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We solve three versions of nonlinear time-dependent Burgers-type equations. The Jacobi-Gauss-Lobatto points are used as
collocation nodes for spatial derivatives. This approach has the advantage of obtaining the solution in terms of the Jacobi parameters
« and . In addition, the problem is reduced to the solution of the system of ordinary differential equations (SODEs) in time. This
system may be solved by any standard numerical techniques. Numerical solutions obtained by this method when compared with the
exact solutions reveal that the obtained solutions produce high-accurate results. Numerical results show that the proposed method
is of high accuracy and is efficient to solve the Burgers-type equation. Also the results demonstrate that the proposed method is a

powerful algorithm to solve the nonlinear partial differential equations.

1. Introduction

Spectral methods (see, e.g., [1-3] and the references therein)
are techniques used in applied mathematics and scientific
computing to numerically solve linear and nonlinear dif-
ferential equations. There are three well-known versions of
spectral methods, namely, Galerkin, tau, and collocation
methods. Spectral collocation method is characterized by
the fact of providing highly accurate solutions to nonlinear
differential equations [3-6]; also it has become increasingly
popular for solving fractional differential equations [7-9].
Bhrawy et al. [5] proposed a new Bernoulli matrix method
for solving high-order Fredholm integro-differential equa-
tions with piecewise intervals. Saadatmandi and Dehghan
[10] developed the Sinc-collocation approach for solving
multipoint boundary value problems; in this approach the
computation of solution of such problems is reduced to solve
some algebraic equations. Bhrawy and Alofi [4] proposed
the spectral-shifted Jacobi-Gauss collocation method to find

an accurate solution of the Lane-Emden-type equation.
Moreover, Doha et al. [11] developed the shifted Jacobi-Gauss
collocation method to solve nonlinear high-order multipoint
boundary value problems. To the best of our knowledge, there
are no results on Jacobi-Gauss-Lobatto collocation method
for solving Burgers-type equations arising in mathematical
physics. This partially motivated our interest in such method.

For time-dependent partial differential equations, spec-
tral methods have been studied in some articles for several
decades. In [12], Ierley et al. investigated spectral methods to
numerically solve time-dependent class of parabolic partial
differential equations subject to periodic boundary condi-
tions. Tal-Ezer [13, 14] introduced spectral methods using
polynomial approximation of the evolution operator in the
Chebyshev Least-Squares sense for time-dependent parabolic
and hyperbolic equations, respectively. Moreover, Coutsias
et al. [15] developed spectral integration method to solve
some time-dependent partial differential equations. Zhang
[16] applied the Fourier spectral scheme in spatial together



with the Legendre spectral method to solve time-dependent
partial differential equations and gave error estimates of the
method. Tang and Ma [17] introduced the Legendre spectral
method together with the Fourier approximation in spatial
for time-dependent first-order hyperbolic equations with
periodic boundary conditions. Recently, the author of [18]
proposed an accurate numerical algorithm to solve the gen-
eralized Fitzhugh-Nagumo equation with time-dependent
coeflicients.

In [20], Bateman introduced the one-dimensional quasi-
linear parabolic partial differential equation, while Burgers
[21] developed it as mathematical modeling of turbulence,
and it is referred as one-dimensional Burgers’ equation.
Many authors gave different solutions for Burgers’ equation
by using various methods. Kadalbajoo and Awasthi [22]
and Giilsu [23] used a finite-difference approach method to
find solutions of one-dimensional Burgers” equation. Crank-
Nicolson scheme for Burgers’ equation is developed by Kim,
[24]. Nguyen and Reynen [25, 26], Gardner et al. [27, 28]
and Kutluay et al. [29] used methods based on the Petrov-
Galerkin, Least-Squares finite-elements, and B-spline finite
element methods to solve Burgers equation. A method
based on collocation of modified cubic B-splines over finite
elements has been investigated by Mittal and Jain in [30].

In this work, we propose a J-GL-C method to numerically
solve the following three nonlinear time-dependent Burgers’-
type equations:

(1) time-dependent 1D Burgers’ equation:

u, +vuu, —pu,, =0;  (x,t) € [A,B]x[0,T], (1)
(2) time-dependent 1D generalized Burger-Fisher equa-
tion:

Uy = Uy, — vu5ux + yu(l - ua); (x,t) € [A,B] x [0,T],
(2)

(3) time-dependent 1D generalized Burgers-Huxley
equation:

U+ vuaux T Uxx — 71“(1 - u8) (Ma - y) =0
3)
(x,t) € [A,B] x [0,T].

In order to obtain the solution in terms of the Jacobi
parameters « and S, the use of the Jacobi polynomials for
solving differential equations has gained increasing popu-
larity in recent years (see, [31-35]). The main concern of
this paper is to extend the application of J-GL-C method
to solve the three nonlinear time-dependent Burgers-type
equations. It would be very useful to carry out a systematic
study on J-GL-C method with general indexes («,f8 >
—1). The nonlinear time-dependent Burgers’-type equation is
collocated only for the space variable at (N — 1) points, and
for suitable collocation points, we use the (N — 1) nodes of
the Jacobi-Gauss-Lobatto interpolation which depends upon
the two general parameters (o, 8 > -1); these equations
together with the two-point boundary conditions constitute
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the system of (N + 1) ordinary differential equations (ODEs)
in time. This system can be solved by one of the possible
methods of numerical analysis such as the Euler method,
Midpoint method, and the Runge-Kutta method. Finally, the
accuracy of the proposed method is demonstrated by test
problems.

The remainder of the paper is organized as follows.
In the next section, we introduce some properties of the
Jacobi polynomials. In Section 3, the way of constructing
the Gauss-Lobatto collocation technique for nonlinear time-
dependent Burgers-type equations is described using the
Jacobi polynomials, and in Section 4 the proposed method
is applied to three problems of nonlinear time-dependent
Burgers-type equations. Finally, some concluding remarks
are given in Section 5.

2. Some Properties of Jacobi Polynomials

The standard Jacobi polynomials of degree k (Pé“’ﬁ )(x), k =
0,1,...) with the parameters &« > —1, 8 > —1 are satisfying
the following relations:

PP () = (DB (),

(DT (k+ B +1)
KT (B+1)

I'k+a+1)
KT (e+1)

PP (-1 =

’ (4)
PP (1) =

Let w®P (x) = (1 - x)%(1 + x)”; then we define the weighted
space qu(aﬁ) as usual, equipped with the following inner
product and norm:

1
(U, V) yap = J u(x) v (x) WP (x) dx,
-1 (5)

1/2
letllyer = (1 10) -

The set the of Jacobi polynomials forms a complete Li} @p) -
orthogonal system, and

(o)
|2

w(@B)

- 2PAT (k+ a+ DT (k+ B +1) (©)

== k+a+B+ )T (k+ DT (k+a+p+1)

Let Sy(—1,1) be the set of polynomials of degree at most
N, and due to the property of the standard Jacobi-Gauss
quadrature, it follows that for any ¢ € S5, (=1, 1),

1 N
(o, 3) _ (CH) ()
Lwaﬁ @omdr=3allo()). 0
i
where ng;f) (0 < j £ N)and (Dx‘f) (0 < j <N
are the nodes and the corresponding Christoftel numbers of
the Jacobi-Gauss-quadrature formula on the interval (-1, 1),
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respectively. Now, we introduce the following discrete inner
product and norm:

N
(U, V) yp) = ZM (ngrcjﬁ)) (xN f)) 1(:;]/3)’
Z 0

1 2
ety = (ut,0)}2

For « = f3, one recovers the ultraspherical polynomials
(symmetric Jacobi polynomials) and for « = $ = ¥1/2, «a =
B = 0, the Chebyshev of the first and second kinds
and the Legendre polynomials, respectively; and for the
nonsymmetric Jacobi polynomials, the two important special
caseso = —f3 = £1/2 (the Chebyshev polynomials of the third
and fourth kinds) are also recovered.

3. Jacobi Spectral Collocation Method

Since the collocation method approximates the differential
equations in physical space, it is very easy to implement and
be adaptable to various problems, including variable coeffi-
cient and nonlinear differential equations (see, for instance
[4, 6]). In this section, we develop the J-GL-C method to
numerically solve the Burgers-type equations.

3.1. (I + 1)-Dimensional Burgers’ Equation. In 1939, Burg-
ers has simplified the Navier-Stokes equation by dropping
the pressure term to obtain his one-dimensional Burgers’
equation. This equation has many applications in applied
mathematics, such as modeling of gas dynamics [36, 37],
modeling of fluid dynamics, turbulence, boundary layer
behavior, shock wave formation, and traffic flow [38]. In this
subsection, we derive a J-GL-C method to solve numerically
the (1 + 1)-dimensional Burgers’ model problem:

(x,t) e Dx[0,T], )

Uy + vuu, — pu,, = 0;

where
D={x:-1<x<1}, (10)

subject to the boundary conditions

u-1,0=g,@®, ul,t)=g,1), te[0,T], (1)
and the initial condition
u(x,0)= f(x), xeD. (12)
Now we assume that
< (v, 3)
u(xt) = ya;t) PP (x), (13)
=0

and if we make use of (6)-(8), then we find

a;(t) = 3 ZP(“‘B)( ) aGPu(xGPr), 4

]zO

3
and accordingly, (14) takes the form
u(x,t)
\ N ) (4 ) ( (. 3)
3 (A ()l ) ),
=0 Jz 0
(15)

or equivalently takes the form
u(x,t)

N
Z (Z P(‘X ( (0‘/3)) P(fx ( )‘D(‘X

i=0 ]0]

) (x5,
(16)

The spatial partial derivatives with respect to x in (9) can be
computed at the J-GL-C points to give

u, (xﬁ‘f),t)
N
:Z P(aﬁ) (<8P (P (x (rxﬁ)) «xﬁ)) (P 1)

i=0 —O j

N
:ZA u(x?]xlﬁ),t), n=01,...,N,

N N
=Z( B ) (7 (xéi,’f)))"wﬁs‘:f))u(xﬁf, 0

17)
where
N 1 !
A= QB (430 (2 (40) 0
(18)
N
= Y (6) (P (50
j=0""j

Making use of (17) and (18) enables one to rewrite (9) in the
form:

i 61, ) S Avty () — 13 B 6 =
=0 =0 (19)
n=1,...,N-1,
where
u, (t)=u (xg\';)’f),t) : (20)



Using Equation (19) and using the two-point boundary
conditions (11) generate a system of (N — 1) ODEs in time:

N-1 N-1
thy () + Vit (£) ) Apith; (1) = p ) By (£)
-1 i=1 (21)

+vd, (t)—ud, () =0, n=1,...,N-1,

where

dn (t) = Anogl (t) + AnNgZ (t) >
— (22)
dn (t) = Bnogl (t) + BnNgZ (t) .

Then the problem (9)—(12) transforms to the SODEs:

N-1 N-1
thy, (£) + 91, (8) )" Aty (1) = ) By (1)
i=1 i=1

— (23)
+ vdn (t) - .Mdn (t) =0,

u, (0) = f (x&F),

which may be written in the following matrix form:

n=1,...,N-1,

u(t) =F(tu(®),
(24)
u(0) = f,

where
a (1) = iy (1) 1 (8),-aityg, ]
f=[f (xN,l)’f(xN,Z)""’f(xN,Nfl)]T’

F(t,u() = [F (bu(®),F (bu(t),..., Py (bu )]

N-1 N-1
F, (tu () = v, (£) Y Ayt (£) + 1 Y B (8)

i=1 i=1

—vd, (t) +ud, (t), n=1,...,N-1.

(25)

The SODEs (24) in time may be solved using any standard
technique, like the implicit Runge-Kutta method.

3.2. (1+1)-Dimensional Burger-Fisher Equation. The Burger-
Fisher equation is a combined form of Fisher and Burgers’
equations. The Fisher equation was firstly introduced by
Fisher in [39] to describe the propagation of a mutant
gene. This equation has a wide range of applications in a
large number of the fields of chemical kinetics [40], logistic
population growth [41], flame propagation [42], population
in one-dimensional habitual [43], neutron population in a
nuclear reaction [44], neurophysiology [45], autocatalytic
chemical reactions [19], branching the Brownian motion
processes [40], and nuclear reactor theory [46]. Moreover,
the Burger-Fisher equation has a wide range of applications in
various fields of financial mathematics, applied mathematics
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and physics applications, gas dynamic, and traffic flow. The
Burger-Fisher equation can be written in the following form:

u, =u,, —vuu, +yu(l—u); (x,t) e Dx[0,T], (26)
where

D={x:-1<x<1}, (27)

subject to the boundary conditions

u(-1,t)=g, (), u(lt) =g, (), (28)
and the initial condition
u(x,0)= f(x), xeD. (29)

The same procedure of Section 3.1 can be used to reduce
(26)-(29) to the system of nonlinear differential equations
in the unknown expansion coeflicients of the sought-for
semianalytical solution. This system is solved by using the
implicit Runge-Kutta method.

3.3. (1 + 1)-Dimensional Generalized Burgers-Huxley Equa-
tion. The Huxley equation is a nonlinear partial differential
equation of second order of the form

u —u,, —ulk-—u)(u-1=0 k+0. (30)
It is an evolution equation that describes the nerve propaga-
tion [47] in biology from which molecular CB properties can
be calculated. It also gives a phenomenological description of
the behavior of the myosin heads II. In addition to this non-
linear evolution equation, combined forms of this equation
and Burgers’ equation will be investigated. It is interesting to
point out that this equation includes the convection term u,,
and the dissipation term v, in addition to other terms. In this
subsection, we derive J-GL-C method to solve numerically
the (1+1)-dimensional generalized Burgers-Huxley equation:

u, + vu‘sux — Uy — nu(l - u‘s) (u‘s - y) =0,

31
(x,t) e Dx[0,T],
where
D={x:-1<x<1}, (32)
subject to the boundary conditions:
u(=1,t)=g, (@), u(l,t) =g, (1)), (33)
and the initial condition:
u(x,0)= f(x), xeD. (34)

The same procedure of Sections 3.1 and 3.2 is used to solve
numerically (30)-(34).
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4. Numerical Results

To illustrate the effectiveness of the proposed method in the
present paper, three test examples are carried out in this
section. The comparison of the results obtained by various
choices of the Jacobi parameters « and f3 reveals that the
present method is very effective and convenient for all choices
of « and f. We consider the following three examples.

Example 1. Consider the nonlinear time-dependent one-
dimensional generalized Burgers-Huxley equation:

Uy = Uyy — vuaux +nu (1 - ua) (u6 - y);

(35)
(x,t) € [A, B] x [0,T],
subject to the boundary conditions:
u(A,t)
| ryY
2 2
-0 + 84/v* + 41 (1 + 0)
h
xtanh )y 40 +1)
X (A - (vy(1+8—y) <\/v2+4f1(1 + 8)—7/))
1/8
x (28 + 1)2)_11‘) :
u(B,t)
|y,
2 2
-8 + 84/ + 417 (1 + 0)
h
xtanh |y 40 +1)
X (B - (vy (1+6-y) (\/v2+411 (1+8)—v>>
1/

x (2(6 + 1)2)_1t) :

(36)

5
and the initial condition:
u(x,0)
1/8
-8 + 8[v? + 45 (1 +95)
Y.,V vOToy "
= | - + = tanh ,
P R 4 40+1)
x € [A,B].
(37)
The exact solution of (35) is
u(x,t)
|y,
2 2
-8 + 8v? + 45 (1 + 0)
x tanh | y 10+ D)
1/8
vy(1+6—y)< v2+411(1+6)—v>
x| x— 3 t
2(6+1)
(38)

The difference between the measured value of the approx-
imate solution and its actual value (absolute error), given by

E(x,t) = |u(x,t) —u(x 1), (39)

where u(x,t) and #(x,t), is the exact solution and the
approximate solution at the point (x, t), respectively.

In the casesof y = 10°, v = = 8 = l,and N = 4,
Table 1 lists the comparison of absolute errors of problem
(35) subject to (36) and (37) using the J-GL-C method for
different choices of a and  with references [19], in the
interval [0, 1]. Moreover in Tables 2 and 3, the absolute errors
of this problem with « = B = 1/2 and various choices of
x,t for § = 1 (3), in both intervals [0,1] and [-1, 1], are
given, respectively. In Table 4, maximum absolute errors with
various choices of («, ) for both values of § = 1, 3 are given
where v = y = # = 0.001, in both intervals [0, 1] and [-1, 1].
Moreover, the absolute errors of problem (35) are shown in
Figures1,2,and 3 for § = 1,2, and 3 with values of parameters
listed in their captions, respectively, while in Figure 4, we
plotted the approximate solution of this problem where « = 0,
B=1Lv=n=y=107and N = 12 for § = 1. These
figures demonstrate the good accuracy of this algorithm for
all choices of «, 8, and N and moreover in any interval.

Example 2. Consider the nonlinear time-dependent one
dimensional Burgers-type equation:

u, +vuu, — pu,, =0;  (x,t) € [A,B] x[0,T], (40)
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TaBLE 1: Comparison of absolute errors of Example 1 with results from different articles, where N = 4,y = 10>, and v =y =8 = 1.

Our method for various values of («, 8) with N = 4

(%) ADM [19] (0,0) (-1/2,-1/2) (1/2,1/2) (-1/2,1/2) 0,1)

(0.1,0.05) 1.94x 1077 2.99x 1078 1.28x107° 232x107° 1.28x107° 1.34%x 107
(0.1,0.1) 3.87 x 1077 5.98 x 1078 256 %1077 463 %1078 256 %1077 2.68x107°%
0.1,1) 38.75x 1077 5.97 x 1077 246 x 107 4.63 %1077 246 %107 2.68x 1077
(0.5,0.05) 1.94x 1077 1.02x 1078 526%x10°° 1.06 x 107° 5.26 x 1078 3.64x 1078
(0.5,0.1) 3.87 x 1077 2.03x 1078 1.05x 1077 2.13x107° 1.05x 1077 7.28 x 1078
(0.5,1) 38.57 x 1077 2.04%x1077 10.54 x 1077 2.13x 1077 10.54 x 1077 7.28 %1077
(0.9,0.05) 1.94 x 1077 7.93x107° 522%x1078 4.49x107° 522%x1078 3.07x1078
(0.9,0.1) 3.87x 1077 1.59 x 1078 1.04 x 1077 8.99 x 107’ 1.04 x 1077 6.15x 107
(0.9,1) 38.76 x 1077 1.59 x 1077 10.46 x 1077 9.01x107° 10.46 x 1077 6.14x 1077

TABLE 2: Absolute errors with « = 3 = 1/2, 8 = 1 and various choices of x, t for Example 1.

X t A B v y n N E A B E
0.0 0.1 0 1 0.001 0.001 0.001 12 7.04x 107" -1 1 247 x 1071
0.1 5.61x 107" 4.19 x 10712
0.2 7.29%x 107" 7.01 x 1072
0.3 8.26 x 10712 459 %x 1071
0.4 437x 107" 5.74 x 107"
0.5 247 x 1071 1.44 x 1071
0.6 7.01 x 107" 2.16 x 107!
0.7 5.74 x 107! 3.74x 107
0.8 2.15x 1071 1.03x 10710
0.9 1.03 x 1071 1.25x 10710
1 4.64%x 107" 4.64 x 107"
0.0 0.2 0 1 0.001 0.001 0.001 12 1.33x 107! -1 1 492 x 1071
0.1 1.11x 107%° 8.33x 107"
0.2 1.46 x 107" 142 x 1071
0.3 1.65x 1071 9.20x 107!
0.4 8.74x 107" 1.15x 10710
0.5 492x 107" 2.87x 107!
0.6 142x 107" 430%x 1071
0.7 1.14x 107" 7.49 x 107!
0.8 430x 107" 2.05x 1071
0.9 2.05x 1071 251 % 107"
1 1.09 x 107" 1.09 x 1071
subject to the boundary conditions If we apply the generalized tanh method [48], then we find
that the analytical solution of (40) is
C C c c c c
u(A,t):;—)—}tanh[ﬁ(A—ct)], u(x,t):;——tanh[z—(x—ct)]. (43)
v
(41) H

In Table 5, the maximum absolute errors of (40) subject to
(41) and (42) are introduced using the J-GL-C method, with
various choices of («, 8) in both intervals [0, 1] and [-1,1].
Absolute errors between exact and numerical solutions of this
problem are introduced in Table 6 using the J-GL-C method
fora = f = 1/2 with N = 20,and v = 10, 4 = 0.1 and
u(x,0) = c_¢ tanh [ix] , x¢€[AB]. (42) ¢ = 0.1 in both intervals [0, 1] and [-1, 1]. In Figures 5, 6,

v 2p and 7, we displayed the absolute errors of problem (40) for

u(B,t) =§_ Etanh[i(B—ct)],

and the initial condition
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TABLE 3: Absolute errors with « = 3 = 1/2, § = 3 and various choices of x, t for Example 1.

x t A B v y n N E A B E

0.0 0.1 0 1 0.001 0.001 0.001 12 5.62x 1078 -1 8.32x 107
0.1 6.50 x 107° 2.99%107°
0.2 4.67 x107° 1.65x10°°
0.3 3.08x107° 2.44 % 107°
0.4 1.65x107° 3.09 x 107°
0.5 8.33x 1077 1.97x 10°°
0.6 1.65x107° 4.67x107°
0.7 3.09x 10°° 3.79%x 107
0.8 4.67%x107° 6.53x107°
0.9 6.53x107° 3532%x107°
1 5.66 x 1078 5.66 x 1078
0.0 0.2 0 1 0.001 0.001 0.001 12 227 %1077 -1 254 %107
0.1 12.98 x 107° 5.97 x 107°
0.2 9.32x10°° 332%x10°°
0.3 6.16 x107° 4.89%107°
0.4 3.30x107° 6.21x107°
0.5 2.54x107° 3.93x 107°
0.6 3.32x107° 9.36 x 107°
0.7 621x107° 7.58 x 107°
0.8 9.36x107° 13.10x 107°
0.9 13.10 x 107° 70.74 x 107
1 227 %1077 227 %1077

TABLE 4: Maximum absolute errors with various choices of («, 8) for both values of § = 1, 3 Example 3.

o B A B Y y n 8 N My A My

0 0 0 1 0.001 0.001 0.001 1 12 1.39%x107° -1 2.55%x107°
1/2 1/2 6.38x 1071 1.72%x107°
-1/2 -1/2 3.83x107° 4.65x107°
-1/2 1/2 5.04 % 107° 458 x107°
0 1 2.16x107° 242x107°
0 0 0 1 0.001 0.001 0.001 3 12 1.84x107* -1 14.75 x 107
1/2 1/2 2.23%x107° 413x107*
-1/2 -1/2 3344 %107 81.17x 107
-1/2 1/2 56.96 x 107* 90.97 x 107*
0 1 524 x107* 16.46 x 107

different numbers of collation points and different choices
of o and f3 in interval [0, 1] with values of parameters being
listed in their captions. Moreover, in Figure 8, we see that,
the approximate solution and the exact solution are almost
coincided for different values of ¢ (0, 0.5 and 0.9) of problem
(40) wherev = 10, 4 = 0.1,¢ = 0.1, = = —=0.5,and N = 20
in interval [-1,1].

Example 3. Consider the nonlinear time-dependent one-
dimensional generalized Burger-Fisher-type equation:

Uy =ty —uy +yu(1-u’);  (x,1) € [A,B] x [0,T],

(44)



Abstract and Applied Analysis

0.00050005

t)

0.00050000

wx

0.00049995
-10

FIGURE 4: The approximate solution of problem (35) where o = 0,
FIGURE L: The absolute error of problem (35) where @ = 8 = 0,
y=n=y=10"and N =4 for § = 1.

ﬁ:1,11:11:)/:10_3,andN:12f0r6:1.

FIGURE 2: The absolute error of problem (35) where = 8 = 1/2,
y=n=y=10"and N = 4 for § = 2.

FIGURE 5: The absolute error of problem (40) where v = 10, 4 = 0.1,
c=01,-a==1/2,and N = 12.

FIGURE 3: The absolute error of problem (35) where —a = 8 = 1/2,
vy=n=y=10"and N = 4 for § = 3.

FIGURE 6: The absolute error of problem (40) where v = 10, 4 = 0.1,
c=0.1,a=p=1/2,and N = 20.
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TABLE 5: Maximum absolute errors with various choices of («, 3) for
Example 2.

TABLE 6: Absolute errors with &« = 8 = 1/2 and various choices of
x, t for Example 2.

o B AB u v N M, A B M,

0 0 0 1 0110 4 149x10° -1 1 562x107
1/2 1/2 2.45%10°° 8.25x 107
-1/2 -1/2 6.51x 1077 6.51 x 1077
-1/2 1/2 3.84x107° 467 %1077
1/2 -1/2 1.20x 10°° 1.20x 10°°
0 0 0 1 01 10 16 143x10° -1 1 1.06x107°
/2 1/2 1.62%x107° 1.18 x 10™°
-1/2 -1/2 6.70 x 1071° 4.45% 10710
-1/2 1/2 6.68 x 107'° 449 x107"°
1/2 -1/2 6.67 x 1071° 423 % 10710

x10~

FIGURE 7: The absolute error of problem (40) where v = 10, 4 = 0.1,
c=0.1,a =pB=-1/2,and N = 16.

subject to the boundary conditions

u(A,t)

™) v p(6+1) 1/
anh[m(““(m+ ) )f)ﬂ ’

<o 57 (- (- 25
(45)

x t A B u v N E A B E

0001 0 1 01 10 20 134x10" -1 1 921x107"
0.1 8.71x 107! 8.70x 107!
0.2 1.07 x 10710 8.16 x 107!
0.3 1.07 x 1071° 7.61 x 1071
0.4 1.01 x 1071° 7.01 x 1071
0.5 9.21x 107! 6.38 x 10711
0.6 8.16 x 107! 5.70 x 1071
0.7 7.01 x 107" 488 x 107"
0.8 5.70 x 107! 3.85x 107!
0.9 3.85x 107! 230x 107"
1 1.34 x 10712 1.34 x 10712
0002 0 1 01 10 20 1.77x10™2 -1 1 335x107"
0.1 2.71x107% 3.17 x 10710
0.2 3.61 x 1071 2.98 x 10710
0.3 3.78 x 10710 2.77 x 10710
0.4 3.64x 1071 2.55x 1071
0.5 3.34%x 1071 231x107%°
0.6 2.98 %1071 2.03x 107"
0.7 2.55x 1071 1.71 x 1071°
0.8 2.02x 1071 1.30 x 1071°
0.9 1.30 x 10710 7.70 x 10711
1 1.77 x 10712 1.77 x 10712

and the initial condition

11 8 1/8
u(x,O)—[E—Etanh[m(x)H , XG[A,B].
(46)
The exact solution of (44) is

h [z(gil) (x_<811+y(8v+1)>t>”1/6'

(47)

u(x,t)

In Table7, we listed a comparison of absolute errors
of problem (44) subject to (45) and (46) using the J-GL-
C method with [19]. Absolute errors between exact and
numerical solutions of (44) subject to (45) and (46) are
introduced in Table 8 using the J-GL-C method fora = =0
with N = 16, respectively, and v = y = 1072, In Figures 9 and
10, we displayed the absolute errors of problem (44) where
v=y=107atN=20and (¢ = f=0anda = B = -1/2) in
interval [-1, 1], respectively. Moreover, in Figures 11 and 12,
we see that, in interval [-1, 1], the approximate solution and
the exact solution are almost coincided for different values
of t (0, 0.5 and 0.9) of problem (44) where v = y = 1072 at
N =20and (0 = f = 0and @ = 3 = —1/2), respectively.
This asserts that the obtained numerical results are accurate
and can be compared favorably with the analytical solution.
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TaBLE 7: Comparison of absolute errors of Example 3 with results from [19], where N = 4, « = 3 = 0, and various choices of x, t.

x t y Y 19 [19] E x t y v 1) [19] E
01 0.005 0.001 0001 1 9.69x10° 185x10° 01 00005 1 1 2 140x10°  3.83x10°
0.001 1.94x10°  3.72x1077 0.0001 280x 10  3.88x107°
0.01 1.94x107°  3.72x107° 0.001 280x107° 3.76x107°
0.5 0.005 9.69x10°  7.04x10° 05  0.0005 135x 107 232x107°
0.001 1.94x10°°  1.41x107° 0.0001 269x10™*  238x107°
0.01 1.94x107°  1.41x107° 0.001 269x107° 225x107°
0.9 0.005 969%x10°  321x10° 0.9  0.0005 1.28x107° 1.58 x 107
0.001 1.94x10°  6.42x1077 0.0001 255%x 10 1.55%x107°
0.01 1.94x10°  642x107° 0.001 255%107° 1.61x107°
0.0013 : : TABLE 8: Absolute errors with « = 3 = 0, = 1 and various choices

of x,t for Example 3.

0.0012 1 x t yvS8 N E x t yvd& N E
000111116 326x10° 00 02 11 1 16 3.57x107"
= oot ] 01 3.82x107 01 7.75x 107"
§ . , ] 0.2 4.28 x 10*2 0.2 1.96 x 10*12

RN 0.3 4.66x107° 03 3.52 % 10°
0000 | SN ] 0.4 4.93%x107° 0.4 5.62 x 10710
0.5 5.05x107° 0.5 7.31x 1071
0,008 . . . D 0.6 493x107 0.6 7.87x 107"
-0.4 -02 0.0 0.2 0.4 0.7 4.49%x107° 0.7 823 x 107"
x 0.8 3.61x107 0.8 8.17 x 107'°
‘‘‘‘‘‘ (,0.0) (x,05) 0.9 226%x107 0.9 8.05x 107"
0,000 e u(x,0.9) 1.0 1.13x 107" 1.0 1.09x 107"
------ u(x,0.5) — #(x,0.9)

FIGURE 8: The approximate and exact solutions for different values
of t (0, 0.5 and 0.9) of problem (40) where v = 10, 4 = 0.1,¢ = 0.1,
a=f=-0.5and N = 20.

FIGURE 10: The absolute error of problem (44) where o« = 3 = 1/2
andv =y =10"2at N = 20.

5. Conclusion

An efficient and accurate numerical scheme based on the J-
GL-C spectral method is proposed to solve nonlinear time-
dependent Burgers-type equations. The problem is reduced
FIGURE 9: The absolute error of problem (44) where a = § = 0 and to the solution of a SODEs in the expansion coefficient of
v=y=10"at N = 20. the solution. Numerical examples were given to demonstrate
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0.5030 v T T T
0.5025 - ]
< 05020
)
e
g 05015 F
0.5010
0.5005 ]
-1.0 -0.5 0.0 0.5 1.0
x
----- u(x, 0.6) i(x,0.9)
i(x,06) e u(x, 1.3)
------ u(x,0.9) i(x,1.3)

FIGURE 11: The approximate and exact solutions for different values
of t (0, 0.5 and 0.9) of problem (44) whereax = S =0andv =y =
107 at N = 20.

0.5030 T T T
0.5025 [ .. ]
0.5020
I
<
g
g 0.5015
0.5010 |
0.5005 | ]
-1.0 -0.5 0.0 0.5 ‘ 1.0
------ u(x, 0.6) i(x,0.9)
Wx,06) e u(x, 1.3)
------ u(x,0.9) — (x, 1.3)

FIGURE 12: The approximate and exact solutions for different values
oft (0, 0.5 and 0.9) of problem (44) whereax = f=1/2andv =y =
107 at N = 20.

the validity and applicability of the method. The results show
that the J-GL-C method is simple and accurate. In fact by
selecting few collocation points, excellent numerical results
are obtained.
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