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A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear
multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss
quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In
addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results
obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of
the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.

1. Introduction

Over the last three decades, the scientists have paid much
attention to spectral methods due to their high accuracy (see,
for instance, [1–6] and the references therein). On the other
hand, spectral methods, in the context of numerical schemes
for differential equations, generically belong to the family
of weighted residual methods (WRMs) (cf. Finlayson [7]).
WRMs represent a particular group of approximation tech-
niques, in which the residuals (or errors) are minimized in a
certainway and thereby leading to specificmethods including
Galerkin, Petrov-Galerkin, collocation, and tau formulations.
WRMs are traditionally regarded as the foundation and
cornerstone of the finite element, spectral, finite volume,
boundary element, and some other methods. Many problems

in science and engineering arise in unbounded domains (see,
e.g., [8–12]). In general, the use of Jacobi rational functions
has the advantage of obtaining the solutions in terms of the
Jacobi rational parameters (see, e.g., [13–16]). Moreover, the
authors of [17, 18] proposed an efficient collocation schemes
based on the operational matrices of rational Legendre and
Chebyshev functions for solving problems in the half line.

Systems of multipantograph equations model many real-
life phenomena in physics and biology. Numerous numerical
and analytical schemes have been presented and developed
for solving such multipantograph equations, like variational
iteration [19], Bernstein collocation [20], spline [21], homo-
topy perturbation [22], and Taylor collocation [23, 24] meth-
ods.This problem has been the focus of many studies; see, for
instance, [21, 25–29].
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2 Abstract and Applied Analysis

The main aim of this paper is to develop the spectral-
Gauss collocation integration process based on Legendre
rational functions for solving systems of linear and nonlinear
multipantograph equations on the half line. The implemen-
tation of this method reduces the problem to systems of
linear and nonlinear algebraic equations. The numerical
simulation of multipantograph systems on a semi-infinite
domain is investigated. Finally, the accuracy and applicability
of the proposed method are demonstrated by test problems.
Numerical results are given in which the exponential conver-
gence behaviour is exhibited.

This paper is organized as follows. We present few reve-
lent properties of Legendre rational functions and function
approximation in the coming section. In Sections 3 and 4,
the pseudospectral algorithms are implemented for solving
systems of linear and nonlinear multipantograph equations.
Two test examples are introduced in Section 5. Finally, some
concluding remarks are given in the last section.

2. Legendre Rational Interpolation

In this section, we present Legendre rational functions
and Legendre rational approximation that will be used to
construct the Legendre rational-Gauss collocation (LR-GC)
method.

2.1. Legendre Rational Functions. The well-known Legendre
polynomials 𝐿𝑘(𝑦) are defined on the interval [−1, 1] with
respect to the weight function 𝜌(𝑦) = 1. In order to use
these polynomials on the interval 𝑡 ∈ (0,∞), we recall
the Legendre rational functions by introducing the change
of variable 𝑦 = (𝑡 − 1)/(𝑡 + 1). Let the Legendre rational
functions 𝐿𝑘((𝑡 − 1)/(𝑡 + 1)) be denoted by 𝑅𝑘(𝑡). Then 𝑅𝑘(𝑡)
can be obtained with the aid of the following recurrence
formula:

𝑅0 = 1, 𝑅1 (𝑡) =
𝑡 − 1

𝑡 + 1
,

𝑅𝑘+1 (𝑡) = (
2𝑘 + 1

𝑘 + 1
)(

𝑡 − 1

𝑡 + 1
)𝑅𝑘 (𝑡) − (

𝑘

𝑘 + 1
)𝑅𝑘−1 (𝑡) ,

𝑘 ≥ 1.

(1)

According to the properties of the standard Legendre poly-
nomials, we have

𝑅𝑘 (0) = (−1)
𝑘
, (2)

𝜕𝑡𝑅𝑘 (𝑡) =
(𝑘 + 1)

2𝑡 (𝑡 + 1)
[(𝑡 − 1) 𝑅𝑘 (𝑡) − (𝑡 + 1) 𝑅𝑘+1 (𝑡)] . (3)

2.2. Function Approximation. Let 𝑤(𝑡) = 2/(𝑡 + 1)
2 denote

a nonnegative, integrable, real-valued function over the
interval Λ = [0,∞). We define

𝐿
2

𝑤
(Λ) = {V : Λ 󳨀→ R | V is measurable and ‖V‖𝑤 < ∞} ,

(4)

where

‖V‖𝑤 = (∫

∞

0

|V (𝑡)|2𝑤(𝑡)𝑑𝑡)
1/2

(5)

is the norm induced by the inner product of the space 𝐿2
𝑤
(Λ):

⟨𝑢, V⟩𝑤 = ∫

∞

0

𝑢 (𝑡) V (𝑡) 𝑤 (𝑡) 𝑑𝑡. (6)

Thus, {𝑅𝑘(𝑡)}𝑘≥0 denotes a system which is mutually orthog-
onal under (6); that is,

⟨𝑅𝑘, 𝑅𝑙⟩𝑤
=

2

2𝑘 + 1
𝛿𝑘𝑙, (7)

where 𝛿𝑘𝑙 is the Kronecker delta function. This system is
complete in 𝐿2

𝑤
(Λ). For any function 𝑢 ∈ 𝐿

2

𝑤
(Λ) the following

expansion holds:

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑎𝑘𝑅𝑘 (𝑡) , (8)

with

𝑎𝑘 =
⟨𝑢, 𝑅𝑘⟩𝑤

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩

2

𝑤

. (9)

2.3. Legendre Rational Interpolation Approximation. We
denote by 𝑡𝑁,𝑗, 0 ⩽ 𝑗 ⩽ 𝑁, the nodes of the standard
Legendre-Gauss interpolation on the interval [−1, 1], and
𝜛𝑁,𝑗, 0 ⩽ 𝑗 ⩽ 𝑁 are Christoffel numbers. The nodes of
the Legendre rational-Gauss interpolation on the interval
[0,∞) are the zeros of 𝑅𝑁+1(𝑡), which is denoted by 𝑡𝑅,𝑁,𝑗,
0 ⩽ 𝑗 ⩽ 𝑁. It is clear that 𝑡𝑅,𝑁,𝑗 = (1 + 𝑡𝑁,𝑗)/(1 − 𝑡𝑁,𝑗),
and 𝜛𝑅,𝑁,𝑗 = 𝜛𝑁,𝑗, 0 ⩽ 𝑗 ⩽ 𝑁. We now set 𝑆𝑁(0,∞) =

span{𝑅0(𝑡), 𝑅1(𝑡), . . . , 𝑅𝑁(𝑡)}. Therefore, making use of the
property of the Legendre-Gauss quadrature, we have for any
𝜙 ∈ 𝑆2𝑁+1[0,∞),

∫

∞

0

𝑤 (𝑡) 𝜙 (𝑡) 𝑑𝑡 = ∫

1

−1

𝜌 (𝑦) 𝜙(
1 + 𝑦

1 − 𝑦
)𝑑𝑦

=

𝑁

∑

𝑗=0

𝜛𝑅,𝑁,𝑗𝜙 (𝑡𝑅,𝑁,𝑗) .

(10)

The interpolating function of a smooth function 𝑢 on a
semi-infinite interval is denoted by 𝑃𝑁𝑢. It is an element of
R𝑁 and is defined as

𝑃𝑁𝑢 (𝑡) =

𝑁

∑

0

𝑎𝑘𝑅𝑘 (𝑡) . (11)

𝑃𝑁𝑢 is the orthogonal projection of 𝑢 upon R𝑁 with
respect to the inner product (6) and the norm (5). Thus by
the orthogonality of Legendre rational functions we have [11]

⟨𝑃𝑁𝑢 − 𝑢, 𝑅𝑖⟩𝑤
= 0, ∀𝑅𝑖 ∈ R𝑁. (12)
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To obtain the order of convergence of Legendre rational
approximation, at first we define the space

𝐻
𝑟

𝑤,𝐴
(Λ) = {V : V is measurable and ‖V‖𝑟,𝑤,𝐴 < ∞} , (13)

where the norm is induced by

‖V‖𝑟,𝑤,𝐴 = (

𝑟

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡 + 1)
𝑟/2+𝑘 𝑑

𝑘

𝑑𝑡𝑘
V
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑤

) , (14)

and 𝐴 is the Sturm-Liouville operator as follows:

𝐴V (𝑡) = −𝑤
−1
(𝑡)

𝑑

𝑑𝑡
(𝑡

𝑑

𝑑𝑡
V (𝑡)) . (15)

We have the following theorem for the convergence.

Theorem 1. For any V ∈ 𝐻
𝑟

𝑤,𝐴
(Λ) and 𝑟 ≥ 0,

󵄩󵄩󵄩󵄩𝑃𝑁V − V󵄩󵄩󵄩󵄩 ≤ 𝑐𝑁
−𝑟
‖V‖𝑟,𝑤,𝐴. (16)

A complete proof of the theorem and discussion on
convergence are given in [11].

3. Linear Multipantograph System

In this section, we propose the Legendre rational-Gauss
collocation method to solve the following system of linear
multipantograph equations:

𝑚

∑

𝑠=1

𝛽1,𝑠𝑢
󸀠

𝑠
(𝑡) =

𝑚

∑

𝑠=1

𝑎1,𝑠 (𝑡) 𝑢𝑠 (𝑡)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

1,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡) + 𝑔1 (𝑡) ,

𝑚

∑

𝑠=1

𝛽2,𝑠𝑢
󸀠

𝑠
(𝑡) =

𝑚

∑

𝑠=1

𝑎2,𝑠 (𝑡) 𝑢𝑠 (𝑡)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

2,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡) + 𝑔2 (𝑡)

0 < 𝑡 ≤ ∞,

...
𝑚

∑

𝑠=1

𝛽𝑚,𝑠𝑢
󸀠

𝑠
(𝑡) =

𝑚

∑

𝑠=1

𝑎𝑚,𝑠 (𝑡) 𝑢𝑠 (𝑡)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

𝑚,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡) + 𝑔𝑚 (𝑡) ,

(17)

subject to
𝑚

∑

𝑟=1

𝑢𝑟,1 (0) = 𝑢1,

𝑚

∑

𝑟=1

𝑢𝑟,2 (0) = 𝑢2,

...
𝑚

∑

𝑟=1

𝑢𝑟,𝑚 (0) = 𝑢𝑚.

(18)

Let us first introduce some basic notation that will be used in
the sequel. We define the discrete inner product and norm as
follows:

(𝑢, V)𝑤,𝑁 =
𝑁

∑

𝑗=0

𝑢 (𝑡𝑅,𝑁,𝑗) V (𝑡𝑅,𝑁,𝑗) 𝜛𝑅,𝑁,𝑗,

‖𝑢‖𝑤,𝑁 = √(𝑢, 𝑢)𝑤,𝑁.

(19)

Obviously,

(𝑢, V)𝑤,𝑁 = (𝑢, V)𝑤, ∀𝑢, V ∈ 𝑆2𝑁+1. (20)

The Legendre rational-Gauss collocation method for solving
(17) and (18) is to seek 𝑢𝑗,𝑁(𝑡) ∈ 𝑆𝑁(0,∞), 𝑗 = 1, 2, . . . , 𝑘,
such that

𝑚

∑

𝑠=1

𝛽1,𝑠𝑢
󸀠

𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) =

𝑚

∑

𝑠=1

𝑎1,𝑠 (𝑡) 𝑢𝑠 (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

1,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔1 (𝑡𝑞,𝑅,𝑁,𝛾) ,

𝑚

∑

𝑠=1

𝛽2,𝑠𝑢
󸀠

𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) =

𝑚

∑

𝑠=1

𝑎2,𝑠 (𝑡) 𝑢𝑠 (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

2,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔2 (𝑡𝑞,𝑅,𝑁,𝛾) ,

...
𝑚

∑

𝑠=1

𝛽𝑚,𝑠𝑢
󸀠

𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) =

𝑚

∑

𝑠=1

𝑎𝑚,𝑠 (𝑡) 𝑢𝑠 (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

𝑚,𝑠
(𝑡) 𝑢𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔𝑚 (𝑡𝑞,𝑅,𝑁,𝛾) ,

𝑞 = 1, 2, . . . , 𝑚, 𝛾 = 0, 1, . . . , 𝑁 − 1,
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𝑚

∑

𝑟=1

𝑢𝑟,1 (0) = 𝑢1,

𝑚

∑

𝑟=1

𝑢𝑟,2 (0) = 𝑢2,

...
𝑚

∑

𝑟=1

𝑢𝑟,𝑚 (0) = 𝑢𝑚.

(21)

We derive the algorithm for solving (17)-(18). To do this, let

𝑢𝑖,𝑁 (𝑡) =

𝑁

∑

ℎ=0

𝑐𝑖,ℎ𝑅𝑖,ℎ (𝑡) . (22)

Now, substitution of (22) into (17) enables us to write

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽1,𝑠𝑐1,ℎ𝐷𝑅𝑠,ℎ (𝑡) =

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎1,𝑠 (𝑡) 𝑐1,ℎ𝑅𝑠,ℎ (𝑡)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

1,𝑠
(𝑡) 𝑐1,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔1 (𝑡) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽2,𝑠𝑐2,ℎ𝐷𝑅𝑠,ℎ (𝑡) =

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎2,𝑠 (𝑡) 𝑐2,ℎ𝑅𝑠,ℎ (𝑡)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

2,𝑠
(𝑡) 𝑐2,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔2 (𝑡) ,

...
𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽𝑚,𝑠𝑐𝑚,ℎ𝐷𝑅𝑠,ℎ (𝑡) =

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎𝑚,𝑠 (𝑡) 𝑐𝑚,ℎ𝑅𝑠,ℎ (𝑡)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

𝑚,𝑠
(𝑡) 𝑐𝑚,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔𝑚 (𝑡) .

(23)

Then, by virtue of (3), we deduce that

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽1,𝑠𝑐1,ℎ

(ℎ + 1)

2𝑡 (𝑡 + 1)
[(𝑡 − 1) 𝑅𝑠,ℎ (𝑡) − (𝑡 + 1) 𝑅𝑠,ℎ+1 (𝑡)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎1,𝑠 (𝑡) 𝑐1,ℎ𝑅𝑠,ℎ (𝑡) +

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

1,𝑠
(𝑡) 𝑐1,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔1 (𝑡) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽2,𝑠𝑐2,ℎ

(ℎ + 1)

2𝑡 (𝑡 + 1)
[(𝑡 − 1) 𝑅𝑠,ℎ (𝑡) − (𝑡 + 1) 𝑅𝑠,ℎ+1 (𝑡)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎2,𝑠 (𝑡) 𝑐2,ℎ𝑅𝑠,ℎ (𝑡) +

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

2,𝑠
(𝑡) 𝑐2,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔2 (𝑡) ,

...

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽𝑚,𝑠𝑐𝑚,ℎ

(ℎ + 1)

2𝑡 (𝑡 + 1)
[(𝑡 − 1) 𝑅𝑠,ℎ (𝑡) − (𝑡 + 1) 𝑅𝑠,ℎ+1 (𝑡)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎𝑚,𝑠 (𝑡) 𝑐𝑚,ℎ𝑅𝑠,ℎ (𝑡) +

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

𝑚,𝑠
(𝑡) 𝑐𝑚,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡)

+ 𝑔𝑚 (𝑡) .

(24)

Moreover, the initial condition (18)-with the aid of (2)-
yields

𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

(−1)
ℎ
𝑎1,ℎ = 𝑢1,

𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

(−1)
ℎ
𝑎2,ℎ = 𝑢2,

...

𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

(−1)
ℎ
𝑎𝑚,ℎ = 𝑢𝑚.

(25)

If we collocate (24) at the (𝑁) Legendre rational roots of
𝑅𝑁+1(𝑡), then we get

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽1,𝑠𝑐1,ℎ

(ℎ + 1)

2𝑡𝑞,𝑅,𝑁,𝛾 (𝑡𝑞,𝑅,𝑁,𝛾 + 1)

× [(𝑡𝑞,𝑅,𝑁,𝛾 − 1) 𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

− (𝑡𝑞,𝑅,𝑁,𝛾 + 1) 𝑅𝑠,ℎ+1 (𝑡𝑞,𝑅,𝑁,𝛾)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎1,𝑠 (𝑡𝑞,𝑅,𝑁,𝛾) 𝑐1,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

1,𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) 𝑐1,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔1 (𝑡𝑞,𝑅,𝑁,𝛾) ,
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𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽2,𝑠𝑐2,ℎ

(ℎ + 1)

2𝑡𝑞,𝑅,𝑁,𝛾 (𝑡𝑞,𝑅,𝑁,𝛾 + 1)

× [(𝑡𝑞,𝑅,𝑁,𝛾 − 1) 𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

− (𝑡𝑞,𝑅,𝑁,𝛾 + 1) 𝑅𝑠,ℎ+1 (𝑡𝑞,𝑅,𝑁,𝛾)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎2,𝑠 (𝑡𝑞,𝑅,𝑁,𝛾) 𝑐2,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

2,𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) 𝑐2,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔2 (𝑡𝑞,𝑅,𝑁,𝛾) ,

...
𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝛽𝑚,𝑠𝑐𝑚,ℎ

(ℎ + 1)

2𝑡𝑞,𝑅,𝑁,𝛾 (𝑡𝑞,𝑅,𝑁,𝛾 + 1)

× [(𝑡𝑞,𝑅,𝑁,𝛾 − 1)𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

− (𝑡𝑞,𝑅,𝑁,𝛾 + 1)𝑅𝑠,ℎ+1 (𝑡𝑞,𝑅,𝑁,𝛾)]

=

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝑎𝑚,𝑠 (𝑡𝑞,𝑅,𝑁,𝛾) 𝑐𝑚,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝛾)

+

𝑁

∑

ℎ=0

𝑙

∑

𝑗=1

𝑚

∑

𝑠=1

𝑏
𝑗

𝑚,𝑠
(𝑡𝑞,𝑅,𝑁,𝛾) 𝑐𝑚,𝑗𝑅𝑠,𝑗 (𝜆𝑗𝑡𝑞,𝑅,𝑁,𝛾)

+ 𝑔𝑚 (𝑡𝑞,𝑅,𝑁,𝛾) .

(26)
Thus (26) with relation (25) generate (𝑁 + 1) of a set of

algebraic equations which can be solved for the unknown
coefficients 𝑐𝑖,𝑗, (𝑖 = 1, . . . , 𝑚; 𝑗 = 0, 1, 2, . . . , 𝑁), by using any
standard solver technique.

4. Nonlinear Multipantograph System

In this section, we consider the nonlinear multipantograph
system of the form

𝑚

∑

𝑠=1

𝜉1,𝑠𝑢
󸀠

𝑠
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁1,𝑠𝑢𝑠 (𝑡) ,

𝑚

∑

𝑠=1

𝜂1,𝑠𝑢𝑠 (𝜆𝑡)) ,

𝑚

∑

𝑠=1

𝜉2,𝑠𝑢
󸀠

𝑠
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁2,𝑠𝑢𝑠 (𝑡) ,

𝑚

∑

𝑠=1

𝜂2,𝑠𝑢𝑠 (𝜆𝑡)) ,

𝑡 ∈ (0,∞) where 𝜆 ∈ (0, 1) ,

...
𝑚

∑

𝑠=1

𝜉𝑚,𝑠𝑢
󸀠

𝑠
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁𝑚,𝑠𝑢𝑠 (𝑡) ,

𝑚

∑

𝑠=1

𝜂𝑚,𝑠𝑢𝑠 (𝜆𝑡)) ,

(27)

with initial conditions

𝑚

∑

𝑟=1

𝑢𝑟,1 (0) = 𝑢1,

𝑚

∑

𝑟=1

𝑢𝑟,2 (0) = 𝑢2,

...
𝑚

∑

𝑟=1

𝑢𝑟,𝑚 (0) = 𝑢𝑚.

(28)

The Legendre rational-Gauss collocation method for solving
(27) and (28) is to seek 𝑢𝑖,𝑁(𝑥) ∈ 𝑆𝑁(0,∞), such that

𝑚

∑

𝑠=1

𝜉1,𝑠𝑢
󸀠

𝑠,𝑁
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁1,𝑠𝑢𝑠,𝑁 (𝑡) ,

𝑚

∑

𝑠=1

𝜂1,𝑠𝑢𝑠,𝑁 (𝜆𝑡)) ,

𝑚

∑

𝑠=1

𝜉2,𝑠𝑢
󸀠

𝑠,𝑁
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁2,𝑠𝑢𝑠,𝑁 (𝑡) ,

𝑚

∑

𝑠=1

𝜂2,𝑠𝑢𝑠,𝑁 (𝜆𝑡)) ,

𝑡 ∈ (0,∞) where 𝜆 ∈ (0, 1) ,

...
𝑚

∑

𝑠=1

𝜉𝑚,𝑠𝑢
󸀠

𝑠,𝑁
(𝑡) = 𝐹(𝑡,

𝑚

∑

𝑠=1

𝜁𝑚,𝑠𝑢𝑠,𝑁 (𝑡) ,

𝑚

∑

𝑠=1

𝜂𝑚,𝑠𝑢𝑠,𝑁 (𝜆𝑡))

(29)

is satisfied exactly at the collocation points 𝑡𝑅,𝑁,𝑘, 𝑘 =

0, 1, . . . , 𝑁−1. In other words, we have to collocate (29) at the
(𝑁) Legendre rational roots 𝑡𝑅,𝑁,𝑘, which immediately yields

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜉𝑚,𝑠𝑐1,𝑗𝐷𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘)

= 𝐹(𝑡𝑞,𝑅,𝑁,𝑘,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜁1,𝑠𝑐1,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜂1,𝑠𝑐1,ℎ𝑅𝑠,ℎ (𝜆𝑡𝑞,𝑅,𝑁,𝑘)) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜉𝑚,𝑠𝑐2,𝑗𝐷𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘)

= 𝐹(𝑡𝑞,𝑅,𝑁,𝑘,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜁2,𝑠𝑐2,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜂2,𝑠𝑐2,ℎ𝑅𝑠,ℎ (𝜆𝑡𝑞,𝑅,𝑁,𝑘)) ,
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...

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜉𝑚,𝑠𝑐𝑚,𝑗𝐷𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘)

= 𝐹(𝑡𝑞,𝑅,𝑁,𝑘,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜁𝑚,𝑠𝑐𝑚,ℎ𝑅𝑠,ℎ (𝑡𝑞,𝑅,𝑁,𝑘) ,

𝑁

∑

ℎ=0

𝑚

∑

𝑠=1

𝜂𝑚,𝑠𝑐𝑚,ℎ𝑅𝑠,ℎ (𝜆𝑡
(𝜃,𝜗)

𝑞,𝑅,𝑁,𝑘
)) ,

(30)

with (28) written in the form
𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

𝑐1,𝑗𝑅𝑟,ℎ (0) = 𝑢1,0,

𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

𝑐2,𝑗𝑅𝑟,ℎ (0) = 𝑢2,0,

...

𝑁

∑

ℎ=0

𝑚

∑

𝑟=1

𝑐𝑚,𝑗𝑅𝑟,ℎ (0) = 𝑢𝑛,0.

(31)

This constitute a system of (𝑁 + 1) nonlinear algebraic
equations in the unknown expansion coefficients 𝑐𝑖,𝑗, (𝑖 =

1, . . . , 𝑚; 𝑗 = 0, 1, 2, . . . , 𝑁), which can be solved by using any
standard iteration technique, like Newton’s iteration method.

5. Numerical Results

In this section, we present two numerical examples in order
to show the accuracy of Legendre rational collocationmethod
for solving multipantograph delay system. The following
tables and figures contain the values of the exact solutions
𝑢𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝑘, the approximate solutions 𝑢𝑖,𝑁(𝑥), 𝑖 =
1, 2, . . . , 𝑘, and the absolute error functions 𝑒𝑖,𝑁(𝑥) = |𝑢𝑖(𝑥) −

𝑢𝑖,𝑁(𝑥)|, 𝑖 = 1, 2, . . . , 𝑘, at the selected points of the given
interval.

Example 1. Consider the following linear multipantograph
delay system:

𝑢
󸀠

1
(𝑡) + 5𝑢

󸀠

2
(𝑡) + 𝑡𝑢1 (𝑡) − 2𝑡

2
𝑢2 (𝑡)

+ 𝑢1 (0.5𝑡) + 𝑡𝑢2 (0.8𝑡) = 𝑔1 (𝑡) ,

0 ≤ 𝑡 ≤ 100,

− 4𝑢
󸀠

1
(𝑡) + 𝑢

󸀠

2
(𝑡) − 𝑢1 (𝑡) + 𝑡𝑢2 (𝑡)

+ 𝑡𝑢1 (0.2𝑡) + 𝑢2 (0.4𝑡) = 𝑔2 (𝑡) ,

(32)

with the initial conditions

𝑢1 (0) = 0, 𝑢
󸀠

2
(0) = 1, (33)
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Figure 1: Logarithmic graph of absolute coefficients |𝑐
𝑗
| of Legendre

rational functions at𝑁 = 60 of Example 1.

Table 1: Comparison of the absolute errors 𝑒1,𝑁 for 𝑢1(𝑡) of (32).

𝑡𝑖

LR-GC method

𝑁 = 20 𝑁 = 40 𝑁 = 60

0.0 0.000 × 10+00 0.000 × 10+00 2.775 × 10−17

10.0 1.105 × 10−4 5.638 × 10−8 3.779 × 10−10

20.0 2.175 × 10−5 4.347 × 10−7 2.609 × 10−9

30.0 3.087 × 10−3 6.613 × 10−7 8.111 × 10−9

40.0 1.080 × 10−2 6.894 × 10−7 1.604 × 10−8

50.0 2.036 × 10−2 1.644 × 10−6 4.074 × 10−8

60.0 3.008 × 10−2 6.281 × 10−6 9.717 × 10−8

70.0 3.922 × 10−2 1.594 × 10−5 1.190 × 10−7

80.0 4.756 × 10−2 3.053 × 10−5 8.903 × 10−8

90.0 5.506 × 10−2 4.921 × 10−5 4.396 × 10−8

100.0 6.178 × 10−2 7.100 × 10−5 3.624 × 10−8

where

𝑔1 (𝑡) = 2𝑡 − 4𝑡
2
+ (3𝑡
2
− 𝑡 + 6) 𝑒

−𝑡
+ 0.5𝑡𝑒

−0.5𝑡
− 𝑡𝑒
−0.8𝑡

,

𝑔2 (𝑡) = 2 + 2𝑡 + (2𝑡 − 3) 𝑒
−𝑡
− 𝑒
−0.4𝑡

+ 0.2𝑡
2
𝑒
−0.2𝑡

.

(34)

The exact solution of the system is 𝑢1(𝑡) = 𝑡𝑒
−𝑡 and 𝑢2(𝑡) =

2 − 𝑒
−𝑡.

Tables 1 and 2 list the results obtained by the Legendre
rational-Gauss collocation method in terms of maximum
absolute errors with different values of 𝑁. The logarithmic
graphs of absolute coefficients for Legendre rational functions
are shown in Figures 1 and 2.This confirms that the proposed
method has reasonable convergence rate.
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Table 2: Comparison of the absolute errors 𝑒2,𝑁 for 𝑢2(𝑡) of (32).

𝑡𝑖

LR-GC method
𝑁 = 20 𝑁 = 40 𝑁 = 60

0.0 8.273 × 10−7 9.056 × 10−12 4.393 × 10−11

10.0 1.395 × 10−5 6.763 × 10−9 4.703 × 10−12

20.0 9.412 × 10−6 8.911 × 10−9 5.661 × 10−11

30.0 6.376 × 10−5 1.177 × 10−8 1.242 × 10−10

40.0 1.499 × 10−4 7.887 × 10−9 2.575 × 10−10

50.0 2.121 × 10−4 1.621 × 10−8 3.371 × 10−10

60.0 2.529 × 10−4 4.544 × 10−8 6.993 × 10−10

70.0 2.791 × 10−4 1.027 × 10−7 9.146 × 10−10

80.0 2.957 × 10−4 1.820 × 10−7 7.991 × 10−10

90.0 3.061 × 10−4 2.729 × 10−7 5.234 × 10−10

100.0 3.125 × 10−4 3.658 × 10−7 3.478 × 10−10

Example 2. Consider the following nonlinear multipanto-
graph delay system:

𝑢
󸀠

1
(𝑡) + 2𝑢

󸀠

2
(𝑡) + 𝑢1 (𝑡) + 𝑡𝑢2 (𝑡) + 𝑡𝑢

2

2
(0.5𝑡) = 𝑔1 (𝑡) ,

0 ≤ 𝑡 ≤ 1,

3𝑢
󸀠

1
(𝑡) − 𝑢

󸀠

2
(𝑡) + 𝑡𝑢

2

1
(0.2𝑡) − (𝑡 + 1) 𝑢2 (𝑡) = 𝑔2 (𝑡) ,

(35)

with the initial conditions

𝑢1 (0) = 0, 𝑢
󸀠

2
(0) = 1, (36)

where

𝑔1 (𝑡) = −2𝑒
−𝑡 sin (𝑡) − 𝑒

−𝑡 cos (𝑡)

+ 𝑒
−𝑡
𝑡 cos (𝑡) + 𝑒

−𝑡
𝑡cos2 (0.5𝑡) ,

𝑔2 (𝑡) = 3𝑒
−𝑡 cos (𝑡) − 2𝑒

−𝑡 sin (𝑡)

− 𝑡𝑒
−𝑡 sin (𝑡) + 𝑒

−0.4𝑡
𝑡sin2 (0.2𝑡) .

(37)

The exact solution of the system is 𝑢1(𝑥) = 𝑒
−𝑡 sin(𝑡) and

𝑢2(𝑡) = 𝑒
−𝑡 cos(𝑡).

In Tables 3 and 4, we list the absolute errors obtained
by the Legedre rational-Gauss collocation method, with
different values of𝑁. Figures 3 and 4 are plotted to compare
the analytic solutionwith the approximate solution at𝑁 = 28.

6. Conclusion

In this paper, a collocation Legendre rational method has
been proposed to obtain the approximate solutions of systems
of multipantograph delay equations. The derivation of this
method is essentially based on Legendre rational func-
tions and Gauss quadrature formula. The main advantage
of the developed method is that high accurate solutions
were achieved using few numbers of the Legendre rational
functions. Additionally, if 𝑁 is increased, it can be seen that
approximate solutions obtained by the method are close to
the exact solutions.
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Figure 2: Logarithmic graph of absolute coefficients |𝑑
𝑗
| of Legen-

dre rational functions at𝑁 = 60 of Example 1.
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Figure 3: Graph of exact solution and approximate solution 𝑢1(𝑡) at
𝑁 = 28 for Example 2.
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Figure 4: Graph of exact solution and approximate solution 𝑢2(𝑡) at
𝑁 = 28 for Example 2.
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Table 3: Comparison of the absolute errors 𝑒1,𝑁 for 𝑢1(𝑡) of (35).

𝑡𝑖

LR-GC method
𝑁 = 10 𝑁 = 30 𝑁 = 50

0.0 5.551 × 10−17 0.000 × 10+00 0.000 × 10+00

1.0 1.554 × 10−3 4.799 × 10−6 8.262 × 10−8

2.0 2.085 × 10−3 2.349 × 10−6 4.957 × 10−8

3.0 6.583 × 10−3 1.392 × 10−6 1.069 × 10−7

4.0 1.408 × 10−3 9.788 × 10−9 1.247 × 10−7

5.0 5.932 × 10−3 2.183 × 10−5 8.508 × 10−7

6.0 6.690 × 10−3 6.643 × 10−5 1.169 × 10−6

7.0 3.789 × 10−3 6.919 × 10−6 1.485 × 10−6

8.0 1.092 × 10−3 6.729 × 10−5 6.698 × 10−7

9.0 1.546 × 10−3 2.765 × 10−5 1.382 × 10−6

10.0 2.137 × 10−4 2.345 × 10−5 1.450 × 10−6

Table 4: Comparison of the absolute errors 𝑒2,𝑁 for 𝑢2(𝑡) of (35).

𝑡
𝑖

LR-GC method
𝑁 = 10 𝑁 = 30 𝑁 = 50

0.0 0.000 × 10+00 1.110 × 10−16 1.665 × 10−16

1.0 6.260 × 10−4 2.819 × 10−6 5.391 × 10−8

2.0 6.997 × 10−5 2.048 × 10−5 4.171 × 10−8

3.0 5.800 × 10−5 1.042 × 10−6 9.088 × 10−8

4.0 6.901 × 10−4 7.814 × 10−6 1.541 × 10−7

5.0 2.427 × 10−3 9.524 × 10−6 2.014 × 10−7

6.0 3.012 × 10−3 1.126 × 10−6 1.116 × 10−7

7.0 1.483 × 10−3 1.283 × 10−5 2.553 × 10−7

8.0 8.598 × 10−3 4.171 × 10−6 5.499 × 10−7

9.0 1.529 × 10−2 6.713 × 10−6 2.949 × 10−7

10.0 1.995 × 10−2 3.503 × 10−5 3.311 × 10−7
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