 
solution of the wedge problem, numerically. 
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1. Introduction 

Wedge diffraction is an important canonical problem in the geometrical theory of diffraction 
(GTD), which is an extension of geometrical optics [1]. A ray based solution for wedge 
diffraction problem is developed by Keller for GTD [2, 3]. He compared his analysis with an 
asymptotic expansion of Sommerfeld’s solution [4] and defined a scalar diffraction coefficient 
for electric and magnetic polarized waves. However this coefficient gives infinite field values 
at the transition regions. Uniform theories are developed in order to overcome this defect [5, 
6]. 

Physical optics (PO) approach to diffraction problems are commonly used in literature 
[7]. The surface currents, induced on the illuminated part of the scatterer, are considered in the 
classical PO theory. This procedure gives no information about the geometry of the object and 
the currents in the shadow region. For example, the diffracted fields can be evaluated only by 
adding the fringe currents to the PO surface current as in physical theory of diffraction (PTD) 
[8, 9] for wedge diffraction problems. The PO solution of the diffraction by a dielectric wedge 
is presented by Kim et al. [10] from the formulation of dual integral equation. A correction to 
this solution is also presented by calculating the non-uniform current component along the 
dielectric interfaces [11]. A new method is developed by Taket and Burge by considering the 
asymptotic PO scattering integral with geometrical optics field in order to find approximate 
solutions to perfectly conducting wedge and vertex problems [12]. This method is applied to 
the problem of scattering from dielectric wedges with planar surfaces and a diffraction 
coefficient, having a good agreement with experimental results, is calculated [13]. The three-
dimensional scattering from a dipole fed wedge with imperfectly conducting faces, is 
examined by Papadopoulos and Chrissoulidis with PO method [14, 15]. Geometrical optics 
(GO) fields and lateral waves are taken into account and a correction factor is developed for 
the corner region.                        

The modified theory of physical optics (MTPO), which was introduced recently by Umul 
[14], is an improved version of PO. The method is developed in order to find exact edge 
diffracted fields of the perfectly conducting half plane problem, directly from the asymptotic 
evaluation of the PO integral. MTPO considers the surface current, induced on the scatterer, 
and the equivalent fields on the aperture part in order to construct the solution. The integral, 
written for the surface current of the scatterer, gives the reflected and reflected edge diffracted 
fields and the integral, obtained by considering the aperture fields, represents the incident and 
incident diffracted fields. This model enables one to consider the geometry of the scatterer and 
the fields in the shadow region. When the wedge geometry is considered, the geometrical 
optics fields remain the same but the edge diffracted waves are affected from the perfectly 
conducting surface at the shadow boundary. This effect can be considered in the MTPO 
integral by turning the aperture by the interior angle of the wedge, but the calculated 
diffracted field will not satisfy the boundary conditions for the shadow surface, because the 
integral for the illuminated surface remains the same. For this reason, the MTPO currents will 
be determined by using the exact wedge diffraction coefficient in this work.    

It is the aim of this paper to integrate the boundary conditions on the two surfaces of the 
perfectly conducting wedge to the Modified Theory of Physical Optics (MTPO) integral and 
construct the surface currents and the exact solution. The exact wedge diffraction coefficient 
for an electric polarized wave is compared with the current terms in the MTPO integral and a 
new surface current is evaluated for a perfectly conducting wedge. This component can also 
be used for curved wedges. It is supposed that only one face of the wedge is illuminated and 
the other one is at the shadow region, because in its present form, MTPO considers the 
problems with only one face illuminated, in order to obtain an aperture integral. If two of the 
faces are illuminated, there must be a second surface integral instead of the aperture integral.      

A time factor jwte  is assumed and suppressed throughout the paper. 
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2. MTPO current for perfectly conducting wedge: electric polarization 

The MTPO currents will be evaluated by considering the exact wedge diffraction coefficient. 
The asymptotic evaluation of MTPO integrals by edge point technique gives the edge 
diffracted fields. The sinusoidal term in the integrals will be replaced with an unknown 
function of ( )βφ ,0I , which will be determined by equating the asymptotically evaluated field 
to the wedge diffraction coefficient. 

The exact wedge diffraction coefficient can be written as 
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for a wedge which is illuminated by an electric polarized wave [15, 16]. wiD  and wrD  are the 
coefficients, related to the incident diffracted and  reflected diffracted waves, respectively. 
A(n) and B(n) are functions, which will be determined by the stationary phase evaluation of 
the incident and reflected part of the MTPO integral. The internal angle of the wedge is equal 

to ψπ −2 . n has the value of π
ψ . 

 
 

  
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 1. Perfectly conducting wedge geometry 
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by considering the geometry in Fig. 1 [14]. The first integral in Eq. (4) represents the incident 
and incident diffracted fields and is written for the aperture. The surface is taken into account 
for ( ]0,' −∞∈x , because the integration of the field will give the incident waves for 

( )0, φππφ +∈ . If the aperture was considered for [ )∞∈ ,0'x , there would be incident field in 

the region of ( )0,0φφ −∈ , which is actually the shadow region. For this reason, the boundary 
in Eq.4 is the most appropriate choice for the geometry of the problem. The second integral of 
Eq. (4) gives the reflected and reflected diffracted waves. 1I  and 2I  are weight functions, 
coming from the surface currents. The surface current, which is flowing on the illuminated 
part of the wedge, can be defined as 
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and the equivalent current on the aperture can be written as 
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for a plane wave incidence. The aim of the following analysis is to determine the unknown 
functions of 1I  and 2I  by using the exact wedge diffraction coefficient, given in Eq. (1). The 
asymptotic evaluation of Eq. (4) by the edge point technique, gives the wedge diffracted field. 

1I  and 2I  can be found by equating the asymptotic waves to the exact wedge diffracted 
fields. The wedge diffracted fields can be evaluated as 
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by using the edge point method, given in Ref. [14]. At the corner of the wedge, 1β  and 2β  
are equal to πφ −  and φπ − , respectively. The exact wedge diffracted field can be expressed 
as 
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[15] and the functions of 1I  and 2I  can be found as 
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by equating Eq. (7) to Eq. (8). φ  must be replaced with 1βπ +  in 1I  and 2βπ −  in 2I . One 
obtains 
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for the weight functions of incident and reflected diffracted fields, respectively. Eq. (4) can be 
written as 

                                                               rziztz EEE +=                                                        (11) 

where the incident scattered field is equal to 
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and the reflected scattered field can be given as 
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by using Eq. (11) in Eq. (4). The stationary phase evaluation of Eq. (12) is equal to 
( )0cos φφρ −jk

i eE  and that of Eq. (13) gives the reflected field as ( )0cos φφρ +− jk

i eE . In order to 
determine the constants of A(n) and B(n), the stationary phase evaluation of Eqs. (12) and (13) 
must be used. The stationary phase points for these integrals can be found as 

                                                                     0φβ m=s                                                           (14) 

by equating the phase function’s first derivative to zero. 0φβ =s  gives the reflected field for 

0φπφ −≤  and the incident field for 0φπφπ +≤≤  which is the actual wave. 0φβ −=s  

represents the reflected field for 0φπφ +≥  and the incident field for πφφπ ≤≤− 0  which is 

equal to zero because of the 1I  and 2I  functions. The details of this analysis can be found in 
Ref. [14]. The amplitude function is equal to 
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at the stationary point of 0φβ = . Q(n) represents A(n) or B(n). There is an uncertainty at the 
limit operation and the amplitude function can be evaluated by applying the L’Hopital’s rule. 
Here, (+) and (-) signs give the incident and reflected fields, respectively. One obtains 
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from the asymptotic evaluation of Eqs. (12) and (13). The solution of Eq. (16) gives the Q(n) 

function as 
nn

π
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which is the constant amplitude term of the exact wedge diffraction 

coefficient. As a result MTPO integrals of the reflected and incident scattered fields can be 
written as 
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respectively.  

3. Numerical results 

The MTPO integrals, evaluated for wedge currents, will be compared with the exact series 
solution of the related problem. Eq. (17) represents the reflected and reflected wedge 
diffracted fields while Eq. (18) gives the incident and incident diffracted waves. The incident 
and reflected edge diffracted fields of MTPO integral will be compared with the exact 
solution. Eqs. (17), (18) and (19) are considered with this purpose. The incident edge 
diffracted waves can be plotted by subtracting the incident field of )cos( 0φφρ −jk

i eE  from Eq. (18) 

for 0φπφ +≤ . The reflected diffracted field can be found by subtracting the reflected field 

from Eq. (17) for 0φπφ −≤ .The exact diffracted waves can also be obtained by applying the 
same subtraction method of the geometrical optics fields to Eq. (19). The exact solution of 
Helmholtz equation for the perfectly conducting wedge problem can be given as 
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where mϑ  is equal to ψ
πm  [15]. The angle of incidence will be taken as 30

πφ = . The 

interior angle of the wedge is equal to 6
π  and observation distance from the origin is 

considered as λρ 6= , where λ  is the wavelength.  
Figure 2 shows the variation of the normalized electric field intensity versus the 

observation angle for the incident diffracted fields obtained from Eqs. (18) and (19). There is 
a deviation near πφ =  because of the Hankel function (Debye asymptotic expansions of the 
Hankel functions are used in the integrals) in Eq. (18). The related function increases rapidly 
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when its argument approaches to zero. This behavior affects the plot near the stated point. It is 
important to note that the asymptotic evaluation of Eq. (18) gives the exact asymptotic 
incident diffracted fields.    

 

     

 

 

 

 

 

 

 

 

 

 

 

                  Fig. 2. Incident diffracted fields at the perfectly conducting wedge (MTPO and exact solution) 
 
Figure 3 depicts the variation of the reflected diffracted fields at the wedge versus the 

observation angle. It is observed that the diffracted waves, obtained from Eqs. (17) and (19) 
are harmonious except the neighborhood of 0=φ  and πφ 2= . The argument of the Hankel 
function in Eq. (17) approaches to zero for these values of the observation angle.          

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          

Fig. 3. Reflected diffracted fields at the perfectly conducting wedge (MTPO and exact solution) 
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Fig. 4. Total diffracted fields at the perfectly conducting wedge (MTPO and exact solution) 
 

In Fig. 4, the total diffracted field at a perfectly conducting wedge is compared for Eqs. 
(17), (18) and (19). It is seen that MTPO diffracted waves are harmonious especially in the 
transition regions (reflection and shadow boundaries) with the exact edge diffracted waves 
except for nearby of the observation angle values, given above.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 5. Reciprocity check of the total diffracted MTPO integral 
 

Reciprocity analysis of the MTPO integrals is given in Fig. 5. The total diffracted field is 
considered. According to the reciprocity theorem, the field must not be affected from the 
change of the places of the source and the observation point. The total diffracted field is 
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waves. For this reason, the only deviation in the reciprocity plot is a result of the discussed 
behavior of the integrals which also affects the graphics in Figs. 2, 3 and 4. It is important to 
note that the major deviations are observed in the neighborhoods of 0=φ , πφ =  and 

πφ 2= .     
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

Fig. 6. Total scattered fields from a perfectly conducting wedge (MTPO and exact solution) 
 
Figure 6 shows the variation of the exact and MTPO total scattered fields between 0 and 

1.6 radians. It can be observed that the two plots are harmonious. The minima of the field are 
closer to 0.       

4. Conclusion 

In this work, the diffraction of an electric polarized plane wave from a perfectly conducting 
wedge has been examined. The MTPO integrals for an edge problem are considered by 
utilizing their weight functions, which represents the MTPO surface currents, as unknown 
functions. The surface currents are evaluated by equating exact wedge diffracted fields to the 
asymptotic edge expansion of MTPO integrals. The calculated current components are used in 
the MTPO integrals in order to determine the scattered fields. The numerical comparison of 
MTPO integral and exact solution for wedge problem shows that there are considerable 
deviations when φ  approaches to 0, π and 2π, but at the other regions, the plots are 
harmonious. If the asymptotic evaluated fields of the MTPO integrals are used in the figures, 
there will be no deviation.        
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