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In 2010, Agarwal et al. studied the existence of a one-dimensional fractional neutral functional differential equation. In this paper,
we study an initial value problem for a class of k-dimensional systems of fractional neutral functional differential equations by using
Krasnoselskii’s fixed point theorem. In fact, our main result generalizes their main result in a sense.

1. Introduction

As you know, many researchers are interested in developing
the theoretical analysis and numerical methods of fractional
equations, because different applications of this area have
been founded in various fields of sciences and engineering
(see, e.g., [1–37]). In this paper, we investigate the initial
value problemof a 𝑘-dimensional systemof fractional neutral
functional differential equations with bounded delay:
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𝐷
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1 (𝑥
1
(𝑡) − 𝑔

1
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𝛼
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𝑘
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𝑘
(𝑡, xt) ,

𝑥
1
𝑡0

= 𝜙
1
, 𝑥

2
𝑡0

= 𝜙
2
, . . . , 𝑥

𝑘
𝑡0

= 𝜙
𝑘
,

(1)

where 𝑡
0

≥ 0, 𝑎 > 0, and 𝑟 > 0 are constants, 𝑡 ∈

(𝑡
0
, ∞), 0 < 𝛼

𝑖
< 1, for 𝑖 = 1, 2, . . . , 𝑘, 𝑐𝐷 is the standard

Caputo’s fractional derivative,𝑓
𝑖
, 𝑔
𝑖
: [𝑡
0
, ∞)×𝐶([−𝑟, 0],R𝑛)×

𝐶([−𝑟, 0],R𝑛)×⋅ ⋅ ⋅×𝐶([−𝑟, 0],R𝑛) → R𝑛 are given functions

(𝑖 = 1, 2, . . . , 𝑘) satisfying some assumptions that will be
specified later, xt = (𝑥

1
𝑡

, 𝑥
2
𝑡

, . . . , 𝑥
𝑘
𝑡

), and 𝜙
𝑖
∈ 𝐶([−𝑟, 0],R𝑛)

for 𝑖 = 1, 2, . . . , 𝑘. If 𝑥 ∈ 𝐶([𝑡
0

− 𝑟, 𝑡
0

+ 𝑎],R𝑛), then for
each 𝑡 ∈ [𝑡

0
, 𝑡
0

+ 𝑎] define 𝑥
𝑡
by 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for all

𝜃 ∈ [−𝑟, 0]. One-dimensional version of the problem has
been studied by Agarwal et al. (see [4]). We show that the
problem (1) is equivalent to an integral equation and by using
Krasnoselskii’s fixed point theorem, we conclude that the
equivalent operator has (at least) a fixed point. This implies
that the problem (1) has at least one solution. One can find
the following lemma in [38].

Lemma 1 (Krasnoselskii’s fixed point theorem). Let 𝑋 be a
Banach space and 𝐸 a closed convex subset of 𝑋. Suppose that
𝑆 and 𝑈 are two maps of 𝐸 into 𝑋 such that 𝑆𝑥+𝑈𝑦 ∈ 𝐸 for all
𝑥, 𝑦 ∈ 𝐸. If 𝑆 is a contraction and 𝑈 is completely continuous,
then the equation 𝑆𝑥 + 𝑈𝑥 = 𝑥 has a solution on 𝐸.

Let 𝐼 be an interval inR and 𝑋 = 𝐶(𝐼,R𝑛) with the norm
‖𝑥‖ = sup

𝑡∈𝐼
|𝑥(𝑡)|, where | ⋅ | denotes a suitable complete

norm on R𝑛. Consider the product Banach space (𝑋
𝑘

=

𝑋 × 𝑋 × ⋅ ⋅ ⋅ × 𝑋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

, ‖ ⋅ ‖
∗
) with the norm ‖(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
)‖
∗

=

max{‖𝑥
1
‖, ‖𝑥
2
‖, . . . , ‖𝑥

𝑘
‖}. The fractional integral of order 𝑞
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with the lower limit 𝑡
0
for a function 𝑓 is defined by 𝐼

𝑞

𝑓(𝑡) =

(1/Γ(𝑞)) ∫
𝑡

𝑡
0

(𝑓(𝑠)/(𝑡 − 𝑠)
1−𝑞

)𝑑𝑠 for 𝑡 > 𝑡
0
and 𝑞 > 0, provided

the right-hand side is pointwise defined on [𝑡
0
, ∞). Here, Γ is

the gamma function. Also, Caputo’s derivative of order 𝑞with
the lower limit 𝑡

0
for a function 𝑓 : [𝑡

0
, ∞) → R is defined

by

𝑐

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑛 − 𝑞)
∫

𝑡

𝑡
0

𝑓
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝑞+1−𝑛

𝑑𝑠 = 𝐼
𝑛−𝑞

𝑓
(𝑛)

(𝑡) (2)

for 𝑡 > 𝑡
0
and 𝑛 − 1 < 𝑞 < 𝑛 ([34]).

2. Main Results

Consider the problem (1). Let 𝛿 and 𝛾 be positive constants,
𝐼
0

= [𝑡
0
, 𝑡
0

+ 𝛿], and

𝐴 (𝛿, 𝛾) = {(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) : 𝑥
𝑖
𝑡0

= 𝜙
𝑖
,
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𝑡
0
≤𝑡≤𝑡
0
+𝛿

𝑥𝑖 (𝑡) − 𝜙
𝑖
(0)

 ≤ 𝛾, ∀𝑖 = 1, 2, . . . , 𝑘} ,

(3)

where 𝑥
𝑖

∈ 𝐶([𝑡
0

− 𝑟, 𝑡
0

+ 𝛿],R𝑛). For obtaining our results,
we need the following conditions:
(H
1
) 𝑓
𝑖
(𝑡, 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑘
) is measurable with respect to 𝑡 on

𝐼
0
for all 𝑖 = 1, 2, . . . , 𝑘,

(H
2
) 𝑓
𝑖
(𝑡, 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑘
) is continuouswith respect to𝜑

𝑗
on

𝐶([−𝑟, 0],R𝑛) for all 𝑖, 𝑗 = 1, 2, . . . , 𝑘,
(H
3
) there exist 𝛼

𝑖1
∈ (0, 𝛼

𝑖
) and a real-valued function

𝑚
𝑖
(𝑡) ∈ 𝐿

1/𝛼
𝑖1(𝐼
0
) such that

𝑓𝑖 (𝑡, xt)
 ≤ 𝑚
𝑖
(𝑡) (4)

for all (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝐴(𝛿, 𝛾), 𝑡 ∈ 𝐼

0
, and 𝑖 =

1, 2, . . . , 𝑘,
(H
4
) 𝑔
𝑖
(𝑡, xt) = 𝑔

𝑖1
(𝑡, xt) +𝑔

𝑖2
(𝑡, xt) for all (𝑥1, 𝑥2, . . . , 𝑥𝑘) ∈

𝐴(𝛿, 𝛾),
(H
5
) 𝑔
𝑖1
is continuous and

𝑔𝑖1 (𝑡, xt) − 𝑔
𝑖1

(𝑡, yt)
 ≤ 𝑙
𝑖

𝑥 − 𝑦
∗ (5)

for all 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈

𝐴(𝛿, 𝛾), and 𝑡 ∈ 𝐼
0
, where 𝑙

𝑖
∈ (0, 1) is a constant,

for all 𝑖 = 1, 2, . . . , 𝑘,
(H
6
) 𝑔
𝑖2

is completely continuous and the family {𝑡 ⊢

𝑔
𝑖2
(𝑡, xt) : (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ Λ} is equicontinu-

ous on 𝐶(𝐼
0
,R
𝑛

) × 𝐶(𝐼
0
,R
𝑛

) × ⋅ ⋅ ⋅ × 𝐶(𝐼
0
,R
𝑛

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

for all

bounded set Λ in 𝐴(𝛿, 𝜆) and 𝑖 = 1, 2, . . . , 𝑘.

Lemma 2. Suppose that there exist 𝛿 ∈ (0, 𝑎) and 𝛾 ∈ (0, ∞)

such that (𝐻
1
)–(𝐻
3
) hold.Then the problem (1) for 𝑡 ∈ (𝑡

0
, 𝑡
0
+

𝛿] is equivalent to the equation

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) − 𝑔

𝑖
(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
) + 𝑔
𝑖
(𝑡, xt)

+
1

Γ (𝛼
𝑖
)

∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝛼
𝑖
−1

𝑓
𝑖
(𝑠, xs) 𝑑𝑠

(∗)

with conditions 𝑥
𝑖
𝑡0

= 𝜙
𝑖
for 𝑖 = 1, 2, . . . , 𝑘 and t ∈ 𝐼

0
.

Proof. It is easy to see that 𝑓
𝑖
(𝑡, xt) is Lebesgue measurable

on 𝐼
0
by using conditions (H

1
) and (H

2
) for all 𝑖 =

1, 2, . . . , 𝑘. Also, a direct calculation shows that (𝑡 − 𝑠)
𝛼
𝑖
−1

∈

𝐿
1/(1−𝛼

𝑖1
)

([𝑡
0
, 𝑡]) for 𝑡 ∈ 𝐼

0
. By using Holder’s inequality and

condition (H
3
), we get that (𝑡 − 𝑠)

𝛼
𝑖
−1

𝑓
𝑖
(𝑠, xs) is Lebesgue

integrable with respect to 𝑠 ∈ [𝑡
0
, 𝑡] for all 𝑡 ∈ 𝐼

0
, 𝑖 =

1, 2, . . . , 𝑘, and (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝐴(𝛿, 𝛾), and

∫

𝑡

𝑡
0


(𝑡 − 𝑠)

𝛼
𝑖
−1

𝑓
𝑖
(𝑠, xs)


𝑑𝑠

≤

(𝑡 − 𝑠)

𝛼
𝑖
−1

𝐿1/(1−𝛼𝑖1)([𝑡
0
,𝑡])

𝑚𝑖
𝐿1/𝛼𝑖1 (𝐼

0
)
.

(6)

It is easy to see that if 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) is a solution of

the problem (1), then 𝑥 is a solution of (∗). Now, suppose
that 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) is a solution of the equation (∗) and

𝑡 ∈ (𝑡
0
, 𝑡
0

+ 𝛿]. Then 𝑥
𝑖
𝑡0

= 𝜙
𝑖
and 𝑐𝐷𝛼𝑖(𝑥

𝑖
(𝑡) − 𝑔

𝑖
(𝑡, xt)) =

𝑓
𝑖
(𝑡, xt) for all 𝑡 ∈ (𝑡

0
, 𝑡
0

+ 𝛿] and 𝑖 = 1, 2, . . . , 𝑘. Thus,
𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) is a solution of the problem (1). This

completes the proof.

Theorem 3. Suppose that there exist 𝛿 ∈ (0, 𝑎) and 𝛾 ∈ (0, ∞)

such that (𝐻
1
)–(𝐻
6
) hold.Then the problem (1) has at least one

solution on [𝑡
0
, 𝑡
0

+ 𝜂] for some positive number 𝜂.

Proof. Since condition (H
4
) holds, the equation (∗) is equiv-

alent to the equation

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) − 𝑔

𝑖1
(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

− 𝑔
𝑖2

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
) + 𝑔
𝑖1

(𝑡, xt) + 𝑔
𝑖2

(𝑡, xt)

+
1

Γ (𝛼
𝑖
)

∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝛼
𝑖
−1

𝑓
𝑖
(𝑠, xs) 𝑑𝑠

(7)

and 𝑥
𝑖
𝑡0

= 𝜙
𝑖
for all 𝑡 ∈ 𝐼

0
and 𝑖 = 1, 2, . . . , 𝑘. Let

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
) ∈ 𝐴(𝛿, 𝛾) be defined by 𝜙

𝑖
𝑡0

= 𝜙
𝑖
and 𝜙

𝑖
(𝑡
0

+

𝑡) = 𝜙
𝑖
(0) for all 𝑡 ∈ [0, 𝛿] and 𝑖 = 1, 2, . . . , 𝑘. If 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) is a solution of problem (1) and 𝑥

𝑖
(𝑡
0

+ 𝑡) =

𝜙
𝑖
(𝑡
0

+ 𝑡) + 𝑦
𝑖
(𝑡) for 𝑡 ∈ [−𝑟, 𝛿] and 𝑖 = 1, 2, . . . , 𝑘, then

𝑥
𝑖
𝑡0+𝑡

= 𝜙
𝑖
𝑡0+𝑡

+ 𝑦
𝑖
𝑡

for 𝑡 ∈ [0, 𝛿] and 𝑖 = 1, 2, . . . , 𝑘. Thus,

𝑦
𝑖
(𝑡) = −𝑔

𝑖1
(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
) − 𝑔
𝑖2

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+ 𝑔
𝑖1

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)

+ 𝑔
𝑖2

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)

+
1

Γ (𝛼
𝑖
)

∫

𝑡

0

(𝑡−𝑠)
𝛼
𝑖
−1

𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

) 𝑑𝑠

(∗∗)

for 𝑡 ∈ [0, 𝛿] and 𝑖 = 1, 2, . . . , 𝑘. Since 𝑔
𝑖1
, 𝑔
𝑖2
are continuous

and 𝑥
𝑖
𝑡

is continuous in 𝑡 for all 𝑖 = 1, 2, . . . , 𝑘, there exists
𝛿


> 0 such that |𝑔
𝑖1
(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+
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𝜙
𝑘
𝑡0+𝑡

) − 𝑔
𝑖1
(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)| < 𝛾/3 and |𝑔

𝑖2
(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+

𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

) − 𝑔
𝑖2
(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)| <

𝛾/3 for 0 < 𝑡 < 𝛿
 and 𝑖 = 1, 2, . . . , 𝑘. Put 𝜂 =

min
1≤𝑖≤𝑘

{𝛿, 𝛿


, (𝛾Γ(𝛼
𝑖
)(1 + 𝛽

𝑖
)
1−𝛼
𝑖1/3𝑀

𝑖
)
1/(1+𝛽

𝑖
)(1−𝛼

𝑖1
)

}, where
𝛽
𝑖

= (𝛼
𝑖
− 1)/(1 − 𝛼

𝑖1
) ∈ (−1, 0) and 𝑀

𝑖
= ‖𝑚
𝑖
‖
𝐿
1/𝛼𝑖1 (𝐼

0
)
for

all 𝑖 = 1, 2, . . . , 𝑘. Define

𝐸 (𝜂, 𝛾) = {(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) : 𝑦
𝑖
∈ 𝐶 ([−𝑟, 𝜂] ,R

𝑛

) , 𝑦
𝑖
(𝑠) = 0,

𝑦𝑖
 ≤ 𝛾 for 𝑠 ∈ [−𝑟, 0] , 𝑖 = 1, 2, . . . , 𝑘} .

(8)

In fact, 𝐸(𝜂, 𝛾) is a closed, bounded, and convex subset of
𝐶([−𝑟, 𝜂],R𝑛) × 𝐶([−𝑟, 𝜂],R𝑛) × ⋅ ⋅ ⋅ × 𝐶([−𝑟, 𝜂],R𝑛). Define
the operators 𝑆 and 𝑈 on 𝐸(𝜂, 𝛾) by

𝑆 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡) = (

𝑆
1
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

𝑆
2
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

...
𝑆
𝑘
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

) ,

𝑈 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡) = (

𝑈
1
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

𝑈
2
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

...
𝑈
𝑘
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

) ,

(9)

where

𝑆
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

=

{{{{{

{{{{{

{

0 𝑡 ∈ [−𝑟, 0] ,

−𝑔
𝑖1

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+𝑔
𝑖1

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

) 𝑡 ∈ [0, 𝜂] ,

𝑈
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0 𝑡 ∈ [−𝑟, 0] ,

−𝑔
𝑖2

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+𝑔
𝑖2

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)

+
1

Γ (𝛼
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼
𝑖
−1

×𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+ 𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

) 𝑑𝑠 𝑡 ∈ [0, 𝜂] ,

(10)

for 𝑖 = 1, 2, . . . , 𝑘. It is easy to check that the operator equation
𝑦 = 𝑆𝑦 + 𝑈𝑦 has a solution 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
) if and only

if 𝑦
𝑖
is a solution for (∗∗) for all 𝑖 = 1, 2, . . . , 𝑘. In this case,

𝑥
𝑖
(𝑡
0
+𝑡) = 𝑦

𝑖
(𝑡)+𝜙

𝑖
(𝑡
0
+𝑡)will be a solution of the problem (1)

on [0, 𝜂]. Thus, the existence of a solution of the problem (1)
is equivalent to the existence of a fixed point for the operator

𝑆+𝑈 on 𝐸(𝜂, 𝛾). Hence, it is sufficient that we show that 𝑆+𝑈

has a fixed point in 𝐸(𝜂, 𝛾). We prove it in three steps.

Step I. 𝑆𝑧 + 𝑈𝑦 ∈ 𝐸(𝜂, 𝛾) for all 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ 𝐸(𝜂, 𝛾).

Let 𝑧, 𝑦 ∈ 𝐸(𝜂, 𝛾) be given. Then, 𝑆
𝑖
𝑧 + 𝑈

𝑖
𝑦 ∈

𝐶([−𝑟, 𝜂],R𝑛) for all 𝑖 = 1, 2, . . . , 𝑘. It is easy to check that
(𝑆𝑧 + 𝑈𝑦)(𝑡) = 0 for all 𝑡 ∈ [−𝑟, 0]. Also, we have
𝑆𝑖𝑧 (𝑡) + 𝑈

𝑖
𝑦 (𝑡)



≤

− 𝑔
𝑖1

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+𝑔
𝑖1

(𝑡
0

+ 𝑡, 𝑧
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑧
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑧
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)


+

− 𝑔
𝑖2

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+𝑔
𝑖2

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)


+
1

Γ (𝛼
𝑖
)

∫

𝑡

0


(𝑡 − 𝑠)

𝛼
𝑖
−1

𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

)

𝑑𝑠

≤
2𝛾

3
+

1

Γ (𝛼
𝑖
)
(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼
𝑖
−1)/(1−𝛼

𝑖1
)

𝑑𝑠)

1−𝛼
𝑖1

× (∫

𝑡
0
+𝑡

𝑡
0

(𝑚
𝑖
(𝑠))
1/𝛼
𝑖1

𝑑𝑠)

𝛼
𝑖1

≤
2𝛾

3
+

𝑀
𝑖
𝜂
(1+𝛽
𝑖
)(1−𝛼

𝑖1
)

Γ (𝛼
𝑖
) (1 + 𝛽

𝑖
)
1−𝛼
𝑖1

≤ 𝛾

(11)

for all 𝑡 ∈ [0, 𝜂] and 𝑖 = 1, 2, . . . , 𝑘. Thus, ‖𝑆
𝑖
𝑧 + 𝑈

𝑖
𝑦‖ =

sup
𝑡∈[0,𝜂]

|(𝑆
𝑖
𝑧)(𝑡) − (𝑈

𝑖
𝑦)(𝑡)| ≤ 𝛾 for all 𝑖 = 1, 2, . . . , 𝑘. Hence,

𝑆𝑧 + 𝑈𝑦 ∈ 𝐸(𝜂, 𝛾) for all 𝑧, 𝑦 ∈ 𝐸(𝜂, 𝛾).

Step 𝐼𝐼. 𝑆 is a contraction on 𝐸(𝜂, 𝛾).
Let 𝑦


= (𝑦


1
, 𝑦


2
, . . . , 𝑦



𝑘
), 𝑦


= (𝑦


1
, 𝑦


2
, . . . , 𝑦



𝑘
) ∈ 𝐸(𝜂, 𝛾).

Then,

(𝑦


1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦


2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦


𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

) ,

(𝑦


1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦


2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦


𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

) ∈ 𝐴 (𝛿, 𝛾)

(12)

and so

𝑆
𝑖
𝑦


(𝑡) − 𝑆
𝑖
𝑦


(𝑡)


=

𝑔
𝑖1

(𝑡
0

+ 𝑡, 𝑦


1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦


2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦


𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)

− 𝑔
𝑖1

(𝑡
0

+ 𝑡, 𝑦


1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦


2
𝑡

+𝜙
2
𝑡0+𝑡

, . . . , 𝑦


𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

)


≤ 𝑙
𝑖


𝑦


− 𝑦

∗

(13)
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for all 𝑖 = 1, 2, . . . , 𝑘. This implies that ‖𝑆𝑦


− 𝑆𝑦


‖
∗

≤

𝑙‖𝑦


− 𝑦


‖
∗
, where 𝑙 = max{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑘
}. Since 0 < 𝑙 < 1,

𝑆 is a contraction on 𝐸(𝜂, 𝛾).

Step 𝐼𝐼𝐼. 𝑈 is a completely continuous operator.
Suppose that

𝑈
𝑖1

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

=

{{{{{

{{{{{

{

0 𝑡∈[−𝑟.0] ,

−𝑔
𝑖2

(𝑡
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
)

+𝑔
𝑖2

(𝑡
0

+ 𝑡, 𝑦
1
𝑡

+ 𝜙
1
𝑡0+𝑡

, 𝑦
2
𝑡

+ 𝜙
2
𝑡0+𝑡

, . . . , 𝑦
𝑘
𝑡

+ 𝜙
𝑘
𝑡0+𝑡

) 𝑡∈[0, 𝜂] ,

𝑈
𝑖2

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡)

=

{{{{{{{

{{{{{{{

{

0 𝑡∈[−𝑟.0] ,

1

Γ (𝛼
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼
𝑖
−1

×𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

) 𝑑𝑠 𝑡∈[0, 𝜂] ,

(14)

for 𝑖 = 1, 2, . . . , 𝑘. It is clear that

𝑈 = (

𝑈
11

+ 𝑈
12

𝑈
21

+ 𝑈
22

...
𝑈
𝑘1

+ 𝑈
𝑘2

) . (15)

Since 𝑔
𝑖2
is completely continuous for all 𝑖 = 1, 2, . . . , 𝑘,

𝑈
𝑖1
is continuous and also {𝑈

𝑖1
(𝑦) : 𝑦 ∈ 𝐸(𝜂, 𝛾)} is uniformly

bounded. By using condition (H
6
), it is easy to check that

{𝑈
𝑖1
(𝑦) : 𝑦 ∈ 𝐸(𝜂, 𝛾)} is equicontinuous. On the other hand,

𝑈𝑖2𝑦 (𝑡)


≤
1

Γ (𝛼
𝑖
)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼
𝑖
−1


𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

)

𝑑𝑠

≤
1

Γ (𝛼
𝑖
)
(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼
𝑖
−1)/(1−𝛼

𝑖1
)

𝑑𝑠)

1−𝛼
𝑖1

× (∫

𝑡
0
+𝑡

𝑡
0

(𝑚
𝑖
(𝑠))
1/𝛼
𝑖1

𝑑𝑠)

𝛼
𝑖1

≤
𝑀
𝑖
𝜂
(1+𝛽
𝑖
)(1−𝛼

𝑖1
)

Γ (𝛼
𝑖
) (1 + 𝛽

𝑖
)
1−𝛼
𝑖1

(16)

for all 𝑡 ∈ [0, 𝜂] and 𝑖 = 1, 2, . . . , 𝑘. This implies that {𝑈
𝑖2
𝑦 :

𝑦 ∈ 𝐸(𝜂, 𝛾)} is uniformly bounded.Now,we prove that {𝑈
𝑖2
𝑦 :

𝑦 ∈ 𝐸(𝜂, 𝛾)} is equicontinuous. Let 0 ≤ 𝑡
1

< 𝑡
2

≤ 𝜂 and
𝑦 ∈ 𝐸(𝜂, 𝛾) be given. Then, we have
𝑈𝑖2𝑦 (𝑡

2
) − 𝑈
𝑖2
𝑦 (𝑡
1
)


=



1

Γ (𝛼
𝑖
)

∫

𝑡
1

0

[(𝑡
2

− 𝑠)
𝛼
𝑖
−1

− (𝑡
1

− 𝑠)
𝛼
𝑖
−1

]

× 𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

) 𝑑𝑠

+
1

Γ (𝛼
𝑖
)

∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛼
𝑖
−1

𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

) 𝑑𝑠



≤
1

Γ (𝛼
𝑖
)

∫

𝑡
1

0

[(𝑡
1

− 𝑠)
𝛼
𝑖
−1

− (𝑡
2

− 𝑠)
𝛼
𝑖
−1

]

×

𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+ 𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

)

𝑑𝑠

+
1

Γ (𝛼
𝑖
)

∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛼
𝑖
−1


𝑓
𝑖
(𝑡
0

+ 𝑠, 𝑦
1
𝑠

+ 𝜙
1
𝑡0+𝑠

, 𝑦
2
𝑠

+ 𝜙
2
𝑡0+𝑠

, . . . , 𝑦
𝑘
𝑠

+ 𝜙
𝑘
𝑡0+𝑠

)

𝑑𝑠

≤
𝑀
𝑖

Γ (𝛼
𝑖
)
(∫

𝑡
1

0

[(𝑡
1

− 𝑠)
𝛼
𝑖
−1

− (𝑡
2

− 𝑠)
𝛼
𝑖
−1

]
1/(1−𝛼

𝑖1
)

𝑑𝑠)

1−𝛼
𝑖1

+
𝑀
𝑖

Γ (𝛼
𝑖
)
(∫

𝑡
2

𝑡
1

[(𝑡
2

− 𝑠)
𝛼
𝑖
−1

]
1/(1−𝛼

𝑖1
)

𝑑𝑠)

1−𝛼
𝑖1

≤
𝑀
𝑖

Γ (𝛼
𝑖
)
(∫

𝑡
1

0

[(𝑡
1

− 𝑠)
𝛽
𝑖

− (𝑡
2

− 𝑠)
𝛽
𝑖

] 𝑑𝑠)

1−𝛼
𝑖1

+
𝑀
𝑖

Γ (𝛼
𝑖
)
(∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛽
𝑖

𝑑𝑠)

1−𝛼
𝑖1

≤
𝑀
𝑖

Γ (𝛼
𝑖
) (1 + 𝛽

𝑖
)
1−𝛼
𝑖1

(𝑡
1+𝛽
𝑖

1
− 𝑡
1+𝛽
𝑖

2
+ (𝑡
2

− 𝑡
1
)
1+𝛽
𝑖

)
1−𝛼
𝑖1

+
𝑀
𝑖

Γ (𝛼
𝑖
) (1 + 𝛽

𝑖
)
1−𝛼
𝑖1

(𝑡
2

− 𝑡
1
)
(1+𝛽
𝑖
)(1−𝛼

𝑖1
)

≤
2𝑀
𝑖

Γ (𝛼
𝑖
) (1 + 𝛽

𝑖
)
1−𝛼
𝑖1

(𝑡
2

− 𝑡
1
)
(1+𝛽
𝑖
)(1−𝛼

𝑖1
)

(17)

for all 𝑖 = 1, 2, . . . , 𝑘. Thus, {𝑈
𝑖2
𝑦 : 𝑦 ∈ 𝐸(𝜂, 𝛾)} is

equicontinuous. Moreover, it is clear that 𝑈
𝑖2
is continuous

for all 𝑖 = 1, 2, . . . , 𝑘. This implies that 𝑈 is a completely
continuous operator. Now, by using Krasnoselskii’s fixed
point theorem we get that 𝑆 + 𝑈 has a fixed point on 𝐸(𝜂, 𝛾)

and so the problem (1) has a solution 𝑥 = (𝑥
1
, . . . , 𝑥

𝑘
), where
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𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) + 𝑦

𝑖
(𝑡 − 𝑡

0
) for all 𝑡 ∈ [𝑡

0
, 𝑡
0

+ 𝜂] and 𝑖 =

1, 2, . . . , 𝑘.

If we put 𝑔
𝑖1

= 0 for all 𝑖 = 1, 2, . . . , 𝑘, then we obtain next
result.

Corollary 4. Suppose that there exist 𝛿 ∈ (0, 𝑎) and 𝛾 ∈

(0, ∞) such that conditions (𝐻
1
)–(𝐻
3
) hold, 𝑔

𝑖
is continuous

for all 𝑖 = 1, 2, . . . , 𝑘, and |𝑔
𝑖
(𝑡, xt) − 𝑔

𝑖
(𝑡, yt)| ≤ 𝑙

𝑖
‖𝑥 − 𝑦‖

∗
for

all 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ 𝐴(𝛿, 𝛾), and

𝑡 ∈ 𝐼
0
, where 𝑙

𝑖
∈ (0, 1) is a constant for all 𝑖 = 1, 2, . . . , 𝑘. Then

the problem (1) has at least one solution on [𝑡
0
, 𝑡
0
+ 𝜂] for some

positive number 𝜂.

If we put 𝑔
𝑖2

= 0 for all 𝑖 = 1, 2, . . . , 𝑘, then we obtain next
result.

Corollary 5. Suppose that there exist 𝛿 ∈ (0, 𝑎) and 𝛾 ∈

(0, ∞) such that conditions (𝐻
1
)–(𝐻
3
) hold, 𝑔

𝑖
is completely

continuous for all 𝑖 = 1, 2, . . . , 𝑘, and the family {𝑡 ⊢ 𝑔
𝑖
(𝑡, xt) :

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ Λ} is equicontinuous on 𝐶(𝐼

0
,R𝑛) ×

𝐶(𝐼
0
,R𝑛) × ⋅ ⋅ ⋅ × 𝐶(𝐼

0
,R𝑛) for all bounded set Λ in 𝐴(𝛿, 𝜆).

Then the problem (1) has at least one solution on [𝑡
0
, 𝑡
0
+ 𝜂] for

some positive number 𝜂.

3. Conclusions

In this work, we study an initial value problem for a class
of 𝑘-dimensional systems of fractional neutral functional
differential equations by using Krasnoselskii’s fixed point
theorem. Our result generalizes some old related results in a
sense.
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