

MATCHING RESUMES WITH

JOB DESCRIPTIONS USING LATENT SEMANTIC INDEXING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

MURAT POJON

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

AUGUST 2014

iii

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Murat POJON

Signature

:

Date : 03.08.2014

iv

ABSTRACT

MATCHING RESUMES WITH

JOB DESCRIPTIONS USING LATENT SEMANTIC INDEXING

POJON, Murat

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR

August 2014, 30 pages

In this thesis, Vector Space Model of Information Retrieval is examined. First, the

classical method of term frequency inverse document frequency is presented as an

introduction to the problem. After introducing basics, the thesis explains the concept

of Latent Semantic Indexing. Singular Value Decomposition, which is the

fundamental of Latent Semantic Indexing, is explained without going too deep into

Linear Algebra. Relationship between Singular Value Decomposition and Latent

Semantic Indexing is also explored. Finally, thesis presents the results of its

demonstration, which is matching a Resume with an appropriate Job Description by

using Latent Semantic Indexing and comparing it with the classical Vector Space

method.

Keywords: Term Frequency, Inverse Document Frequency, Term Document Matrix,

Latent Semantic Indexing, Singular Value Decomposition, Low Rank

Approximation.

v

ÖZ

GİZLİ ANLAMSAL DİZİNLEME KULLANARAK

 ÖZ GEÇMİŞ VE İŞ İLANI EŞLEŞTİRMEK

POJON, Murat

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR

Ağustos 2014, 30 sayfa

Bu tezde, Vektör Uzayı Modelli Bilgi Erişimi incelendi. İlk olarak, klasik Terim

Frekansı Ters Doküman Frekansı metodu gösterildi. Temel kavramlar gösterildikten

sonar, Gizli Anlamsal Dizinleme anlatıldı. Sonra, Gizli Anlamsal Dizinlemenin

temeli olan Tekil Değer Ayrışımı, Lineer Cebire çok fazla girmeden anlatıldı. Tekil

Değer Ayrışımı ve Gizli Anlamsal Dizinleme arasındaki ilişki gösterildi. Son olarak,

tezin uygulamasının sonuçları sunuldu. Bu uygulamada, Gizli Anlamsal Dizinleme

kullanılarak iş öz geçmişleri ve iş ilanları eşleştirildi ve klasik metodun sonuçları ile

karşılaştırıldı.

Anahtar Kelimeler: Terim Frekansı, Ters Doküman Frekansı, Terim Doküman

Matrisi, Gizli Anlamsal Dizinleme, Tekil Değer Ayrışımı, Düşük Kertesli

Yaklaştırım.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assist. Prof. Dr. Abdül Kadir GÖRÜR

for his supervision, special guidance, suggestions, and encouragement through the

development of this thesis.

vii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM .. iii

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS ... x

CHAPTERS:

 1. INTRODUCTION .. 1

 1.1. Information Retrieval ... 1

 1.2. Problem .. 2

 1.3. Approach .. 2

 2. TERM VECTOR MODEL .. 4

 2.1. Definition ... 4

 2.2. Cosine Similarity .. 6

 2.3. Weighing Functions ... 7

 3. LATENT SEMANTIC INDEXING ... 9

 3.1. Definition .. 9

 3.2. Singular Value Decomposition .. 9

 3.3. Low Rank Approximation with SVD ... 12

 3.4. Usage of SVD in Information Retrieval 14

 3.5. Geometric Justification of LSI .. 18

 4. APPLICATION OF LSI TO THE PROBLEM 21

 4.1. Collecting the Documents ... 21

 4.2. Creating the Dictionary ... 22

 4.3. Creating the Document Vectors and TD Matrix 23

 4.4. Creating TFIDF and LSI Matrix .. 24

 4.5. Precision and Recall .. 26

 4.6. Testing the Results ... 28

 4.7. Software Tools Used .. 29

 5. CONCLUSION ... 30

REFERENCES .. R1

APPENDICES .. A1

 A. CURRICULUM VITAE ... A1

viii

LIST OF FIGURES

FIGURES

Figure 1 Vectors on a 3D Coordinate System..19

Figure 2 Modifed Vectors on Coordinate System..20

Figure 3 Transfering Jobs into the Corpus..21

Figure 4 Tokenizing a Sentence..22

Figure 5 Stopwords are Removed...23

Figure 6 Stemming is Done on Words..23

Figure 7 Constructing a Document Vector...24

Figure 8 Overall Schema of the System...26

Figure 9 Set Notation of Retrieved and Relevant Documents................................27

ix

LIST OF TABLES

TABLES

Table 1 Ranks on each Corpus Size...25

Table 2 Precision and Recall Values in the Corpus of Size 150............................28

Table 3 Precision and Recall Values in the Corpus of Size 300............................29

Table 4 Precision and Recall Values in the Corpus of Size 450............................29

x

LIST OF ABBREVIATIONS

IR Information Retrieval

CV Curriculum Vitae

TD Term Document

TF Term Frequency

IDF Inverse Document Frequency

TFIDF Term Frequency Inverse Document Frequency

LSI Latent Semantic Indexing

SVD Singular Value Decomposition

API Application Programming Interface

PHP Personal Home Page

ASP Active Server Page

1

CHAPTER 1

INTRODUCTION

1.1 Information Retrieval

Information Retreval is defined as the activity of finding material(usually

documents) of an unstructured nature(ususally text) that satisfies an information need

from within large collections(usually stored on computers)[1]. Currently, it is mostly

associated with search engines[2]. The user enters a text about the information

needed, which is usually defined as “query”, and from its database of documents, the

search engine returns a colection of documents that is deemed relevant to the query.

Relevance is a value indicating how similar the document is to the query. Depending

on the IR method used, similarity may be syntactic, meaning similarity based on the

structure of words, or semantic, meaning similarity based on meaning of words, or a

combination of both.

In order to process queries efficiently, a IR system needs to transform documents

into suitable formats. There are different methods of Information Retrieval based on

how they construct the documents and how they find the relation between query and

the documents. This thesis will use a Linear Algebraic Model called Vector Space

Model. Documents and queries will be represented as vectors, and a similarity

function between the vectors will be used to determine the factor of relevance[3].

2

1.2 Problem

The problem addressed in this thesis is matching a Job Description with an

appropriate Resume. We have a database contianing a relatively large number of Job

Descirptions. When a CV is submitted, the program will find relevant Job

Descriptions and show them to the user.

The problem of extracting information from a CV is well known, and numerous

softwares have tried to address the issue. Notable ones include Sovren, Daxtra,

TextKernel. Most of these and other similar softwares use the process known as CV

parsing. This means converting a free-form CV/Resume into structured information

suitable for storage, reporting and manipulation by a computer. CV Parsing is a

smaller part of the discipline called Natural Language Processing, which is

constucting a structured document from an unstrucutred text.

Observing these softwares and the algorithms show a common difficulty. In order to

exract semantic information from a text, they need hand-written rules about the

structure of text[4]. In the case of a CV Parser for example, they need to determine

what type of information a body of text is referring to, does it refer to a school name,

or a company or a residential address? To solve this problem, one needs a large

database containing names of universities, city names and company names. This is

known as an ontology. This can be a very tiresome task that needs constant updating.

Furthermore, one needs a set of patterns that will reperesent key information on a

CV. Again making such a patern list is a difficult process.

1.3 Approach

In this thesis, my main goal is to construct a method to match a CV and a Job

description, using an algebraic information retrieval model. Here are the main steps

of the project:

3

1.Collect a large body of Job Descriptions and Resumes. In the internet, a Job

Description is much more easily found than a Resume. Therefore, Job Descriptions

will be used as documents and Reumes will be used as queries.

2.Create a dictionary, a list of terms, from the Job Descriptions collected.

3.From each Job Description in the collection, construct a document vector

representing the Job.

4.By using Latent Sematic Indexing, alter the values of the document vectors, so that

vectors will represent the semantic structures of the documents.

5.Create a program that will take a CV/Resume as query and return Job Descriptions

as results. Query CV will also be transformed into a document vector. And then the

program will compute the similarity between the query vector and all the document

vector. Most similar documents will be returned as results.

6.Calculate the overall efficiency of the system by determining whether the results

are really similar to the query. This will be done according to the job categories of

Resumes anf Job Descriptions. If the program bring job descriptions of similar

category with the query CV, it will be deemed seccussfull.

7.Statistics about the results will be formed. It will observe how the efficiency of the

program changes depending on the number of documents and the method used.

4

CHAPTER 2

TERM VECTOR MODEL

2.1 Definition

Term-Vector Model (or Vector Space Model) is an algebraic model for representing

text documents (and any objects, in general) as vectors of identifiers, in our case,

index terms.

In Term-Vector model, each document is represented by an n-dimensional vector

where n is the number of terms in our terms list[5]. What each dimension in the

vector represents depends on the IR method used. For example , each dimensions can

simply reperesent whether the that particaular term appears on the document or not.

In that case value can eihter be 1 for true, or 0 for false. It can also represent how

many times that term appears on document. In that case, the value can be any non-

zero integer. More complicated methods of calculation can assign decimal or

irrational values for dimensions, and some of these methods will be addressed later

in this thesis.

Here is a smal example of term vector model:

 Document 1 : I have a blue car.

 Document 2 : Cars have wheels.

 Document 3 : Some cars are blue, some cars are red.

http://en.wikipedia.org/wiki/Vector_space

5

Here is our small list of document. In order to transform these documents into

vectors. We first need to create a dictionary of words. Let T be the list of

terms(words).

T = {I, have, a, blue, car, cars, wheels, some, are, red}

Such a list will usually be considered inefficient, because it refers to singular and

plural forms of “car” as different words, when they are actually the same word. To

solve this issue, we need to perform stemming, which is the process of reducing a

word to its root. Moreover, it includes very common words like “I”, “are”, “some”.

These words will not have much use in distinguishing documents. Words like these

are called stopwords. There is no standard list or definition of stop words, but search

engines usually remove the most common words if they are not doing a phrase

search. Stemming and stopword remval are esential to constructing an efficient term-

vector model. Without these, our term list may be too long and vectors can be too

large, leading to slower retrieval speeds.

After applying stemming and stopword removal, we get our shortened list:

T = { blue, car, wheel, red}

Now that we have our list, we can now construct vectors from our documents. Three

documents will be transformed into three 4-dimensional vectors where each

dimension represents how many times the term occurs in that document.

Document 1 → V1 = {1, 1, 0, 0}

Document 2 → V2 = {0, 1, 1, 0}

Document 3 → V3 = {1, 2, 0, 1}

Now that our documents are transformed into vectors, we can do certain vectos

operations to analyze the documents.

6

2.2 Cosine Similarity

Our main method of deciding the similarity of documents will be cosine similarity. It

is the cosine of the angle between two vectors[6].

Here is how we derive the formula for calculating the value:

First, we need to calculate the dot product. Let V and W be two n-dimensional

vectors. The dot product of two vectors V∙ W is the sum of Vi × Wi where 0 ≤ i ≤ n

and Vi is the i
th

 coordinate of the vector V1. Formulated version is :

 ∑ ()

 (2.1)

Another value of a vector we need is length. Let V be a n-dimensional vector. The

length of V, dentoed by |V| is formulated by :

 √∑

 (2.2)

Since the dot product can also formulated by:

 | || | (2.3)

where θ is the angle between V and W, final formula of the dot product can be

written as :

| || |
 (2.4)

In Term-Vector model, this formula indicates how similar two documents are. It can

be a value between -1 and 1. For two documents D1 and D2 , if all the terms of D1

and D2 are common to both of them, then cosine similarity will be 1. If no two terms

are common, then cosine similarity will be 0. Let D1,D2,D3 be three document

vectors where:

D1 = {1,0,2,0}

D2 = {0,1,0,1}

D3 = {2,0,4,0}

7

Cosine similarities of documents will be :

Sim(D1,D2) = 0;

Sim(D1,D3) = 1;

Sim(D2,D3) = 0;

Notice the documents don’t need to be same for cosine similarity to be 1.

2.3 Weighing Functions

So far, coordinate values of document vectors are calculated as how many times a

term occurs in the document. This can be an inefficient way to construct the vectors.

A term can occur a lot in a certain document and thus, have a high value in the

document vector. However, if it occurs a lot in ever other document, then it will be

wrong to assign significance to that word, since it will not give much information

about the content of the document. Conversely, a terms that has a very low occurance

in a document will not have much meaning in the calculations, but if it is a rare word

in the document space, it will have a significance in determining the content of

document.

To addres these issues, a weighing function must be used. In this thesis, we wil use

the most common weighing function, which is “term frequency-inverse document

frequency”. In order to explain the formula, first we need to introduce certain

concepts:

Let t be a term in our dictionary. If term t occurs in n different documents in our

document space, then t has a document frequency of n.

Inverse document frequency idf is computed as[8]:

 (2.5)

where n is document frequency and N is the number of documents in outr list.

Inverse document frequency is unique to every term.

8

Another thing we need to calculate is term frequency. It is essentially a modifed

version of term occurence number. Let t be a term that occurs f times in document d.

Then term frequency of t in d is[9]:

 ()

 (2.6)

where f is the occurence number of t in d and m is the occurence number of the term

with highest frequency in d. Term frequency is unique to every term-document

couple.

Finally, we have what we need to calculate tf-idf[10]:

 () () () (2.7)

We should look at the reasons for calculations in this formula. Main problem in

unmodified calculation was that it does not take rarity of the term. Think of a

document list where each document is a job description. The term job will occur in

almost all documents. Therefore, the term job shouldn’t have much value when

comparing documents. The less frequent a term is, more valuable it should be.

Hence, the justification of inverse document frequency. And the reason for

calculating term frequency is that we need to normalize term occurences for all

documents. Longer documents will naturally have terms with more occurences. By

dividing term occurence with the highest frequency, we make sure that differences in

document size wil not cause too much variation in term frequency values.

9

CHAPTER 3

LATENT SEMANTIC INDEXING

3.1 Definition

Latent Semantic Indexing (or Latent Semantic Analysis) is a theory and method for

extracting and representing the contextual usage meaning of words by statistical

computations applied to document list[11]. The reason for the word Latent (hidden)

is that the method doesn’t use any sematic process. It is a methematical process that

enhances results semantically. We dont’t know what kind of sematic relation is

constructed during the modification process, we can only find that by observing the

results.

3.2 Singular Value Decompositon

Latent Sematic Indexing alters the term-document matrix with a linear algebraic

method called Singular Value Decomposition[12].

Let A be m × n real matrix. Singular Value Decomposition states that there exist

matrices U, S, V such that[13]:

 ()
 (3.1)

where k is an integer between m and n, U and V are orthogonal matrices, meaning

their transposes are equal to their inverses, and S is a diagonal matrix. Non-zero

values of S are called the singular values of A.

There are different methods of computing the singular value decomposition of a

matrix. We will observe one of them as an example.

First we need to introduce the conceopt of eigenvalue and eigenvector. Let A be a

m×n matrix. Then there exists a vector V and a value λ such that[14]:

10

 (3.2)

In that case, V is called an eigenvector of A, and λ is called an eigenvalue of A[15].

Computation of eigenvalues and eigenvectors are beyond the scope of this thesis.

Calculations will be done by computers and verified by the example.

Let A be a 2 × 2 matrix such that: [

]

Then by SVD tehorem, there must be 2×2 orthagonal matrices U, V and a 2×2

diagonal matrix S such that

First, we must compute A × A
t
 and A

t
 × A. We find the matrices as:

 [

] [

]

Eigenvectors of A × A
t
 will form the colums of U, and eigenvectors of A

t
 × A will

form the columns of V, and eigenvalues of either matrix will form squareroots of the

diagonal entires of S[17].

Using the calculation done by computer, we find that eigenvectors of A × A
t
 are V1

and V2 such that V1 = {0.5760,0.8174} and V2 ={0.8174,-0.5760}. Eigenvectors of

A
t
 × A are W1 = {0.3606,0.9327} and W2 = {0.9327,-0.3606}. Eigenvalues of any of

matrices are λ1= {14.9258} and λ2= {0.067}.

Now we must verify the results for eigenvalues and eigenvectors.

For A × A
t
 :

() [

] [] []

 [] []

()

() [

] [] []

 [] []

11

()

For A
t
 × A :

() [

] [] []

 [] []

()

() [

] [] []

 [] []

()

Note that computations are done with 4 point decimals, so some precision will be

lost. But the values are close enough to confirm the eigenvlaues and eigenvectors.

Using these vectors, we get our matrices U, S and V such that:

 [

]

 [

]

 [

]

To confirm these matirces, we compute A using the SVD equation:

 [

] [

] [

]

 [

]

Again with 4 decimal points, the values are close enough to confirm SVD equation.

12

3.3 Low Rank Approximation with SVD

Our main reason to use singular value decomposition is low rank approximation[18].

In order to show what it is, we need to introduce some new concepts.

Let A be a 2×2 matrix such that : [

]

If we create vectors out of the columns of A, we get V1 = {1,2}, V2 = {3,1}. These

are called the column vectors of A. The vector space that is formed by these two

vectors are called the column space of A. And dimension of that space is called the

column rank of A[19].

Vectors V1 and V2 are linearly independent, meaning that one can’t be written as a

multiple of other. This means that any 2-dimensional vector can be written as a linear

combination of V1 and V2. So these vectors from a vector space of two dimensions.

This means A has a column rank of 2. Using the same logic with rows of A, we can

find that A has a row rank of 2. Minimum of the row rank and column rank of A will

be the rank of A, which is 2.

Let us consider another matrix B such that : [

]

Column vectors of B are V1 = {1,2} and V2 = {2,4}. Since V1 and V2 are multiples of

each other, any linear combination of these two vectors will be just an extension of

the vector {1,2}. So the vector space formed by V1 and V2 is a line, meaning the rank

of B is 1, despite the fact that B is a 2×2 matrix.

Now that we know what rank is, we can show how singular value decomposition is

used for low rank approximation.

Let A be a m×n matrix with rank r, and U, S,and V be its singular value

decomposition matrices. Let k be a number smaller than r. Using k, we will modify

the matrices U, S and V. Uk will be the matrix formed by taking the first k columns

of U. Sk will be a k×k diagonal matrix formed by the first k diagonal values of S.

And Vk will be the matrix formed by the first k columns of V. With these matrices,

we will calculate the modified version Ak of A such that :

13

 ()
 (3.3)

The matrix Ak is an approximation of A with rank k. It still has the same size with A,

but it has a lower dimension[20].

To better understand the concept of low rank approximation, we shall have an

example.

Let X be a matrix such that:

 [

]

Using singular value decomposition, we obtain matrices U, S and V.

 [

]

 [

]

 [

]

We want to obtain a rank 2 approximation of the matrix X. So with k =2, we will

find the matrices Uk,Sk,Vk such that:

 [

]

 [

]

 [

]

Using the modified matrices, we compute Xk, which is:

 ()

14

 [

] [

] ([

])

 [

]

Xk is approximate to X, but it has a rank of 2.

3.4 Usage of SVD in Information Retrieval

Now that we know what singular value decomposition is, and we know how it is

used in low rank approximation, we will look to its usage in Latent Sematic

Indexing.

We will have an example with a small document corpus:

 d1:Php is a serverside web programming language.

 d2:Web applications can be programmed with ASP.NET.

 d3:ASP.NET applications can be written in C# or VB.NET languages.

 d4:Unlike php, javascript is a clientside language.

Here are 4 short documents about web programming. Normally, a corpus of 4

documents probably will not produce a semantically enhanced result with singular

value decomposition. But this example is specially constructed so that singular value

decomposition will give meaningfull results.

With stemming and stopword removal, we obtain our shortened term list T.

T = { "php", "serverside", "web", "program", "language", "applications", "asp.net",

"written" , "c#" , "vb.net" , "javascript" , "clientside"}

Then we get our term-document matrix A, which is a 4×12 matrix.

15

[

]

Using singular value decomposition, we obtain matrices U, S and V:

[

]

 [

]

 [

]

After obtaining U,S and V, we want to compute a lower rank approximation of A. In

this case, our rank will be 2.

We will take first two columns of U and V, and first two diagonal values of S to

obtain U2 , S2 , V2 such that:

16

[

]

 [

] [

]

Then we compute our LSI modifed term-document matrix by the formula of

 ()

(3.4)

and we get our result as :

[

]

Now we will submit a query to test the differences between the original matrix and

LSI modifed matrix. Our query text will be “web programming”. First, we will

construct our query vector just as we construct any document vector.

 []

Then we will look at the cosine similarities between query vector and each document

vector to get the relevant results.

In original term-document matrix, only d1 and d2 will be returned as a relevant result

because only these documents have common terms with the query. Any other

document will have a cosine similarity of 0.

17

 d1:Php is a serverside web programming language.

 d2:Web applications can be programmed with ASP.NET.

In LSI modified matrix, however, we have more documents with non-zero cosine

similarity. Here are the cosine similarities of 9 documents:

 d1=0,52 d2=0,39 d3=0,23 d4=0,50

It brings all five documents with relevant results:

 d1:Php is a serverside web programming language.

 d2:Web applications can be programmed with ASP.NET.

 d3:ASP.NET applications can be written in C# or VB.NET languages.

 d4:Unlike php, javascript is a clientside language.

In the original term-document matrix, value of term “web” and “program” in the

third and fourth documents was zero, because term didn’t occur in these docments.

However, in the LSI modified matrix, value of the term has been increased. This is

because d3 and d4 has common words with documents d1 and d2 and these

documents contain the word “web” and “program”. This is the main principle of

Latent Semantic Indexing. Its algorithm is based on the assumption that documents

with a lot of common words will be close to each other in meaning, and document

will have a sematic connection to an absent term if it is related to a document

containing that term[21]. Converse is also true. If two documents have very few

common words, then they will be semantically unrelated, and the terms in one

document will have less semantic relation to the other document. This is the reason

why some of the entries in the LSI modified matrix has negative values. The orignal

value was zero, meaning that word didn’t occur in that document, but in the LSI

matrix, value was less than zero, meaning that the word is even further away to

document in terms of meaning.

With just a few documents, the assumption that common words imply similar

meaning may give undesirable results. After all, just because there are common

18

words between two documents doesn’t mean that other words will be semanitcally

closer. But LSI will be practiced with a large amount of documents. A term value in

a document will be modified according to every other document, and each of these

documents will have a positive or negative effect on term value. The cumulative

result of all these modification will be much meaningful semantically.

Latent Semantic Indexing solves two main problems that occur in classic term-vector

model. One is synonymy and the other is polysemy[22]. Synonymy is when two

different words have the same meaning, and polysemy is when a single word can

have multiple meanings[23]. However, the word Latent, which means hidden, should

remind that LSI modification doesn’t identify any polysemy or synonymy, it just

enhances the corpus semantically so that problems caused by polysemy and

synonymy will be reduced. LSI will never specifically tell us why a term not

occuring on a document has a value on LSI modified matrix. LSI operation is

mathematical, its results are semantic.

3.5 Geometric Justification of LSI

So far, we used singular value decompositon to sematically enhance the term

document matrix, but we didn’t answer an important question. Why are we using

singular value decomposition? What is the realtion between low rank approximation

and semantics of terms and documents? To answer these questions, we will have a

small exapmle.

Let A be a 3×4 matrix such that:

 [

]

From the columns of A, we can form 4 vectors with dimension of 3. Vectors are

V1 = {2,0,0}, V2 = {2,0.1,0}, V3 = {1,-0.1,0}, V4 = {0,0,1}

In order to understand the geometric effect of SVD better, we must show these

vectors on a 3-dimensional coordinate system.

19

 Figure 1: Vectors on a 3D Coordinate System

As we can see from the figure, V1, V2 and V3 are in the same plane, whick is xy-

plane, and V4 is perpendicular to that plane. This means the 4 vectors form a 3-

dimensional vector space, therefore the rank of matrix A is 3.

If we use singular value decomposition find a rank 2 approximation of A, we will get

the matrix A2.

 [

]

The new vectors constructed from the rows of A2 are W1 = {2,0.02,0}, W2 =

{2,0.02,0}, W3 = {1,0.01,0}, W4 = {0,0,1}

Lets draw the new vectors on the coordinate system.

20

 Figure 2: Modifed Vectors on Coordinate System

Now, the vectors W1, W2 and W3 are on the same line and the four vectors form a

plane, therefore rank of A2 is 2. V1, V2 and V3 had common non-zero coordinates

and were close to each other in terms of angle. Vector V4 on the other hand, had no

common non-zero coordinates with the other vectors and was apart from the other

vectors. So , if we want to have four vectors that are similar to the original one to

form a 2-dimensional plane, logical choice would be to move vectors V1, V2 and V3

together instead of moving V4 to the three vectors. And this is what SVD does, to

find a lower rank matrix that is as similar as possible to the original matrix. This

translates into the main principle of Latent Semantic Indexing. If we think of vectors

V1, V2 ,V3, V4 as documents, then the common non-zero coordinates will be common

terms. Vectors with common non-zero coordinates move closer, just as documents

with common terms become more similar.

21

CHAPTER 4

APPLICATION OF LSI TO THE PROBLEM

With the fundamental concepts about Latent Sematic Indexing is introduced, we can

now use LSI for the task of matching Resumes with Job Descriptions.

4.1 Collecting the Documents

First step of the project was to collect Resumes and Job Descriptions. Resumes were

hard to find in large numbers open in the web, so various sources are used to collect

them. Job descriptions are relatively easier to find, so they are used to create terms

and documents instead of CVs. All the job descriptions were obtianed from

www.monster.com. A random sample of 450 Job Descriptions are obtained and put

into database. In monster.com, Job Descriptions are divided into categories for more

efficient search. These categories define the ganeral area of the job. For each Job

Description, its text content and category is obtained and stored in the database.

 Figure 3: Transfering Jobs into the Corpus.

This operation is done manually, by copying the text content from the webpages and

inseting it to a database table. At the end of this operation, a list of 450 job

22

descriptions have been collected, each element in the list consisting of a text

describing the job, and a label describing its category. 450 jobs in the list contians 12

different categories which are Administration, Architect, Banking, Creative Design,

Economics, Editorial, Education, Engineering, Human Resources, Information

Technology, Legal and Marketing.

In order to test the success of the system with different corpus sizes, three seperate

term & document lists are created, first one created from 150 job descriptions,

second one from 300, and the third one is created from all 450 job descriptions

collected. With each list, a series of operation are made:

4.2 Creating the Dictionary

Dictionary is the list of words contained in the corpus. In order to create an efficient

dictionary, three main operations are made: tokenization, stop word removal and

stemming. Tokenization is the act of seperating a text into smaller parts, called

tokens. In this case, tokens are words. Here is an example of tokenizing a sentence:

Figure 4: Tokenizing a Sentence.

After splitting the document into tokens, stop words should be removed. Stopwords

are words that are very common in every text and doesn’t have any importance in

determining the meaning of the text. Words like and,or, in, is are included in almost

every stopword list, but in some lists, words like have, get, very are also included.

Experience in Java, or C# is required.

Experience in required Java is or C#

23

Figure 5: Stopwords are Removed.

After removing the stop words, the final operation is the stemmimg, which is

reducing a word to its roots. In this project, Porter Stemming Algorithm is used. An

additional operation during stemming is converting words into lower key.

Figure 6: Stemming is Done on Words.

After these operations, words are added into the dictionary. An additional

information that is added was the document frequency of the terms, meaning the

number how many documents the word occured in. Terms that occur only once,

terms that occur only in one document, and terms that occur in every document is

removed from dictionary, because these words will not have any function in

distinguisihing between the documents. It is possible that some of the removed terms

might be useful, but shortening the list was necessary to build a system that will have

a reasonable performance, even if it is just for demonstration.

4.3 Creating the Document Vectors and TD Matrix

Second task was to construct the document vectors. If the dictionary has n terms,

then each job description was transformed into an n-dimensional vector. Here is an

example of converting a small document into a vector:

Experience Java C# required

experience java c# require

24

Figure 7: Constructing a Document Vector.

If there is n terms and m documents, this operation will result in creating m vectors

which are all n-dimensional. By combining these vectors, an m x n matrix is

constructed. We will call this matrix as TD (term-document) matrix.

4.4 Creating TFIDF and LSI Matrix

TD matrix is the first one created. In the second matrix, a weighing function of tf-idf

(term frequency-inverde document frequency) will be used to obtain more efficient

results.

Here is the original formulas used in previous examples:

 (4.1)

 ()

 (4.2)

 () () () (4.3)

Slight modifications are necessary when to use them in the project. In the original

formula for idf, we have n+1 as denominator where n is the document frequency of

the term. Reason for +1 was to avoid dividing by zero. But it is impossible to have n

as zero. n=0 would mean that the term occurs in none of the documents, but such a

term wouldn’t be in the dictionary in the first place. So the idf equation is modified

as:

25

 (4.4)

The other modification will be made to tf formula. In the original formula, 0.5 were

added to calculate term frequency. Such an addition prevents any zero values in the

matrix and makes the calculations more difficult. Moreover, it causes values to be

too similar, making it difficult to distinguish documents. Therefore, the addition of

0.5 is removed and modified formula is obtained:

 ()

 (4.5)

Having the new formulas, weighted values are calcultated and the second matrix is

obtained, which is called TFIDF (term frequency inverse document frequency)

matrix.

Next part is to use Latent Semantic Indexing to modify the TFIDF matrix. Main aim

of the project is to compare the results of TFIDF method and LSI method. So the LSI

matrix will be created by modifying the TFIDF matrix, not TD matrix.

Details of Latent Semantic Indexing is explanied in chapter 3, and will not be

explained here again. It is sufficient to say that LSI will be used to compute reduced

rank versions of TFIDF matrix. An m x n TFIDF matrix with rank r will be

converted to an m x n LSI matrix of rank k where k < r. In this stage, 3 matrices will

be calculated each with different ranks. Reason for this is find which is the optimal

rank for LSI to be useful. Here are the ranks for each diffferent size of corpus.

Corpus Size Rank1 Rank2 Rank3

150 37 74 111

300 75 150 225

450 112 224 336

 Table 1: Ranks on each Corpus Size

26

4.5 Preicison and Recall

Now, all the matrices have been obtained. Next step is to submit the queries and test

the results. Each CV/Resume will be submitted as a query text. From the CV text, the

query vector will be constructed. Depending on the method to use (TD,TFIDF or

LSI) the query vector will be further modified. If the method is TFIDF or LSI, the

query will be modified with tf-idf function. If the method is TD, then no

modification will be made. After modified query is obtained, the cosine similarity

between query vector and each of the document vectors will be calculated. All the

documents will sorted by similarity value, and the top ten documents will be brought

as result. Below is an example demonstrating how the system works:

 Figure 8: Overall Schema of the System.

Now, we can test the results. Verifying whether we have matching results or not is

done by comparing the Categories of CV and Job descritpions. Each job description

has only one category while a CV can have more than one category, snice a CV can

be used to apply different types of jobs, while a job description is amde for one

specific job. To measure the success of the query, we need to introduce two concepts,

which are precision and recall.

27

Lets say a search engine or a similar Information Retrieval algorithm responds to a

query, and brings results from a document collection.

We can divide the documents as relevant or irrelevant. Relevant documents are the

ones that are supposed to be returned, and irrelevant documents are the ones that

sholudn’t be returned. We can also divide the documents as the ones that are

retrieved, and the ones that are not retrieved. Below is an illustration of these classes

with a set notation:

 Figure 9: Set Notation of Retrieved and Relevant Documents

Using these sets, we can formulate precision and recall. Let n(X) denote the number

of elements of set X. Then precision and recall are:

 ()

 ()
 (4.6)

 ()

 ()
 (4.7)

So, precision is the percentage of relevant results among the retrieved documents,

and recall is the percentage of retrieved result among the relevant. In our case,

relevant document means document with same catagory as the query.

28

Lets have an example. Let our query CV has the category of Economics. Suppose

our query returns five results with 3 category of Economics, 1 Education and 1

Information Technology. Also, suppose that our document collection contains 10

documents with category of Economics. In that case:

Number of retrieved documents are 5.

Number of relevant documents are 10.

Number of relevant and retrieved documents are 3.

So precision and recall are:

4.6 Testing the Results

In order to compare the efficiencies of different methods, we need to compute the

average preicison and recall values for all queries. Our three methods are TD,

original unmodified term-document matrix, TFIDF, weighted matrix and LSI, SVD

modified matrix. LSI matrix will have three different versions with three different

ranks.

Here are the average precision and recall values for different methods. We have three

result sets for different corpus sizes of 150, 300 and 450. In each cell, value before

the slash is precision, value after slash is recall.

For size 150:

TD TFIDF LSI-37 LSI-74 LSI-111

0,58/0,29 0,61/0,34 0,67/0,37 0,59/0,31 0,61/0,33

Table 2: Precision and Recall Values in the Corpus of Size 150

29

For size 300:

TD TFIDF LSI-75 LSI-150 LSI-225

0,59/0,19 0,71/0,24 0,76/0,25 0,70/0,23 0,72/0,23

Table 3: Precision and Recall Values in the Corpus of Size 300

For size 450:

TD TFIDF LSI-112 LSI-224 LSI-336

0,66/0,14 0,73/0,17 0,81/0,17 0,78/0,16 0,76/0,16

Table 4: Precision and Recall Values in the Corpus of Size 450

Looking at these results, we draw certain conclusions:

1.Unmodified term-document matrix is the least efficient method out of three. In all

corpus sizes, it has the worst performance.

2.Term frequency-inverse document frequency method gives better results than TD

matrix, but in each corpus size, LSI with an appropriate rank provides better reults.

3.In all three corpus size, LSI with the lowest rank provides the best result, this

means that the optimum rank for LSI is low compared to the original rank.

4.As the corpus size increases, LSI improves better than TFIDF. In the corpus size

450, all three LSI merhods have better results than TFIDF.

4.7 Software Tools Used

Here are the softwares that is used. The project is an ASP.NET web application

written in C# programming language. In order to store the terms, documents and

matrices, an SQL Server database is used. Matrix operations are done by an API

called DotNetMatrix.

30

CHAPTER 5

CONCLUSION

Aim of this project was to address the issue of Resume-Job matching, and to find a

way that can overcome semantic obstalces like synonymy and polysemy, and also a

way that is easy to build. Latent Semantic Indexing is an appropriate way to solve

this problem. Its latent nature allows it to make a semantic enhancement without the

difficult operations of Natural Language Processing. The process was relatively easy

to build, all that is needed was the Resumes and Job Descriptions to construct the

documents. Aim of this thesis was to introduce and explain the Concept of Latent

Semantic Indexing, explain the mathematical basis for it, which is Singular Value

Decomposition, show relation between the literary basis of LSI and the linear

algebraic basis of SVD. Furthermore as a demonstration, it is shown that LSI indeed

does provide an improvement over the traditional method of term frequency inverse

document frequency. Statistics provided show that LSI gives better results than

TFIDF, and it is not much more difficult to construct. In the end, thesis demonstrated

an efficient way to match diiferent bodies of text without ingnoring semantic

relaitons.

R1

REFERENCES

1. Christopher D. M., Prabhakar R., Hinrich S., (2009), “An Introduction to

Information Retrieval”, Cambridge University Press, Cambridge, pp.38.

2. Christopher D. M., Prabhakar R., Hinrich S., (2009) “An Introduction to

Information Retrieval”, Cambridge University Press, Cambridge, pp.38.

3. www.inf.ed.ac.uk/teaching/courses/inf1/da/2013-2014/slides/inf1-da-13-

16.pdf, (Data Download Date : 18-08-2014).

4. Prakash M. N., Lucila O. M., Wendy W. C., (2011), “Natural language

processing: an introduction”, J. Am. Med. Inform. Assoc., vol. 18, pp.1.

5. www.inf.ed.ac.uk/teaching/courses/inf1/da/2013-2014/slides/inf1-da-13-

16.pdf, (Data Download Date : 18-08-2014).

6. www.inf.ed.ac.uk/teaching/courses/inf1/da/2013-2014/slides/inf1-da-13-

16.pdf, (Data Download Date : 18-08-2014).

7. Gerard S., Christopher B., (1988), “Term Weighting Approaches in

Automatic Text Retrieval”, Information Processing & Management, vol. 24,

pp.513.

8. Deepak I. M., Shylaja K. R., Ravinandan M. E., (2014), “Development of

Secure Multikeyword Retrieval Methodology for Encrypted Cloud Data”,

International Journal of Science and Research, vol. 3, pp.496.

9. Deepak I. M., Shylaja K. R., Ravinandan M. E., (2014), “Development of

Secure Multikeyword Retrieval Methodology for Encrypted Cloud Data”,

International Journal of Science and Research, vol. 3, pp.496.

10. Deepak I. M., Shylaja K. R., Ravinandan M. E., (2014), “Development of

Secure Multikeyword Retrieval Methodology for Encrypted Cloud Data”,

International Journal of Science and Research, vol. 3, pp.496.

.

R2

11. Thomas K. L., Peter W. F., Darrell L., (1998), “An Introduction to Latent

Semantic Analysis”, Discourse Processes, vol. 25, pp.2.

12. Thomas K. L., Peter W. F., Darrell L., (1998), “An Introduction to Latent

Semantic Analysis”, Discourse Processes, vol. 25, pp.2.

13. www.ling.ohio-state.edu/~kbaker/pubs/ Singular_Value_Decomposition_

Tutorial.pdf, (Data Download Date : 18-08-2014).

14. www.ling.ohio-state.edu/~kbaker/pubs/ Singular_Value_Decomposition_

Tutorial.pdf, (Data Download Date : 18-08-2014).

15. www.ling.ohio-state.edu/~kbaker/pubs/ Singular_Value_Decomposition_

Tutorial.pdf, (Data Download Date : 18-08-2014).

16. www.ling.ohio-state.edu/~kbaker/pubs/ Singular_Value_Decomposition_

Tutorial.pdf, (Data Download Date : 18-08-2014).

17. www.ling.ohio-state.edu/~kbaker/pubs/ Singular_Value_Decomposition_

Tutorial.pdf, (Data Download Date : 18-08-2014).

18. http://see.stanford.edu/materials/lsoeldsee263/16-svd.pdf, (Data Download

Date : 18-08-2014).

19. http://home.bi.no/a0710194/Teaching/BI-Mathematics/GRA-6035/2010/

lecture2.pdf, (Data Download Date : 18-08-2014).

20. http://see.stanford.edu/materials/lsoeldsee263/16-svd.pdf, (Data Download

Date : 18-08-2014).

21. Thomas K. L., Peter W. F., Darrell L., (1998), “An Introduction to Latent

Semantic Analysis”, Discourse Processes, vol. 25, pp.2.

22. Scott D., Susan T. D., George W. F., Thomas K. L., Richard H., (1998),

“Indexing by Latent Semantic Analysis”, Journal of the American Society for

Information Science, vol. 41, pp.391.

23. Scott D., Susan T. D., George W. F., Thomas K. L., Richard H., (1998),

“Indexing by Latent Semantic Analysis”, Journal of the American Society for

Information Science, vol. 41, pp.391.

A1

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Pojon, Murat

Date and Place of Birth: 16 June 1985, Ankara

Marital Status: Single

Phone: +90 537 363 94 83

Email: muratpojon@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.Sc.
Çankaya Univ., Computer

Engineering
2014

B.Sc. METU, Mathematics 2009

High School METU High School 2002

WORK EXPERIENCE

Year Place Enrollment

2013- Present Arkadaş Publishing Software Developer

FOREIGN LANGUAGES

Advanced English

