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Abstract: In this paper, we propose a new type (n + 1)-dimensional reduced differential transform
method (RDTM) based on a local fractional derivative (LFD) to solve (n + 1)-dimensional local
fractional partial differential equations (PDEs) in Cantor sets. The presented method is named the
(n + 1)-dimensional local fractional reduced differential transform method (LFRDTM). First the
theories, their proofs and also some basic properties of this procedure are given. To understand the
introduced method clearly, we apply it on the (n + 1)-dimensional fractal heat-like equations (HLEs)
and wave-like equations (WLEs). The applications show that this new technique is efficient, simply
applicable and has powerful effects in (n + 1)-dimensional local fractional problems.

Keywords: reduced differential transform method; heat like equation; wave like equation; fractional
partial differential equations; local fractional derivative

1. Introduction

The importance of fractional calculus and its popularity have increased during the past four
decades, due to its applications in many fields of engineering and applied science. For example,
analysis of entropy in fractional dynamical systems, entropy in thermodynamics, control theory of
dynamic systems, probability and statistics, electrical networks, signal processing, optics, chemical
physics, the electrochemistry of corrosion and so on can all be successfully modelled by fractional
order differential equations [1–39].

In thermodynamics, entropy is known as a state function of a thermodynamic system. The
production of entropy by fractional calculus was suggested in [4]. The production of entropy rate for
fractional diffusion processes was discussed in [6–8]. The analysis of entropy in fractional dynamic
systems was proposed in [10]. However, these entropy processes are differentiable. Non-differentiable
production of entropy in heat conduction of the fractal temperature field was studied in [13].
The heat conduction equation was discussed by the help of local fractional derivative (LFD) [26].
Some numerical methods are applied to many non-differentiable problems in Cantor sets by using
LFD [21–29].

The differential transform method (DTM) which is constructed based on Taylor expansion has
been a widely used approximation method in recent years. The DTM was introduced and applied to
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engineering problems by Zhou [40]. The method was applied to solve linear, nonlinear, ordinary, partial
and fractional order differential equation problems in biology, engineering, physics [41–49] and so on.
The reduced differential transform method (RDTM) was presented by Keskin and Oturanc [50–52] to
simplify the DTM calculations. The method is a reliable semi-analytical approach used to find solutions
of many types of linear, non-linear, fractional non-fractional order partial differential equations (PDEs).
There have been many application of RDTM [50–60]. Previously, the use of LFD with DTM and
RDTM was introduced as local fractional DTM (LFDTM) [27] and local fractional reduced differential
transform method (LFRDTM) [28]. Furthermore, some basic theorems and applications were given for
these methods [27,28]. In addition to that, we now introduce the (n + 1)-dimensional case of RDTM
with LFD for the first time. The basic definitions and theorems of (n + 1)-dimensional LFRDTM are
given. Moreover, the presented method was applied to both (n + 1)-dimensional fractal homogeneous
and inhomogeneous HLEs and WLEs. These equations have been studied by many researchers [60–64].
However, in fractal space, these problems are discussed using (n + 1)-dimensional LFRDTM for the
first time.

In our present study, the basic definitions of local fractional calculus are given in Section 2.
Two-dimensional LFRDTM and (n + 1)-dimensional LFRDTM with the basic definitions and theorems
are presented in Section 3. In Section 4, the applications of the new method, graphics of the solutions
and discussion are given and finally, we put forth our conclusions in Section 5.

2. Preliminaries

In this section, we give same basic definitions and important properties of LFD on fractal space [11,27].

Definition 1. Let Cα(a, b) be a set of the non-differentiable functions with the fractal dimension α(α ∈ (0, 1]).
For ψ(x) ∈ Cα(a, b), the LFD operator of ψ(x) of order α(α ∈ (0, 1]) at the x = x0 is defined as follows [[11]]:

D(α)ψ(x0) =
dαψ(x0)

dxα
= lim

x→x0

∆α(ψ(x)− ψ(x0))

(x− x0)
α , (1)

where:
∆α(ψ(x)− ψ(x0)) ∼= Γ(1 + α)[ψ(x)− ψ(x0)] (2)

Lemma 1 [11]. In fractal space, let ψ, ϕ ∈ Cα(a, b) and α ∈ (0, 1] . Then:

(i) D(α)(λψ(x)± γϕ(x)) = λD(α)ψ(x)± γD(α)ϕ(x) for λ, γ ∈ R,

(ii) D(α)(ψ(x)ϕ(x)) =
[

D(α)ψ(x)
]

ϕ(x) + ψ(x)
[

D(α)ϕ(x)
]
,

(iii) D(α)
(

ψ(x)
ϕ(x)

)
=

[D(α)ψ(x)]ϕ(x)−ψ(x)[D(α)ϕ(x)]
ϕ2(x) .

Some basic operations of LFD on fractal space are presented in Table 1 (see [26]).
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Table 1. The some basic operations of LFD.

ψ(x) D(α)ψ(x) Special Functions

xkα

Γ(1+kα)
x(k−1)α

Γ(1+(k−1)α)

Eα(xα) Eα(xα) Eα(xα) =
∞
∑

k=0

xkα

Γ(1+kα)

Eα(−xα) −Eα(−xα) Eα(xα) =
∞
∑

k=0

(−1)k xkα

Γ(1+kα)

sinα(xα) cosα(xα)
sinα(xα) =

∞
∑

k=0

(−1)k x(2k+1)α

Γ(1+(2k+1)α)

cosα(xα) − sinα(xα) cosα(xα) =
∞
∑

k=0

(−1)k x2kα

Γ(1+2kα)

sinhα(xα) coshα(xα)
sinhα(xα) =

∞
∑

k=0

x(2k+1)α

Γ(1+(2k+1)α)

coshα(xα) sinhα(xα) cosα(xα) =
∞
∑

k=0

x2kα

Γ(1+2kα)

Definition 2. The local fractional partial derivative operator of ψ(x, t) of order α(α ∈ (0, 1]) with respect to t
at the point (x, t0) is defined as follows [11,27]:

D(α)
t ψ(x, t0) =

∂αψ(x, t0)

∂tα
= lim

t→t0

∆α(ψ(x, t)− ψ(x, t0))

(t− t0)
, (3)

where:
∆α(ψ(x, t)− ψ(x, t0)) ∼= Γ(1 + α)[ψ(x, t)− ψ(x, t0)] (4)

In view of (1), the local fractional partial derivative operator of ψ(x, t) of order kα(α ∈ (0, 1]) is
given by [11,27]:

D(kα)
t ψ(x, t) =

∂kαψ(x, t)
∂tkα

= D(α)
t D(α)

t · · ·D
(α)
t︸ ︷︷ ︸

k times

ψ(x, t). (5)

3. Main Results

In this section, we describe two-dimensional LFRDTM and (n + 1)-dimensional LFRDTM.

3.1. Two-Dimensional LFRDTM

In this subsection, we recall and review briefly the local fractional Taylor theorems, and then, we
extend two-dimensional LFRDTM.

Lemma 2 (Local fractional Taylor’s theorem) [27,28]. Suppose that d(k+1)α

dx(k+1)α ψ(x) ∈ Cα(a, b), for a, b ∈ R,
k = 0, 1, 2, ..., n and α ∈ (0, 1], we have:

ψ(x) =
∞

∑
k=0

dkα

dxkα
ψ(x0)

(x− x0)
αk

Γ(1 + kα)
(6)

where a < x0 < x < b, ∀x ∈ (a, b).

Lemma 3 [27,28]. Suppose that d(k+1)α

dx(k+1)α ψ(x) ∈ Cα(a, b), for a, b ∈ R, k = 0, 1, 2, ..., n and α ∈ (0, 1], we have:

ψ(x) =
∞

∑
k=0

dkα

dxkα
ψ(0)

xαk

Γ(1 + kα)
, ∀x ∈ (a, b). (7)
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Definition 3. The two-dimensional local fractional reduced differential transform (LFRDT) Ψk(x) of the
function ψ(x, t) is defined by the following formula [[27,28]]:

Ψk(x) =
1

Γ(1 + kα)

[
∂kαψ(x, t)

∂tkα

]
t=0

(8)

where k = 0, 1, 2, ..., n and α ∈ (0, 1].

Definition 4. The two-dimensional local fractional reduced differential inverse transform of Ψk(x) is defined
by the following formula [27,28]:

ψ(x, t) =
∞

∑
k=0

Ψk(x)tkα (9)

where α ∈ (0, 1].

Using Definitions 3 and 4, Based on results of [28], the fundamental mathematical operations of
the two-dimensional LFRDTM are presented in Table 2:

Table 2. Basic operations of the two-dimensional LFRDTM.

Original Function Transformed Function

ψ(x, t) Ψk(x) = 1
Γ(1+kα)

[
∂kαψ(x,t)

∂tkα

]
t=0

ψ(x, t) = aπ(x, t)± bϕ(x, t) Ψk(x) = aΠk(x)± bΦk(x)

ψ(x, t) = π(x, t)ϕ(x, t)
Ψk(x) =

k
∑

s=0
Πs(x)Φk−s(x)

=
k
∑

s=0
Φs(x)Πk−s(x)

ψ(x, t) = a ∂nα ϕ(x,t)
∂tnα Ψk(x) = Γ(1+kα+nα)

Γ(1+kα)
Φk+n(x)

ψ(x, t) = xmαtnα

Γ(1+mα)Γ(1+nα)

Ψk(x) = xmα

Γ(1+mα)
δα(k−n)
Γ(1+α)

,

δα(k− n) =
{

1, k = n
0, k 6= n

In Table 2, the lowercase ψ(x, t), π(x, t) and ϕ(x, t) represent the local fractional analytic
original functions while the uppercase Ψk(x), Πk(x) and Φk(x) stand for LFRDT functions. a and b
are constants.

3.2. (n + 1)-Dimensional LFRDTM

In this subsection, the lowercase ψ(σ, t) represents the local fractional analytic original function
while the uppercase Ψk(σ) stands for (n + 1)-dimensional LFRDT function. Here σ is used for σ =

(x1, x2, ..., xn) through the study. The basic definitions of (n + 1)-dimensional LFRDTM are presented
as follows.

Definition 5. The (n + 1)-dimensional LFRDT Ψk(σ) of the function ψ(σ, t) is defined by the following
formula:

Ψk(σ) =
1

Γ(1 + kα)

[
∂kα

∂tkα
ψ(σ, t)

]
t=0

(10)

where k = 0, 1, 2, ..., n and α ∈ (0, 1].
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Definition 6. The (n + 1)-dimensional local fractional reduced differential inverse transform of Ψk(σ) is defined
by the following formula:

ψ(σ, t) =
∞

∑
k=0

Ψk(σ)tkα (11)

where α ∈ (0, 1].

Using Definitions 5 and 6, the theorems of (n + 1)-dimensional LFRDTM, which is the more
general form of the operations given in Table 2, are deduced as follows:

Theorem 1. Let λ and γ be constants. If ψ(σ, t) = λπ(σ, t)± γϕ(σ, t), then Ψk(σ) = λΠk(σ)± γ Φk(σ).

Proof. (n + 1)-dimensional LFRDT of π(σ, t) and ϕ(σ, t) can be written as the following:

Ψk(σ) =
1

Γ(1+kα)

[
∂kα

∂tkα ψ(σ, t)
]

t=0
,

Πk(σ) =
1

Γ(1+kα)

[
∂kα

∂tkα π(σ, t)
]

t=0
,

Φk(σ) =
1

Γ(1+kα)

[
∂kα

∂tkα ϕ(σ, t)
]

t=0
.

 (12)

From (12), Ψk(σ) is obtained as:

Ψk(σ) = 1
Γ(1+kα)

[
∂kα

∂tkα ψ(σ, t)
]

t=0
= 1

Γ(1+kα)

[
∂kα

∂tkα (λπ(σ, t)± γϕ(σ, t))
]

t=0
= 1

Γ(1+kα)

[
λ ∂kα

∂tkα π(σ, t)± γ ∂kα

∂tkα ϕ(σ, t)
]

t=0
= λ 1

Γ(1+kα)

[
∂kα

∂tkα π(σ, t)
]

t=0
± γ 1

Γ(1+kα)

[
∂kα

∂tkα ϕ(σ, t)
]

t=0
= λΠk(σ)± γ Φk(σ).

(13)

The proof is thus completed. �

Theorem 2. If ψ(σ, t) = π(σ, t)ϕ(σ, t), then Ψk(σ) =
k
∑

s=0
Πs(σ)Φk−s(σ).

Proof. By the help of Definition 6, π(σ, t) and ϕ(σ, t) can be written that:

π(σ, t) =
∞
∑

k=0
Πk(σ)tkα,

ϕ(σ, t) =
∞
∑

k=0
Φk(σ)tkα.

 (14)

Then, from (14), ψ(σ, t) is obtained as:

ψ(σ, t) =
∞
∑

k=0
Πk(σ)tkα

∞
∑

k=0
Φk(σ)tkα

=
[
Π0(σ) + Π1(σ)tα + Π2(σ)t2α + · · ·+ Πn(σ)tnα + · · ·

]
×
[
Φ0(σ) + Φ1(σ)tα + Φ2(σ)t2α + · · ·+ Φn(σ)tnα + · · ·

]
= Π0(σ)Φ0(σ) + [Π0(σ)Φ1(σ) + Π1(σ)Φ0(σ)]tα

+[Π0(σ)Φ2(σ) + Π1(σ)Φ1(σ) + Π2(σ)Φ0(σ)]t2α + · · ·

=
∞
∑

k=0

k
∑

s=0
Πs(σ)Φk−s(σ)tkα.

(15)
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Hence, Ψk(σ) is found as:

Ψk(σ) =
k

∑
s=0

Πs(σ)Φk−s(σ) (16)

The proof is thus completed. �

Theorem 3. If ψ(σ, t) = ∂nα

∂tnα π(σ, t), then Ψk(σ) =
Γ(1+kα+nα)

Γ(1+kα)
Πk+n(σ).

Proof. By the help of Definition 6, (n + 1)-dimensional LFRDT of π(σ, t) can be written that:

Πk(σ, t) =
1

Γ(1 + kα)

[
∂kα

∂tkα
π(σ, t)

]
t=0

. (17)

For ψ(σ, t) = ∂nα

∂tnα π(σ, t), by using (17), Ψk(σ) can be obtained as:

Ψk(σ) = 1
Γ(1+kα)

[
∂kα

∂tkα

(
∂nα

∂tnα π(σ, t)
)]

t=0
= 1

Γ(1+kα)

[
∂(n+k)α

∂t(n+k)α π(σ, t)
]

t=0
= Γ(1+(n+k)α)

Γ(1+kα)
1

Γ(1+(n+k)α)

[
∂(n+k)α

∂t(n+k)α π(σ, t)
]

t=0
= Γ(1+kα+nα)

Γ(1+kα)
Πk+n(σ)

(18)

The proof is thus completed. �

Theorem 4. If ψ(σ, t) =
x

q1α
1

Γ(1+q1α)
xq2α

2
Γ(1+q2α)

· · · xqnα
n

Γ(1+qnα)
tmα

Γ(1+mα)
, then Ψk(σ) =

x
q1α
1

Γ(1+q1α)
xq2α

2
Γ(1+q2α)

· · · xqnα
n

Γ(1+qnα)
δα(k−m)
Γ(1+α)

, where δα(k−m) =

{
1 i f k = m
0 i f k 6= m

.

Proof. From Definition 5, we have:

Ψk(σ) =
1

Γ(1+kα)

[
∂kα

∂tkα

(
x

q1α
1

Γ(1+q1α)
xq2α

2
Γ(1+q2α)

· · · xqnα
n

Γ(1+qnα)
tmα

Γ(1+mα)

)]
t=0

=
x

q1α
1

Γ(1+q1α)
xq2α

2
Γ(1+q2α)

· · · xqnα
n

Γ(1+qnα)
1

Γ(1+kα)

[
∂kα

∂tkα

(
tmα

Γ(1+mα)

)]
t=0

=
x

q1α
1

Γ(1+q1α)
xq2α

2
Γ(1+q2α)

· · · xqnα
n

Γ(1+qnα)
δα(k−m)
Γ(1+α)

.

(19)

The proof is thus completed. �

4. Applications of (n + 1)-Dimensional LFRDTM

Example 1. Firstly, we consider (2 + 1)-dimensional local fractional homogeneous HLE on a Cantor set:

∂α

∂tα
ψ− y2α

Γ(1 + 2α)

∂2α

∂x2α
ψ− x2α

Γ(1 + 2α)

∂2α

∂y2α
ψ = 0, 0 < α ≤ 1, (20)

with the initial condition (IC):

ψ(x, y, 0) =
y2α

Γ(1 + 2α)
, (21)

where ψ = ψ(x, y, t).
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Now solve this problem by using (n + 1)-dimensional LFRDTM. By taking the (n + 1)-dimensional
LFRDT of (20), it can be obtained that:

Γ(1 + kα + α)

Γ(1 + kα)
Ψk+1(x, y) =

y2α

Γ(1 + 2α)

∂2α

∂x2α
Ψk +

x2α

Γ(1 + 2α)

∂2α

∂y2α
Ψk (22)

The (n + 1)-dimensional LFRDT of the IC in (21) is given by:

Ψ0(x, y) =
y2α

Γ(1 + 2α)
(23)

By using (23) in (22), we can obtain the following Ψk(x, y) values successively:

Ψ1(x, y) = x2α

Γ(1+2α)
1

Γ(1+α)
,

Ψ2(x, y) = y2α

Γ(1+2α)
1

Γ(1+2α)
,

...

Ψn(x, y) =


x2α

Γ(1+2α)
1

Γ(1+nα)
i f n is even number,

y2α

Γ(1+2α)
1

Γ(1+nα)
i f n is odd number.


(24)

From (24), the {Ψk(x, y)}n
k=0 values give the following approximation solution:

ψ̃n(x, y, t) =
n

∑
k=0

Ψk(x, y, t)tkα =
n

∑
k=0

y2α

Γ(1 + 2α)

t2kα

Γ(1 + 2kα)
+

n

∑
k=0

x2α

Γ(1 + 2α)

t(2k+1)α

Γ(1 + (2k + 1)α)
(25)

Hence, from (25), ψ(x, y, t) is:

ψ(x, y, t) = lim
n→∞

ψ̃n(x, y, t) =
y2α

Γ(1 + 2α)
coshα(tα) +

x2α

Γ(1 + 2α)
sinhα(tα) (26)

This finding is the exact solution of the (2 + 1)-dimensional local fractional homogeneous HLE
(20) on the Cantor set. The graph of this solution is given in Figure 1 for α = ln 2

ln 3 .
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Example 2. Secondly, consider the following (3 + 1)-dimensional local fractional inhomogeneous HLE on
a Cantor set:

∂α

∂tα ψ− Γ(1+2α)Γ(1+2α)
3Γ(1+4α)

[
x2α

Γ(1+2α)
∂2α

∂x2α ψ + y2α

Γ(1+2α)
∂2α

∂y2α ψ + z2α

Γ(1+2α)
∂2α

∂z2α ψ
]
= (xyz)4α

[Γ(1+4α)]4
, (27)

subject to the IC:
ψ(x, y, z, 0) = 0, (28)

here 0 < α ≤ 1 and ψ = ψ(x, y, z, t).

Using (n + 1)-dimensional LFRDTM, Equation (27) transforms to:

Γ(1+kα+α)
Γ(1+kα)

Ψk+1(x, y, z) = (xyz)4α

[Γ(1+4α)]4
δ(k) + Γ(1+2α)

3Γ(1+4α)

[
x2α ∂2α

∂x2α Ψk + z2α ∂2α

∂y2α Ψk + z2α ∂2α

∂z2α Ψk

]
. (29)

From the IC (28), we write:
Ψ0(x, y, z) = 0 (30)

From (30) and (29), the following Ψk(x, y, z) values can be obtained:

Ψ1(x, y, z) = (xyz)4α

[Γ(1+4α)]4
1

Γ(1+α)
,

Ψ2(x, y, z) = (xyz)4α

[Γ(1+4α)]4
1

Γ(1+2α)
,

...

Ψn(x, y, z) = (xyz)4α

[Γ(1+4α)]4
1

Γ(1+nα)
.


(31)

From (31), the following approximation solution can be written as:

ψ̃n(x, y, z, t) =
n

∑
k=0

Ψk(x, y, z, t)tkα =
n

∑
k=1

(xyz)4α

[Γ(1 + 4α)]4
tkα

Γ(1 + nα)
(32)

Hence, from (32), ψ(x, y, z, t) is:

ψ(x, y, z, t) = lim
n→∞

ψ̃n(x, y, z, t) =
(xyz)4α

[Γ(1 + 4α)]4
(Eα(tα)− 1) (33)

This result is the exact solution of the (3 + 1)-dimensional local fractional inhomogeneous HLE
(27) on the Cantor set. The graph of this solution is given in Figure 2 for α = ln2/ln3.
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Example 3. Thirdly, we consider (2 + 1)-dimensional local fractional homogeneous WLE on a Cantor set:

∂2α

∂t2α
ψ− Γ(1 + 2α)Γ(1 + 2α)

Γ(1 + 4α)

[
x2α

Γ(1 + 2α)

∂2α

∂x2α
ψ +

y2α

Γ(1 + 2α)

∂2α

∂y2α
ψ

]
= 0, 0 < α ≤ 1, (34)

with the ICs:

ψ(x, y, 0) =
x4α

Γ(1 + 4α)
,

∂α

∂tα
ψ

∣∣∣∣
t=0

=
y4α

Γ(1 + 4α)
, (35)

here ψ = ψ(x, y, t).

We solve this problem by using (n + 1)-dimensional LFRDTM. By taking (n + 1)-dimensional
LFRDT of (34), it can be obtained that:

Γ(1 + kα + 2α)

Γ(1 + kα)
Ψk+2(x, y) =

Γ(1 + 2α)Γ(1 + 2α)

Γ(1 + 4α)

[
x2α

Γ(1 + 2α)

∂2α

∂x2α
Ψk +

y2α

Γ(1 + 2α)

∂2α

∂y2α
Ψk

]
(36)

From the ICs (35), it can be written as follows:

Ψ0(x, y) =
x4α

Γ(1 + 4α)
, Ψ1(x, y) =

y4α

Γ(1 + 4α)Γ(1 + α)
(37)

By using (37) in (36), we can obtain the following Ψk(x, y) values successively:

Ψ2(x, y) = x4α

Γ(1+4α)Γ(1+2α)
,

Ψ3(x, y) = y4α

Γ(1+4α)Γ(1+3α)
,

...

Ψn(x, y) =


x4α

Γ(1+4α)Γ(1+nα)
i f n is even number,

y4α

Γ(1+4α)Γ(1+nα)
i f n is odd number.


(38)
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From (38), the {Ψk(x, y)}n
k=0 values give the following approximation solution:

ψ̃n(x, y, t) =
n

∑
k=0

Ψk(x, y, t)tkα =
n

∑
k=0

x4α

Γ(1 + 4α)

t2kα

Γ(1 + 2kα)
+

n

∑
k=0

y4α

Γ(1 + 4α)

t(2k+1)α

Γ(1 + (2k + 1)α)
(39)

Hence, from (39), ψ(x, y, t) is:

ψ(x, y, t) = lim
n→∞

ψ̃n(x, y, t) =
x4α

Γ(1 + 4α)
coshα(tα) +

y4α

Γ(1 + 4α)
sinhα(tα) (40)

This finding is the exact solution of the (2 + 1)-dimensional local fractional homogeneous WLE
(34) on the Cantor set. The graph of this solution is given in Figure 3 for α = ln2/ln3.
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Figure 3. (a) The exact solution of (2 + 1)-dimensional local fractional homogeneous WLE (34) in
fractal space for ψ(x, 1, t) with α = ln2/ln3; (b) The exact solution of (2 + 1)-dimensional local fractional
homogeneous WLE (34) in fractal space for ψ(1, x, t) with α = ln2/ln3.

Example 4. Finally, consider the (3 + 1)-dimensional local fractional inhomogeneous WLE on a Cantor set:

∂2α

∂t2α ψ−
[

x2α

Γ(1+2α)
∂2α

∂x2α ψ + y2α

Γ(1+2α)
∂2α

∂y2α ψ + z2α

Γ(1+2α)
∂2α

∂z2α ψ
]
= x2α+y2α+z2α

Γ(1+2α)
, 0 < α ≤ 1, (41)

subject to the ICs:

ψ(x, y, z, 0) = 0,
∂α

∂tα
ψ

∣∣∣∣
t=0

=
x2α + y2α − z2α

Γ(1 + 2α)
, (42)

where ψ = ψ(x, y, z, t).

According to (n + 1)-dimensional LFRDTM, (n + 1)-dimensional LFRDT of (41) can be written that:

Γ(1 + kα + 2α)

Γ(1 + kα)
Ψk+2(x, y, z) =

(
x2α + y2α + z2α

Γ(1 + 2α)

)
δ(k) +

 x2α

Γ(1+2α)
∂2α

∂x2α Ψk +
y2α

Γ(1+2α)
∂2α

∂y2α Ψk

+ z2α

Γ(1+2α)
∂2α

∂z2α Ψk

 (43)

From the ICs (42) we write:

Ψ0(x, y, z) = 0, Ψ1(x, y, z) =
x2α + y2α − z2α

Γ(1 + 2α)Γ(1 + α)
(44)
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According to (44) and (43), we can obtain the following Ψk(x, y, z) values:

Ψ2(x, y, z) = x2α+y2α+z2α

Γ(1+2α)Γ(1+2α)
,

Ψ3(x, y, z) = x2α+y2α−z2α

Γ(1+2α)Γ(1+3α)
,

...

Ψn(x, y, z) = x2α+y2α+(−1)nz2α

Γ(1+2α)Γ(1+nα)
.


(45)

By using (38), the {Ψk(x, y, z)}n
k=0 values give the following approximation solution:

ψ̃n(x, y, z, t) =
n

∑
k=0

Ψk(x, y, z, t)tkα =
n

∑
k=1

(
x2α + y2α + (−1)kz2α

Γ(1 + 2α)Γ(1 + kα)

)
tkα (46)

Hence, from (46), ψ(x, y, z, t) is:

ψ(x, y, z, t) = lim
n→∞

ψ̃n(x, y, z, t) =
x2α + y2α

Γ(1 + 2α)
Eα(tα) +

z2α

Γ(1 + 2α)
Eα(−tα)−

(
x2α + y2α + z2α

Γ(1 + 2α)

)
(47)

This result obtained is the exact solution of the (3 + 1)-dimensional local fractional inhomogeneous
WLE (41) on Cantor set. The graph of this solution is given in Figure 4 for α = ln2/ln3.Entropy 2017, 19, 296 12 of 15 
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5. Conclusions

In this paper, a new technique, (n + 1)-dimensional local fractional reduced differential transform
method (LFRDTM), was presented to find the analytical approximate solutions of local fractional PDEs.
Then, the new method was applied to (n + 1)-dimensional fractal HLEs and WLEs. In the applications,
our method directly gave us the exact solution for the problems without any transformation,
discretization and any other restrictions. Physical behaviors of the solutions on fractal spaces were
illustrated using 3D graphics. The results showed that presented method gives good outcomes
for solutions of (n + 1)-dimensional local fractional PDEs. Hence, our results suggest that the new
procedure (n + 1)-dimensional LFRDTM is reliable, useful and simplify for local fractional PDEs to
solve many complicated fractal problems.
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