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ABSTRACT 

 

MATCHING RESUMES WITH  

JOB DESCRIPTIONS USING LATENT SEMANTIC INDEXING 

 

POJON, Murat 

M.Sc., Department of Computer Engineering 

Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR 

August 2014, 30 pages 

 

In this thesis, Vector Space Model of Information Retrieval is examined. First, the 

classical method of term frequency inverse document frequency is presented as an 

introduction to the problem.  After introducing basics, the thesis explains the concept 

of Latent Semantic Indexing. Singular Value Decomposition, which is the 

fundamental of Latent Semantic Indexing, is explained without going too deep into 

Linear Algebra. Relationship between Singular Value Decomposition and Latent 

Semantic Indexing is also explored. Finally, thesis presents the results of its 

demonstration, which is matching a Resume with an appropriate Job Description by 

using Latent Semantic Indexing and comparing it with the classical Vector Space 

method. 

Keywords: Term Frequency, Inverse Document Frequency, Term Document Matrix, 

Latent Semantic Indexing, Singular Value Decomposition, Low Rank 

Approximation. 
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ÖZ 

 

GİZLİ ANLAMSAL DİZİNLEME KULLANARAK 

 ÖZ GEÇMİŞ VE İŞ İLANI EŞLEŞTİRMEK  

 

POJON, Murat 

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR 

Ağustos 2014, 30 sayfa 

 

Bu tezde, Vektör Uzayı Modelli Bilgi Erişimi incelendi. İlk olarak, klasik Terim 

Frekansı Ters Doküman Frekansı metodu gösterildi. Temel kavramlar gösterildikten 

sonar, Gizli Anlamsal Dizinleme anlatıldı. Sonra, Gizli Anlamsal Dizinlemenin 

temeli olan Tekil Değer Ayrışımı, Lineer Cebire çok fazla girmeden anlatıldı. Tekil 

Değer Ayrışımı ve Gizli Anlamsal Dizinleme arasındaki ilişki gösterildi. Son olarak, 

tezin uygulamasının sonuçları sunuldu. Bu uygulamada, Gizli Anlamsal Dizinleme 

kullanılarak iş öz geçmişleri ve iş ilanları eşleştirildi ve klasik metodun sonuçları ile 

karşılaştırıldı. 

 

Anahtar Kelimeler: Terim Frekansı, Ters Doküman Frekansı, Terim Doküman 

Matrisi, Gizli Anlamsal Dizinleme, Tekil Değer Ayrışımı, Düşük Kertesli 

Yaklaştırım. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Information Retrieval 

Information Retreval is defined as the activity of finding material(usually 

documents) of an unstructured nature(ususally text) that satisfies an information need 

from within large collections(usually stored on computers)[1]. Currently, it is mostly 

associated with search engines[2]. The user enters a text about the information 

needed, which is usually defined as “query”, and from its database of documents, the 

search engine returns a colection of documents that is deemed relevant to the query. 

Relevance is a value indicating how similar the document is to the query. Depending 

on the IR method used, similarity may be syntactic, meaning similarity based on the 

structure of words, or semantic, meaning similarity based on meaning of words, or a 

combination of both. 

In order to process queries efficiently, a IR system needs to transform documents 

into suitable formats. There are different methods of Information Retrieval based on 

how they construct the documents and how they find the relation between query and 

the documents. This thesis will use a Linear Algebraic Model called Vector Space 

Model. Documents and queries will be represented as vectors, and a similarity 

function between the vectors will be used to determine the factor of relevance[3].  
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1.2 Problem 

The problem addressed in this thesis is matching a Job Description with an 

appropriate Resume. We have a database contianing a relatively large number of Job 

Descirptions. When a CV is submitted, the program will find relevant Job 

Descriptions and show them to the user.  

The problem of extracting information from a CV is well known, and numerous 

softwares have tried to address the issue. Notable ones include Sovren, Daxtra, 

TextKernel. Most of these and other similar softwares use the process known as CV 

parsing. This means converting a free-form CV/Resume into structured information 

suitable for storage, reporting and manipulation by a computer. CV Parsing is a 

smaller part of the discipline called Natural Language Processing, which is 

constucting a structured document from an unstrucutred text.  

Observing these softwares and the algorithms show a common difficulty. In order to 

exract semantic information from a text, they need hand-written rules about the 

structure of text[4]. In the case of a CV Parser for example, they need to determine 

what type of information a body of text is referring to, does it refer to a school name, 

or a company or a residential address? To solve this problem, one needs a large 

database containing names of universities, city names and company names. This is 

known as an ontology. This can be a very tiresome task that needs constant updating. 

Furthermore, one needs a set of patterns that will reperesent key information on a 

CV. Again making such a patern list is a difficult process. 

 

1.3 Approach  

In this thesis, my main goal is to construct a method to match a CV and a Job 

description, using an algebraic information retrieval model. Here are the main steps 

of the project: 
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1.Collect a large body of Job Descriptions and Resumes. In the internet, a Job 

Description is much more easily found than a Resume. Therefore, Job Descriptions 

will be used as documents and Reumes will be used as queries. 

2.Create a dictionary, a list of terms, from the Job Descriptions collected. 

3.From each Job Description in the collection, construct a document vector 

representing the Job.  

4.By using Latent Sematic Indexing, alter the values of the document vectors, so that 

vectors will represent the semantic structures of the documents. 

5.Create a program that will take a CV/Resume as query and return Job Descriptions 

as results. Query CV will also be transformed into a document vector. And then the 

program will compute the similarity between the query vector and all the document 

vector. Most similar documents will be returned as results. 

6.Calculate the overall efficiency of the system by determining whether the results 

are really similar to the query. This will be done according to the job categories of 

Resumes anf Job Descriptions. If the program bring job descriptions of similar 

category with the query CV, it will be deemed seccussfull. 

7.Statistics about the results will be formed. It will observe how the efficiency of the 

program changes depending on the number of documents and the method used. 
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CHAPTER 2 

TERM VECTOR MODEL 

2.1 Definition 

Term-Vector Model (or Vector Space Model) is an algebraic model for representing 

text documents (and any objects, in general) as vectors of identifiers, in our case, 

index terms. 

In Term-Vector model, each document is represented by an n-dimensional vector 

where n is the number of terms in our terms list[5]. What each dimension in the 

vector represents depends on the IR method used. For example , each dimensions can 

simply reperesent whether the that particaular term appears on the document or not. 

In that case value can eihter be 1 for true, or 0 for false. It can also represent how 

many times that term appears on document. In that case, the value can be any non-

zero integer. More complicated methods of calculation can assign decimal or 

irrational values for dimensions, and some of these methods will be addressed later 

in this thesis.  

Here is a smal example of term vector model: 

                                    Document 1 : I have a blue car. 

                                    Document 2 : Cars have wheels. 

                                    Document 3 : Some cars are blue, some cars are red. 

http://en.wikipedia.org/wiki/Vector_space
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Here is our small list of document. In order to transform these documents into 

vectors. We first need to create a dictionary of words. Let T be the list of 

terms(words). 

T = {I, have, a, blue, car,  cars, wheels, some, are, red} 

Such a list will usually be considered inefficient, because it refers to singular and 

plural forms of “car” as different words, when they are actually the same word. To 

solve this issue, we need to perform stemming, which is the process of reducing a 

word to its root. Moreover, it includes very common words like “I”, “are”, “some”. 

These words will not have much use in distinguishing documents. Words like these 

are called stopwords. There is no standard list or definition of stop words, but search 

engines usually remove the most common words if they are not doing a phrase 

search. Stemming and stopword remval are esential to constructing an efficient term-

vector model. Without these, our term list may be too long and vectors can be too 

large, leading to slower retrieval speeds.  

After applying stemming and stopword removal, we get our shortened list: 

T = { blue, car,  wheel, red} 

Now that we have our list, we can now construct vectors from our documents. Three 

documents will be transformed into three 4-dimensional vectors where each 

dimension represents how many times the term occurs in that document. 

Document 1   → V1  = {1, 1, 0, 0} 

Document 2   → V2  = {0, 1, 1, 0} 

Document 3   → V3  = {1, 2, 0, 1} 

Now that our documents are transformed into vectors, we can do certain vectos 

operations to analyze the documents. 
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2.2 Cosine Similarity 

Our main method of deciding the similarity of documents will be cosine similarity. It 

is the cosine of the angle between two vectors[6]. 

Here is how we derive the formula for calculating the value: 

First, we need to calculate the dot product. Let V and W be two n-dimensional 

vectors. The dot product of two vectors  V∙  W  is the sum of Vi × Wi where 0 ≤ i ≤ n 

and Vi is the i
th

 coordinate of the vector V1. Formulated version is :  

                                                 ∑ (       )
 
                                               (2.1) 

Another value of a vector we need is length. Let V be a n-dimensional vector. The 

length of V, dentoed by |V| is formulated by : 

                            √∑   
  

      
 

                                                                      (2.2)      

Since the dot product can also formulated by: 

                                | || |                                                         (2.3) 

where θ is the angle between V and W, final formula of the dot product can be 

written as :                              

                                
   

| || |
                                                                   (2.4) 

In Term-Vector model, this formula indicates how similar two documents are. It can 

be a value between -1 and 1. For two documents D1 and D2 , if all the terms of  D1 

and D2 are common to both of them, then cosine similarity will be 1. If no two terms 

are common, then cosine similarity will be 0. Let D1,D2,D3 be three document 

vectors where: 

D1 = {1,0,2,0} 

D2 = {0,1,0,1} 

D3 = {2,0,4,0} 
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Cosine similarities of documents will be : 

Sim(D1,D2) = 0; 

Sim(D1,D3) = 1; 

Sim(D2,D3) = 0; 

Notice the documents don’t need to be same for cosine similarity to be 1.  

 

2.3 Weighing Functions 

So far, coordinate values of document vectors are calculated as how many times a 

term occurs in the document. This can be an inefficient way to construct the vectors. 

A term can occur a lot in a certain document and thus, have a high value in the 

document vector. However, if it occurs a lot in ever other document, then it will be 

wrong to assign significance to that word, since it will not give much information 

about the content of the document. Conversely, a terms that has a very low occurance 

in a document will not have much meaning in the calculations, but if it is a rare word 

in the document space, it will have a significance in determining the content of 

document. 

To addres these issues, a weighing function must be used. In this thesis, we wil use 

the most common weighing function, which is “term frequency-inverse document 

frequency”. In order to explain the formula, first we need to introduce certain 

concepts: 

Let t be a term in our dictionary. If term t occurs in n different documents in our 

document space, then t has a document frequency of n. 

Inverse document frequency idf is computed as[8]: 

                                                            
 

   
                                                    (2.5) 

where n is document frequency and N is the number of documents in outr list. 

Inverse document frequency is unique to every term. 
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Another thing we need to calculate is term frequency. It is essentially a modifed 

version of term occurence number. Let t be a term that occurs f times in document d. 

Then term frequency of t in d is[9]: 

                                (   )       
      

 
                                                 (2.6) 

where f is the occurence number of t in d and m is the occurence number of the term 

with highest frequency in d. Term frequency is unique to every term-document 

couple. 

Finally, we have what we need to calculate tf-idf[10]: 

                                      (   )    (   )      ( )                              (2.7) 

We should look at the reasons for calculations in this formula. Main problem in 

unmodified calculation was that it does not take rarity of the term. Think of a 

document list where each document is a job description. The term job will occur in 

almost all documents. Therefore, the term job shouldn’t have much value when 

comparing documents. The less frequent a term is, more valuable it should be. 

Hence, the justification of inverse document frequency.  And the reason for 

calculating term frequency is that we need to normalize term occurences for all 

documents. Longer documents will naturally have terms with more occurences. By 

dividing term occurence with the highest frequency, we make sure that differences in 

document size wil not cause  too much variation in term frequency values. 
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CHAPTER 3 

LATENT SEMANTIC INDEXING 

3.1 Definition 

Latent Semantic Indexing (or Latent Semantic Analysis) is a theory and method for 

extracting and representing the contextual usage meaning of words by statistical 

computations applied to document list[11]. The reason for the word Latent (hidden) 

is that the method doesn’t use any sematic process. It is a methematical process that 

enhances results semantically. We dont’t know what kind of sematic relation is 

constructed during the modification process, we can only find that by observing the 

results. 

3.2 Singular Value Decompositon 

Latent Sematic Indexing alters the term-document matrix with a linear algebraic 

method called Singular Value Decomposition[12].   

Let A be m × n real matrix. Singular Value Decomposition states that there exist 

matrices U, S, V such that[13]: 

                                             (    )
                                  (3.1) 

where k is an integer between m and n, U and V are orthogonal matrices, meaning 

their transposes are equal to their inverses, and S is a diagonal matrix. Non-zero 

values of S are called the singular values of A. 

There are different methods of computing the singular value decomposition of a 

matrix. We will observe one of them as an example. 

First we need to introduce the conceopt of eigenvalue and eigenvector. Let A be a 

m×n matrix. Then there exists a vector V and a value λ such that[14]: 
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                                                                                                          (3.2) 

In that case, V is called an eigenvector of A, and λ is called an eigenvalue of A[15]. 

Computation of eigenvalues and eigenvectors are beyond the scope of this thesis. 

Calculations will be done by computers and verified by the example. 

Let A be a 2 × 2 matrix such that:       [
  
  

] 

Then by SVD tehorem, there must be 2×2 orthagonal matrices U, V and a 2×2 

diagonal matrix S such that           

First, we must compute A × A
t
 and A

t
 × A. We find the matrices as: 

                              [
  
   

]                          [
  
   

] 

Eigenvectors of A × A
t
 will form the colums of U, and eigenvectors of A

t
 × A will 

form the columns of V, and eigenvalues of either matrix will form squareroots of the 

diagonal entires of S[17]. 

Using the calculation done by computer, we find that eigenvectors of A × A
t
  are V1 

and V2 such that V1 = {0.5760,0.8174} and  V2 ={0.8174,-0.5760}. Eigenvectors of 

A
t
 × A are W1 = {0.3606,0.9327} and W2 = {0.9327,-0.3606}. Eigenvalues of any of 

matrices are λ1= {14.9258} and  λ2= {0.067}.  

Now we must verify the results for eigenvalues and eigenvectors. 

For A × A
t
  : 

(    )   [
  
   

]  [              ]  [               ]  

                  [              ]   [               ]  

(    )            

 

(    )   [
  
   

]  [                 ]  [               ]  

                [                ]   [              ]  
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(    )            

For A
t
 × A : 

(     )   [
  
   

]  [              ]  [               ]  

                  [              ]   [               ]  

(     )            

 

(     )   [
  
   

]  [              ]  [                 ]  

               [              ]   [              ]  

(     )            

 

Note that computations are done with 4 point decimals, so some precision will be 

lost. But the values are close enough to confirm the eigenvlaues and eigenvectors. 

Using these vectors, we get our matrices U, S and V such that: 

    [
            
             

] 

    [
       
       

] 

    [
            
             

] 

To confirm these matirces, we compute A using the SVD equation: 

         [
            
             

]    [
       
       

]   [
            
             

] 

           [
            
            

]  

            

Again with 4 decimal points, the values are close enough to confirm SVD equation. 
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3.3 Low Rank Approximation with SVD 

Our main reason to use singular value decomposition is low rank approximation[18]. 

In order to show what it is, we need to introduce some new concepts. 

Let A be a 2×2 matrix such that :   [
  
  

] 

If we create vectors out of the columns of A, we get V1 = {1,2}, V2 = {3,1}. These 

are called the column vectors of A. The vector space that is formed by these two 

vectors are called the column space of A. And dimension of that space is called the 

column rank of A[19].  

Vectors V1 and V2 are linearly independent, meaning that one can’t be written as a 

multiple of other. This means that any 2-dimensional vector can be written as a linear 

combination of V1 and V2. So these vectors from a vector space of two dimensions. 

This means A has a column rank of 2. Using the same logic with rows of A, we can 

find that A has a row rank of 2. Minimum of the row rank and column rank of A will 

be the rank of A, which is 2. 

Let us consider another matrix B such that :   [
  
  

] 

Column vectors of B are V1 = {1,2} and V2 = {2,4}. Since V1 and V2 are multiples of 

each other, any linear combination of these two vectors will be just an extension of 

the vector {1,2}. So the vector space formed by V1 and V2 is a line, meaning the rank 

of B is 1, despite the fact that B is a 2×2 matrix. 

Now that we know what rank is, we can show how singular value decomposition is 

used for low rank approximation. 

Let A be a m×n matrix with rank r, and U, S,and V be its singular value 

decomposition matrices. Let k be a number smaller than r. Using k, we will modify 

the matrices U, S and V. Uk will be the matrix formed by taking the first k columns 

of U. Sk will be a k×k diagonal matrix formed by the first k diagonal values of S. 

And Vk will be the matrix formed by the first k columns of V. With these matrices, 

we will calculate the modified version Ak of A such that : 
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                                       (  )
                                                   (3.3) 

The matrix Ak is an approximation of A with rank k. It still has the same size with A, 

but it has a lower dimension[20]. 

To better understand the concept of low rank approximation, we shall have an 

example. 

Let X be a matrix such that: 

    [
   
   
     

] 

Using singular value decomposition, we obtain matrices U, S and V. 

    [
              
             
         

] 

    [
      
   
      

] 

    [
              
             
      

] 

We want to obtain a rank 2 approximation of the matrix X. So with k =2, we will 

find the matrices Uk,Sk,Vk such that: 

     [
         
        
     

] 

      [
     
  

] 

     [
         
        
     

] 

Using the modified matrices, we compute Xk, which is: 

         (  )
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   [
         
        
     

]  [
     
  

]  ([
         
        
     

])

 

 

   [
      
      
      

]     

Xk is approximate to X, but it has a rank of 2. 

 

3.4 Usage of SVD in Information Retrieval 

Now that we know what singular value decomposition is, and we know how it is 

used in low rank approximation, we will look to its usage in Latent Sematic 

Indexing. 

We will have an example with a small document corpus: 

                   d1:Php is a serverside web programming language. 

                   d2:Web applications can be programmed with ASP.NET. 

                   d3:ASP.NET applications can be written in C# or VB.NET languages. 

                   d4:Unlike php, javascript is a clientside language. 

 

Here are 4 short documents about web programming. Normally, a corpus of 4 

documents probably will not produce a semantically enhanced result with singular 

value decomposition. But this example is specially constructed so that singular value 

decomposition will give meaningfull results.  

With stemming and stopword removal, we obtain our shortened term list T.  

T = { "php", "serverside", "web", "program", "language", "applications", "asp.net", 

"written"  , "c#"  , "vb.net"  , "javascript"  , "clientside"} 

 

Then we get our term-document matrix A, which is a 4×12 matrix. 



 

15 
 

   

[
 
 
 
 
 
 
 
 
 
 
 
                
                
                
                
                
                
                
                
                
                
                
                ]

 
 
 
 
 
 
 
 
 
 
 

 

Using singular value decomposition, we obtain matrices U, S and V: 

   

[
 
 
 
 
 
 
 
 
 
 
 
                   
                  
                 
                 
                   
                
                
                  
                  
                  
                  
                  ]

 
 
 
 
 
 
 
 
 
 
 

 

   [

                
                
                
                

] 

   [

                  
                
                  
                  

] 

After obtaining U,S and V, we want to compute a lower rank approximation of A. In 

this case, our rank will be 2. 

We will take first two columns of U and V,  and first two diagonal values of S to 

obtain U2 , S2 , V2 such that: 
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[
 
 
 
 
 
 
 
 
 
 
 
         
         
         
         
         
        
        
        
        
        
         
         ]

 
 
 
 
 
 
 
 
 
 
 

            [
     
     

]            [

         
        
        
         

]  

Then we compute our LSI modifed term-document matrix by the formula of 

                                                  (  )
                                                

(3.4) 

and we get our result as : 

   

[
 
 
 
 
 
 
 
 
 
 
 
                 
                 
                
                
                
                 
                 
                  
                  
                  
                 
                 ]

 
 
 
 
 
 
 
 
 
 
 

 

Now we will submit a query to test the differences between the original matrix and 

LSI modifed matrix. Our query text will be “web programming”. First, we will 

construct our query vector just as we construct any document vector. 

    [            ] 

Then we will look at the cosine similarities between query vector and each document 

vector to get the relevant results. 

In original term-document matrix, only d1 and d2 will be returned as a relevant result 

because only these documents have common terms with the query. Any other 

document will have a cosine similarity of 0. 
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                    d1:Php is a serverside web programming language. 

                   d2:Web applications can be programmed with ASP.NET. 

 

In LSI modified matrix, however, we have more documents with non-zero cosine 

similarity. Here are the cosine similarities of 9 documents: 

                                 d1=0,52 d2=0,39 d3=0,23 d4=0,50  

 

It brings all five documents with relevant results: 

                  d1:Php is a serverside web programming language. 

                  d2:Web applications can be programmed with ASP.NET. 

                  d3:ASP.NET applications can be written in C# or VB.NET languages. 

                  d4:Unlike php, javascript is a clientside language. 

 

In the original term-document matrix, value of term “web” and “program” in the 

third and fourth documents was zero, because term  didn’t occur in these docments. 

However, in the LSI modified matrix, value of the term has been increased. This is 

because d3 and d4 has common words  with documents d1 and d2 and these 

documents contain the word “web” and “program”. This is the main principle of 

Latent Semantic Indexing. Its algorithm is based on the assumption that documents 

with a lot of common words will be close to each other in meaning, and document 

will have a sematic connection to an absent term if it is related to a document 

containing that term[21]. Converse is also true. If two documents have very few 

common words, then they will be semantically unrelated, and the terms in one 

document will have less semantic relation to the other document. This is the reason 

why some of the entries in the LSI modified matrix has negative values. The orignal 

value was zero, meaning that word didn’t occur in that document, but in the LSI 

matrix, value was less than zero, meaning that the word is even further away to 

document in terms of meaning. 

 

With just a few documents, the assumption that common words imply similar 

meaning may give undesirable results. After all, just because there are common 
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words between two documents doesn’t mean that other words will be semanitcally 

closer. But LSI will be practiced with a large amount of documents. A term value in 

a document will be modified according to every other document, and each of these 

documents will have a positive or negative effect on term value. The cumulative 

result of all these modification will be much meaningful semantically. 

 

Latent Semantic Indexing solves two main problems that occur in classic term-vector 

model. One is synonymy and the other is polysemy[22]. Synonymy is when two 

different words have the same meaning, and polysemy is when a single word can 

have multiple meanings[23]. However, the word Latent, which means hidden, should 

remind that LSI modification doesn’t identify any polysemy or synonymy, it just 

enhances the corpus semantically so that problems caused by polysemy and 

synonymy will be reduced. LSI will never specifically tell us why a term not 

occuring on a document has a value on LSI modified matrix. LSI operation is 

mathematical, its results are semantic.  

 

3.5 Geometric Justification of LSI 

So far, we used singular value decompositon to sematically enhance the term 

document matrix, but we didn’t answer an important question. Why are we using 

singular value decomposition? What is the realtion between low rank approximation 

and semantics of terms and documents? To answer these questions, we will have a 

small exapmle.  

Let A be a 3×4 matrix such that: 

   [
    
         
    

] 

From the columns of A, we can form 4 vectors with dimension of 3. Vectors are 

V1 = {2,0,0}, V2 = {2,0.1,0}, V3 = {1,-0.1,0}, V4 = {0,0,1} 

In order to understand the geometric effect of SVD better, we must show these 

vectors on a 3-dimensional coordinate system. 
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                                   Figure 1: Vectors on a 3D Coordinate System  

 

As we can see from the figure, V1, V2 and V3 are in the same plane, whick is xy-

plane,  and V4 is perpendicular to that plane. This means the 4 vectors form a 3-

dimensional vector space, therefore the rank of matrix A is 3. 

If we use singular value decomposition find a rank 2 approximation of A, we will get 

the matrix A2. 

    [
    
             
    

] 

The new vectors constructed from the rows of A2 are W1 = {2,0.02,0}, W2 = 

{2,0.02,0},    W3 = {1,0.01,0}, W4 = {0,0,1} 

Lets draw the new vectors on the coordinate system. 
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                                Figure 2: Modifed Vectors on Coordinate System 

Now, the vectors W1, W2 and W3 are on the same line and the four vectors form a 

plane, therefore rank of A2 is 2. V1, V2 and V3 had common non-zero coordinates 

and were close to each other in terms of angle. Vector V4 on the other hand, had no 

common non-zero coordinates with the other vectors and was apart from the other 

vectors. So , if we want to have four vectors that are similar to the original one to 

form a 2-dimensional plane, logical choice would be to move vectors V1, V2 and V3 

together instead of moving V4 to the three vectors. And this is what SVD does, to 

find a lower rank matrix that is as similar as possible to the original matrix. This 

translates into the main principle of Latent Semantic Indexing. If we think of vectors 

V1, V2 ,V3, V4 as documents, then the common non-zero coordinates will be common 

terms. Vectors with common non-zero coordinates move closer, just as documents 

with common terms become more similar.  
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CHAPTER 4 

APPLICATION OF LSI TO THE PROBLEM 

With the fundamental concepts about Latent Sematic Indexing is introduced, we can 

now use LSI for the task of matching Resumes with Job Descriptions.  

4.1 Collecting the Documents 

First step of the project was to collect Resumes and Job Descriptions. Resumes were 

hard to find in large numbers open in the web, so various sources are used to  collect 

them. Job descriptions are relatively easier to find, so they are used to create terms 

and documents instead of CVs. All the job descriptions were obtianed from 

www.monster.com. A random sample of 450 Job Descriptions are obtained and put 

into database. In monster.com, Job Descriptions are divided into categories for more 

efficient search. These categories define the ganeral area of the job. For each Job 

Description, its text content and category is obtained and stored in the database. 

                                     Figure 3: Transfering Jobs into the Corpus. 

This operation is done manually, by copying the text content from the webpages and 

inseting it to a database table. At the end of this operation, a list of 450 job 
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descriptions have been collected, each element in the list consisting of a text 

describing the job, and a label describing its category. 450 jobs in the list contians 12 

different categories which are  Administration, Architect, Banking, Creative Design, 

Economics, Editorial, Education, Engineering, Human Resources, Information 

Technology, Legal and Marketing.  

In order to test the success of the system with different corpus sizes, three seperate 

term & document lists are created, first one created from 150 job descriptions, 

second one from 300, and the third one is created from all 450 job descriptions 

collected. With each list, a series of operation are made: 

4.2 Creating the Dictionary 

Dictionary is the list of words contained in the corpus. In order to create an efficient 

dictionary, three main operations are made: tokenization, stop word removal and 

stemming. Tokenization is the act of seperating a text into smaller parts, called 

tokens. In this case, tokens are words. Here is an example of tokenizing a sentence: 

 

 

 

 

Figure 4: Tokenizing a Sentence. 

After splitting the document into tokens, stop words should be removed. Stopwords 

are words that are very common in every text and doesn’t have any importance in 

determining the meaning of the text. Words like and,or, in, is are included in almost 

every stopword list, but in some lists, words like have, get, very are also included.  

 

 

Experience in  Java, or C# is required. 

Experience in required Java is or C# 
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Figure 5: Stopwords are Removed. 

After removing the stop words, the final operation is the stemmimg, which is 

reducing a word to its roots. In this project, Porter Stemming Algorithm is used. An 

additional operation during stemming is converting words into lower key. 

 

Figure 6: Stemming is Done on Words. 

After these operations, words are added into the dictionary. An additional 

information that is added was the document frequency of the terms, meaning the 

number how many documents the word occured in. Terms that occur only once, 

terms that occur only in one document, and terms that occur in every document is 

removed from dictionary, because these words will not have any function in 

distinguisihing between the documents. It is possible that some of the removed terms 

might be useful, but shortening the list was necessary to build a system that will have 

a reasonable performance, even if it is just for demonstration.  

 

4.3 Creating the Document Vectors and TD Matrix 

Second task was to construct the document vectors. If the dictionary has n terms, 

then each job description was transformed into an n-dimensional vector. Here is an 

example of converting a small document into  a vector:  

 

Experience Java C# required 

experience java c# require 
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Figure 7: Constructing a Document Vector. 

If there is n terms and m documents, this operation will result in creating m vectors 

which are all n-dimensional. By combining these vectors, an m x n matrix is 

constructed. We will call this matrix as TD (term-document) matrix. 

 

4.4 Creating TFIDF and LSI Matrix 

TD matrix is the first one created. In the second matrix, a weighing function of tf-idf 

(term frequency-inverde document frequency) will be used to obtain more efficient 

results. 

Here is the original formulas used in previous examples: 

                                                      
 

   
                                                           (4.1) 

                                                 (   )        
      

 
                                            (4.2) 

                                                      (   )    (   )      ( )                           (4.3) 

Slight modifications are necessary when to use them in the project. In the original 

formula for idf, we have n+1 as denominator where n is the document frequency of 

the term. Reason for +1 was to avoid dividing by zero. But it is impossible to have n 

as zero. n=0 would mean that the term occurs in none of the documents, but such a 

term wouldn’t be in the dictionary in the first place. So the idf equation is modified 

as: 
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                                                             (4.4) 

The other modification will be made to tf formula. In the original formula, 0.5 were 

added to calculate term frequency. Such an addition prevents any zero values in the 

matrix and makes the calculations more difficult. Moreover, it causes values to be 

too similar, making it difficult to distinguish documents. Therefore, the addition of 

0.5 is removed and modified formula is obtained:    

                                             (   )    
      

 
                                                          (4.5)             

Having the new formulas, weighted values are calcultated and the second matrix is 

obtained, which is called TFIDF (term frequency inverse document frequency) 

matrix. 

Next part is to use Latent Semantic Indexing to modify the TFIDF matrix. Main aim 

of the project is to compare the results of TFIDF method and LSI method. So the LSI 

matrix will be created by modifying the TFIDF matrix, not TD matrix.  

Details of Latent Semantic Indexing is explanied in chapter 3, and will not be 

explained here again. It is sufficient to say that LSI will be used to compute reduced 

rank versions of TFIDF matrix. An m x n TFIDF matrix with rank r will be 

converted to an m x n LSI matrix of rank k where k < r. In this stage, 3 matrices will 

be calculated each with different ranks. Reason for this is find which is the optimal 

rank for LSI to be useful. Here are the ranks for each diffferent size of corpus.  

Corpus Size Rank1 Rank2 Rank3 

150 37 74 111 

300 75 150 225 

450 112 224 336 

                                        Table 1: Ranks on each Corpus Size 
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4.5 Preicison and Recall 

Now, all the matrices have been obtained. Next step is to submit the queries and test 

the results. Each CV/Resume will be submitted as a query text. From the CV text, the 

query vector will be constructed. Depending on the method to use (TD,TFIDF or 

LSI) the query vector will be further modified. If the method is TFIDF or LSI, the 

query will be modified with tf-idf function. If the method is TD, then no 

modification will be made. After modified query is obtained, the cosine similarity 

between query vector and each of the document vectors will be calculated. All the 

documents will sorted by similarity value, and the top ten documents will be brought 

as result. Below is an example demonstrating how the system works: 

 

                                        Figure 8: Overall Schema of the System. 

Now, we can test the results. Verifying whether we have matching results or not is 

done by comparing the Categories of CV and Job descritpions. Each job description 

has only one category while a CV can have more than one category, snice a CV can 

be used to apply different types of jobs, while a job description is amde for one 

specific job. To measure the success of the query, we need to introduce two concepts, 

which are precision and recall. 
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Lets say a search engine or a similar Information Retrieval algorithm responds to a 

query, and brings results from a document collection.  

We can divide the documents as relevant or irrelevant. Relevant documents are the 

ones that are supposed to be returned, and irrelevant documents are the ones that 

sholudn’t be returned. We can also divide the documents as the ones that are 

retrieved, and the ones that are not retrieved. Below is an illustration of these classes 

with a set notation: 

     

                          Figure 9: Set Notation of Retrieved and Relevant Documents 

 

Using these sets, we can formulate precision and recall. Let n(X) denote the number 

of elements of set X. Then precision and recall are: 

                                    
 ( )

 (    )
                                        (4.6) 

                                 
 ( )

 (    )
                                              (4.7) 

So, precision is the percentage of relevant results among the retrieved documents, 

and recall is the percentage of retrieved result among the relevant. In our case, 

relevant document means document with same catagory as the query. 
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Lets have an example. Let our query CV has the category of Economics. Suppose 

our query returns five results with 3 category of Economics, 1 Education and 1 

Information Technology. Also, suppose that our document collection contains 10 

documents with category of Economics. In that case: 

Number of retrieved documents are 5. 

Number of relevant documents are 10. 

Number of relevant and retrieved documents are 3. 

So precision and recall are: 

   
 

 
     

   
 

  
     

  

4.6 Testing the Results 

In order to compare the efficiencies of different methods, we need to compute the 

average preicison and recall values for all queries. Our three methods are TD, 

original unmodified term-document matrix, TFIDF, weighted matrix and LSI, SVD 

modified matrix. LSI matrix will have three different versions with three different 

ranks. 

Here are the average precision and recall values for different methods. We have three 

result sets for different corpus sizes of 150, 300 and 450. In each cell, value before 

the slash is precision, value after slash is recall. 

 

For size 150: 

TD TFIDF LSI-37 LSI-74 LSI-111 

0,58/0,29 0,61/0,34 0,67/0,37 0,59/0,31 0,61/0,33 

Table 2: Precision and Recall Values in the Corpus of Size 150 
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For size 300: 

TD TFIDF LSI-75 LSI-150 LSI-225 

0,59/0,19 0,71/0,24 0,76/0,25 0,70/0,23 0,72/0,23 

Table 3: Precision and Recall Values in the Corpus of Size 300 

 

 

For size 450: 

TD TFIDF LSI-112 LSI-224 LSI-336 

0,66/0,14 0,73/0,17 0,81/0,17 0,78/0,16 0,76/0,16 

Table 4: Precision and Recall Values in the Corpus of Size 450 

Looking at these results, we draw certain conclusions: 

1.Unmodified term-document matrix is the least efficient method out of three. In all 

corpus sizes, it has the worst performance. 

2.Term frequency-inverse document frequency method gives better results than TD 

matrix, but in each corpus size, LSI with an appropriate rank provides better reults. 

3.In all three corpus size, LSI with the lowest rank provides the best result, this 

means that the optimum rank for LSI is low compared to the original rank.  

4.As the corpus size increases, LSI improves better than TFIDF. In the corpus size 

450, all three LSI merhods have better results than TFIDF. 

 

4.7 Software Tools Used 

Here are the softwares that is used. The  project is an ASP.NET web application  

written in C# programming language. In order to store the terms, documents and 

matrices, an SQL Server database is used. Matrix operations are done by an API 

called DotNetMatrix. 
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CHAPTER 5 

CONCLUSION 

 

Aim of this project was to address the issue of Resume-Job matching, and to find a 

way that can overcome semantic obstalces like synonymy and polysemy, and also a 

way that is easy to build. Latent Semantic Indexing is an appropriate way to solve 

this problem. Its latent nature allows it to make a semantic enhancement without the 

difficult operations of Natural Language Processing. The process was relatively easy 

to build, all that is needed was the Resumes and Job Descriptions to construct the 

documents. Aim of this thesis was to introduce and explain the Concept of Latent 

Semantic Indexing, explain the mathematical basis for it, which is Singular Value 

Decomposition, show relation between the literary basis of LSI and the linear 

algebraic basis of SVD. Furthermore as a demonstration, it is shown that LSI indeed 

does provide an improvement over the traditional method of term frequency inverse 

document frequency. Statistics provided show that LSI gives better results than 

TFIDF, and it is not much more difficult to construct. In the end, thesis demonstrated 

an efficient way to match diiferent bodies of text without ingnoring semantic 

relaitons. 
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