Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 609160, 10 pages
http://dx.doi.org/10.1155/2014/609160

Research Article

Hindawi

Chebyshev Type Integral Inequalities Involving
the Fractional Hypergeometric Operators

D. Baleanu"?*® and S. D. Purohit*

! Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204,

Jeddah 21589, Saudi Arabia

? Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey

3 Institute of Space Sciences, Magurele, Bucharest, Romania

* Department of Basic Sciences (Mathematics), College of Technology and Engineering,
M.P. University of Agriculture and Technology, Udaipur 313001, India

Correspondence should be addressed to S. D. Purohit; sunil_a_purohit@yahoo.com

Received 31 January 2014; Accepted 8 March 2014; Published 22 April 2014

Academic Editor: Juan J. Nieto

Copyright © 2014 D. Baleanu and S. D. Purohit. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By making use of the fractional hypergeometric operators, we establish certain new fractional integral inequalities for synchronous
functions which are related to the weighted version of the Chebyshev functional. Some consequent results and special cases of the

main results are also pointed out.

1. Introduction

Fractional integral inequalities have proved to be one of
the most important and powerful tools for the development
of many branches of pure and applied mathematics. These
inequalities have many applications in numerical quadrature,
transform theory, probability, and statistical problems, but
the most useful ones are in establishing uniqueness of
solutions in fractional boundary value problems. Moreover,
they also provide upper and lower bounds to the solutions of
the above equations. Therefore, a significant development in
the classical and fractional integral inequalities, particularly
in analysis, has been witnessed; see, for instance, the papers
[1-7] and the references cited therein.
Let the functional
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where f and g are two integrable functions and synchronous
on [a, b]; that is,

(f@-fO)(gx)-g(y)) =0 (2)

for any x, y € [a,b]; then the Chebyshev integral inequality
[8] is given by T(f,g) > 0. The sign of this inequality is
reversed if f and g are asynchronous on [a,b] (i.e., (f(x) —
F)(g(x) — g(y)) <0, for any x, y € [a,b]). Under various
assumptions (Chebyshev inequalities, Griiss inequality, etc.)
[9-11], Chebyshev functionals are useful to give a lower
bound or an upper bound for T(f, g), in the theory of
approximations. Therefore, in the literature, we found several
papers that analyze extensions and generalizations of these
integral inequalities by involving fractional calculus and g-
calculus operators. One may refer to such type of works in
the book [12] and the recent papers [13-24]. A similar type of
important role is also played by the Chebyshev polynomials
of first and second kind in the theory of approximation.
For a detailed account about these polynomials and their
generating functions, one can see a recent paper [25] and
research monograph by Srivastava and Manocha [26].



For the present paper, let us consider the weighted version
of the Chebyshev functional (see [8])

b b
T(f,g.p) = j p(x)dx j F(x)g(x) p(x)dx
3)

b b
[ rer@ds[ 9@ pedx

provided that f and g are two integrable functions on [a, b]
and p(x) is a positive and integrable function on [a,b]. In
2000, Dragomir [27] derived the following inequality:

b
o[t (a2 < 7 Ao L | [[] e e opasay .
(4)

where f, g are two differentiable functions and f’ € L,(a,b),
g' € Ldab), r > 1, st o= Recently,
Dahmani et al. [28] established some integral results related
to Chebyshev’s functional (3) in the case of differentiable
functions whose derivatives belong to the space L P([O’ 00)),
involving Riemann-Liouville fractional integrals. Purohitand
Raina [22, 29] added one more dimension to this study by
introducing certain new integral inequalities for synchronous
functions, involving the Saigo fractional integral operators
[30]. Further, Baleanu et al. [24] established certain general-
ized integral inequalities for synchronous functions that are
related to the Chebyshev functional (1) using the fractional
hypergeometric operator, introduced by Curiel and Galué
[31].

In this paper, we establish certain integral inequalities
related to the weighted Chebyshev’s functional (3) in the case
of differentiable functions whose derivatives belong to the
space L P([O, 00)), involving fractional hypergeometric oper-
ators due to [31]. Later, we develop some integral inequalities
for the fractional integrals by suitably choosing the function
p(t). Some of the known results due to Dahmani et al. [28]
and Purohit and Raina [29] follow as special cases of our
findings.

Firstly, we give some necessary definitions and mathe-
matical preliminaries of fractional calculus operators which
are used further in this paper.

Definition 1. A real-valued function f(t) (t > 0) is said to be
in the space C,, (4 € R), if there exists a real number p > p

such that f(¢) = t$(t), where $(t) € C(0, o).

Definition 2. Let « > 0, p > -1, B,y € R; then,
a generalized fractional integral I} B (in terms of the
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Gauss hypergeometric function) of order « for a real-valued
continuous function f(¢) is defined by [31] (see also [32])

t—a—ﬁ—Zy
()

VOIS

X Jt ™t —1)*!

0

X, B ("H’,B"'[la 051 — %) f (1) dr,
(5)

where the function ,F,(-) appearing as a kernel for the
operator (5) is the Gaussian hypergeometric function defined
by

& (a),(b), 1"

F) (a,b;c;t) = ,
Fr@ben = 0= (6)
and (a),, is the Pochhammer symbol
(@,=a@+1)---(a+n-1), (a), =1 7)

It may be noted that the Pochhammer symbol in terms of the
gamma function is defined by

_T(a+n)
(ahl_ F(a)

> (1’1 > 0) > (8)
where the gamma function [33] is given by
I (x) = J Fletdt, (R (x) > 0). )
0

Our results in this paper are based on the following pre-
liminary assertions giving composition formula of fractional
integral (5) with a power function.

Lemma 3 (see [24]). Let &, B, A € R,y > -1, u+ A >0,
and A — 3+ 1 > 0; then, the following image formula for the
power function under the operator (5) holds true:

Ioc,ﬁ,n,y {t/lfl} _ F(M+A)r(l_ﬁ+’7)
g TA-BT(A+u+a+n)

AP (10)

2. Main Results

In this section, we obtain certain integral inequality which
gives estimation for the fractional integral of a product in
terms of the product of the individual function fractional
integrals, involving fractional hypergeometric operators. We
give our results related to Chebyshev’s functional (3) in the
case of differentiable mappings whose derivatives belong to
the space L p([O, 00)) satisfying Holder’s inequality.

Theorem 4. Let p be a positive function and let f and g be
two synchronous functions on [0, 00). Iff' e L.([0,00)),
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g € L([0,00), 7 > Lr ' +s' =1, then (forall t > 0, Multiplying both sides of (12) by F(t,7)p(r) (where
B<lLu>-1,a>max{0,-f-ul, f-1<yn<0) F(t,7) is given by (13)) and integrating with respect to 7 from
0 to t and using (5), we get

~a-p-2u
t
2|5 {p P {p () £ (0 g (1)) @
PP p @) £ O} {p (9 g )] y J " !
0
R P
rzgi)rg : ><2F1<oc+[3+y,—;1;oc;l—;)p(r)%’(‘r,p)dr
t _ qaufasp
x ” (-1 (k- p)! o =175 {p () f (1) g ()}
0 B
. - F(PEP™ {p ) g}
szl(oc+[3+pt,—17;oc;1——> N N
t - g () ™ {p @) £ O} + £ (p) g (p) [P {p (1)}
x ,F, (oc+ﬁ+y,—;1;oc;1—§> (14)
Next, on multiplying both sides of (14) by F(t, p) p(p), where
xp(t)p (P) |T - ,D| drdp FE(t, p) is given by (13), and integrating with respect to p from
5 5 0 to t, we can write
! ! o,
= ||f r 9 st(It {p(t)}) ! t—2(x—2ﬁ—4y
I (a)
Proof. Let f and g be two synchronous functions; then, using " uu a-1 a-1
Definition 1, for all 7, p € (0,1), t > 0, we define x OT piE =" (t=p)
x ,F, (oc+ﬁ+;4,—11;oc;1— ;)
(wp)=(f@O-f(P)(g@®-g(p). 12 ) (15)
x,F, ((x+[3+y,—r];oc;1— ?>
Consider xp()p(p) # (r,p)drdp
=2(IP [ F P (p () f () g (1)
e P, i
()=t FT(“) 2 P p (6 f O (p (0 g (00)).
«
. In view of (12), we have
><2F1<oc+ﬁ+‘u,—11;(x;1—;) ,
I (v.p) = ” () g (2)dydz. (16)
(T €(0,8);t>0) T
e ! . (a+ B+ p)(=n) (t-1" Using the following Holder inequality for the double integral:
T T(a) tetBrou Tlax+1 poctB2p+1 p
* D) I” f(y)g(2)dydz
JTarpru)(atprut1)(-n)(n+1) ‘
2T (v +2) P . e . 17
B < ” |fl dy dz ” lg (2)[ dy dz W)
t-1)" T T
— + DI
o+ +2u+2 -1 -1 _
t (o 13) (r +s = 1) N
we obtain
We observe that' e'ach term of 'the above series is positive in l% (r, P)l < Up'f,()’)'rdy 5 r Iﬂp|gl(z)'sd)’ dz
view of the conditions stated with Theorem 4, and, hence, the T T 18)

function F(¢, 7) remains positive, for all T € (0,¢) (¢ > 0).



Since

1

r! = P , . r
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then (18) reduces to

, r P , s st
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It follows from (15) that
t—2‘x—2ﬁ—4,u
% (a)
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R
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x ,F} ((x+ﬁ+//t,—11;oc;1— §>
x p (1) p(p)|% (v, p)| dr dp
t—2:x—2ﬁ—4,u

2 ()
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- ” (-0 (t - p)"
0
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x ,F, ((x+,8+y,—11;oc;1 - ?)

xoF (a4 Brmmast =) p@ p(p)
P p r ! P , R s
X |T_P|UT 1/ ) dyl IJ |g' @) dz| drdp.

(21)

Applying again Holder’s inequality (17) on the right-hand side
of (21), we get

t—2a—2ﬂ—4y

I? ()
t
R
0
T
x ,F, <oc+ﬁ+;4,—11;(x;1— ?>

x,F, <oc+,8+y,—11;oc;l—§)

xp(1) p(p)|% (v, p)|dr dp
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t—r(x—rﬁ—Zr/,t
T

t
* ” -1 (- p)"
0
T
x ,F| <oc+[3+y,—17;oc;l— ;)

x ,F, <oc+[3+/4,—17;06;1— g)P(T)P(P)

dep]

x|z - pl HP |F' 0| dy

t*SLX*Sﬁ*ZS‘M
[ I* ()

x ”tf"p"(t —)* M (e-p)*

0

x ,F, (oc+[3+pt,—11;oc;1—§>

x ,F, (06+ﬁ+[4,—71;06§1_§>P(T)P(P)

-1

P s §
x|t - pl U |g'(z)' dz d‘rdp] .
(22)
In view of the fact that
P P P
[ rora <1, o)

we get

t—Za—Zﬁ—4y
I? (o)
! 1
* ” pf (-t - p)"
0

x ,F, <oc+/3+‘u,—17;oc;l—;>

x ,F <oc+[3+/,t,—11;oc;1— F?))
x p(1) p(p) | (v, p)| dr dp

r

|: t—ra—rﬁ—Zry

I
I («)

[ ot o )
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x ,F, <oc+[3+y,—17;oc;1 - ;)

x ,F| <oc+[3+‘u,—;7;oc;l— §>

-1

xp (@) p(p)|r- Pldfdp}

—sa—sf3—2. 1|°
!tstxsﬁ syg
X ——

I* ()
! a—1
X ” ot — )Nt - p)
0
T
x ,F, <(x+[3+y,—11;oc;1—;>

x ,F, (oc+ﬁ+[4,—11;(x;1—€>

-1
N

xp (@) p(p)|r—pldrdp

From (24), we obtain

t—20c—2 L—4u

I? (o)
‘ 1
x ,F, (oc+ﬁ+;4,—11;(x;1— ;)

x,F, ((x+ﬁ+‘u,—;1;oc;l—§>

xp(1) p(p)|% (v, p)|drdp
t720c72/374;4|| i
% (o)

* “J ;T”p"(t -0 (- p)*

!
g

r S

X ,F, (oc+ﬁ+y,—r];oc;l—§>

x ,F <0c+ﬁ+y,—r];¢x;1—§)

xp (@) p(p)|r - pldr dp]r
[frro-e-o

X ,F <0c+ﬁ+‘u,—;1;oc;1—;>

X ,F (a+ﬁ+y,—11;oc;1— §>
571
xp (@) p(p)|r—pldr dp] :
(25)
Since ™! + 57! = 1, the above inequality yields
t—2rx—2ﬁ—4y

I ()
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x ,F, <(x+/3+y,—11;oc;l - ;)

x ,F, <a+[3+y,—17;(x;1 - g)

xp (@) p(p)|# (v, p)| drdp
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x ,F, <oc+/3+y,—;7;oc;l— ;)

x ,F (oc+/3+p¢,—17;(x;1 - g)
% p(@) p(p) |t - pldrdp,
which in view of (15) gives

2|5 (p WY {p () f () g (1)

I p ) f O} {p (9 g )]

t—2¢x—2[3—4‘u

S TTw
t
Hofr — Y (= o)) (27)
XJJOTp(t )% (t-p)
><2F1<<x+ﬁ+y,—11;(x;l—§>

x ,F, <cx+[3+y,—17;oc;l - F?))

x p (1) p(p)|% (v, p)| d dp.

Making use of (26) and (27), the left-hand side of the
inequality (11) follows.

To prove the right-hand side of the inequality (11), we
observe that 0 < 7 < t,0 < p <t, and, therefore,

0<|r-p|<t. (28)



Evidently from (26), we get
t—2¢x—2ﬁ—4(4

I? ()
t
* ” -1 (- p)*
0
T
x ,F, (cx+ﬁ+y,—17;oc;1 - ?>

x ,F <a+ﬁ+(4,—17;<x;1 - g)

x p(1) p(p)|% (v, p)| drdp
tfzfxfz/sfz;,,“ 7
% (a)

x ”;T”p"(t —) (- p)"

!
S rg St

x ,F, (oc+ﬂ+y,—17;oc;1 - ;)

x ,F, ((x+ﬁ+y,—;1;(x;1 - g)

xp (@) p(p)drdp

= 7L 1o | (B o}

which completes the proof of Theorem 4.

r

The following gives a generalization of Theorem 4.

Theorem 5. Let p be a positive function and let f and g be
two synchronous functions on [0, 00). Iff' € L,.([0,00)), g' €

L ([0,00)), 7> 1, r ' +57! =1, then

I p O {p () f () g (1)}

P OV {p ) £ (0 g (0}
I ) £ OV (p (09 0)
- p ) F O {p (1) g ()}

aadas 1)
<
T(a)T(y)

X JJ;THpv(t —) Nt —p)!

x ,F, <oc+ﬁ+pt,—;7;oc;l—;>

x ,F <y+8+v,—(;y;1—§)

xp@p(p)|r—pldrdp

!

< |FL 1 £EE fp 0} 1% {p 0},

r
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forallt >0, > max{0,-f-u}, B<Lu>-1,5-1<yn<0,
y > max{0,-6 -7}, § <L v>-1,-1<{<0.

Proof. To prove the above theorem, we use inequality (14).
Multiplying both sides of (14) by

t—y—é—vav(t _ p)}"l
I'(y)

,F, <y+6+v,—5;y;1— g)P(P)

(p € (0,t);t > O),
(31)

(29)

which remains positive in view of the conditions stated with
(30) and then integrating with respect to p from 0 to t, we get

t—a—ﬁ—y—é—z(yﬂ/)
T ()T (y)

t
. ” (=0t -p)"
0
T
x,F, (oc+,8+[4,—11;oc;1— ?>

x,F <y+8+v,—(;y;1—§) 32)

x1p"p (¥) p(p)  (x.p) dr dp

= PP p O} {p () £ (0 g ()
1 p O {p (o) f (1) g (0)}
S @) £ O {0 g )
S p @) f O (p (0 g 1)

Now making use of (20), then (32) gives

(30) tfocfﬁfyfb‘fz(wv)

(@) (y)
8 ” (-0 (- )
0
x ,F, (cx+ﬁ+y,—r;;cx;1 - ;)

x ,F| <y+8+v,—(;y;1—$>

x1p"p (1) p(p) |# (v, p)| dr dp
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t—(x—ﬁ—y—B—Z(/ﬁv)
D —
T(@)T(y)

t
y
0
T
x ,F, (oc+/3+y,—;1;oc;1 - ?>

X ,F) <V+5+v,—(;y;1 - f)p(r)p(p)

x|z = p| Up |f'(y)|rdy‘

p T
X J |g'(z)| dz| drtdp.

T

(33)

Applying Holder’s inequality (17) on the right-hand side of
(33), we get

t—a—ﬁ—y—é—z(;u—v)
T(@)T(y)

[l ooy

X ,F, <oc+ﬁ+‘u,—17;oc;l—;>

X ,F, <y+8+v,—(;y;l—§)

x1'p"p (v) p (p) | (7, p)| dT dp
t—rtx—rﬁ—Zry
I'" (a)

8 ” ;T"Py(f -0 (- p)"

x ,F ((x+ﬁ+[4,—r];¢x;1—§>

x o F, <V+5+%—C;V;1—§)p(r)p(p)

d‘rdp]

o=l |[ 17 0y

t—sy—56—25v
[ I (y)

<[ oo )

7
T
X ,F <a+ﬁ+y,—11;oc;1— ?>
Xy (y+5+u>—f;y; 1- ?)P(T)P(P)
PPuy s <
x|t -pl U |g (z)| dz|drdp| ,
(34)
which on using (23) readily yields the following inequality:
t—a—ﬁ—y—é—l(yﬂ/)
T(@)T(y)
t
. ” (t=0* (e -p)"
0
T
x ,F <oc+ﬁ+y,—11;(x;l— ;)
X ,F 0 Gy1-F
JFily+8+9,-Gysl ;
x1'p"p (v) p(p) |7 (1. p)| dT dp -
35

tfocfﬁfyfa—Z(;ﬁv) “f’
T(@)T ()

X”EWNU—TVAG—PVA

!
g

r S

x ,F, <oc+ﬁ+/4,—11;0c;1—%>
1P

X ,F <y+6+v,—(,y,1— ?>

xp (@) p(p)|r—pldrdp.

In view of (32) and (35) and the properties of modulus, one
can easily arrive at the left-sided inequality of Theorem 5.
Moreover, we have 0 < 7 < t,0 < p < t; hence,

0<|r-p| <t (36)
Therefore, from (35), we get

t—zx—[.?—y—(?—Z(pH—v)

T()T (y)
. ” ;(t'T)H(t -p)"
x ,F, ((x+[3+y,—;1;oc;1— %)

X ,F (y+8+v,—(;y;1—§)



xtp"p (1) p(p) | (7. p)| d dp
fl !
T()T(y)

* ” ;T“P”U -0 (e-p)"

t—a—[i—y—5—2(y+v)

g

r S

x ,F, <0¢+[3+‘u,—r];(x;l—;>
X,k <)’+5+V,—C;)/;l - g)p(r)p(p)drdp

< | ha L e 0} fp @)
(37)

which completes the proof of Theorem 5. O

Remark 6. Fory = «, 8 = 3, { = 5, and v = p, Theorem 5
immediately reduces to Theorem 4.

3. Consequent Results and Special Cases

As implications of our main results, we consider some
consequent results of Theorems 4 and 5 by suitably choosing
the function p(t). To this end, let us set p(t) = A e
[0,00),t € (0,00)); then, on using (10), Theorems 4 and 5
yield the following results.

Corollary 7. Let f and g be two synchronous functions on
[0,00). If ' € L,([0,00)), g’ € L([0,00)), 7> L, r ' +5s7! =
1, then
T(u+A+1)T(A+1-B+7)
TA+1-B)TA+u+1l+a+n)

X FHEER (1) g ()

_I;")ﬁ’rl’# {tAf (t)} I;’Gﬁll’!‘ {tkg (t)}

f~20-2B-4y “ 7

!
g

T S

I ()
t
* ” - (- p)T
0
T
x ,F, (oc+[3+pt,—11;oc;1 - ;)

X, F (0‘+ﬁ+[«l>—f1;06;1—?)IT—p|drdp

2 (u+ A+ 1) T2 (A+ 1= B+gy)tt2A2F2
PPA+1-B)(p+A+1+a+n)

<[ 1o,

(38)

wheret >0, < 1, u > -1, > max{0,—f—u}, -1 <y <0,
A >0, min(A+u,A-B+n)>-1
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Corollary 8. Let f and g be two synchronous functions on
[0,00). If f' € L,([0,00)), g’ € L([0,00)), 7> L r ' +s' =
1, then

T(p+A+1)T(A+1-B+n)
TA+1-B)T(u+A+1+a+7n)

< PRI £ (1) g ()

N TP+ A+1D)TA+1-6+()
TA+1-OT(v+A+1+y+{)

x [P f () g ()

— 1P F () 0 (g ()

A-0—v

PO f @) P g (o) ‘

t—oc—ﬁ—y—&—Zy—Zv “f!
(@7 (y)

J,

r

IN

- ”:(t ~0 (- p) L, (‘X +B+u ol - %>

Xk (V+5+V, ~&5y; 1—§> " e p| dr dp

IN

I
X(C(p+A+1)T(v+A+1)

J,

r

xT(A+1-B+n)TA+1-8+1))
X(TA+1-B)T(u+A+1+a+n)

><1“(/1+1—8)F(v+)t+1+y+())_1
% t1+2)l—[3—6—2[4—2v,
(39)

forallt >0, <1, u>-1,a>max{0,-f—-pu}, f—-1<7n<0,
d<1lLv>-Ly>max{0,-d-7,86-1<{<0,1=>0,
min(A+ A+ 1A= B+ A-0+() > -1

Further, if we put A = 0 in Corollaries 7 and 8 (or p(t) =
1 in Theorems 4 and 5), we obtain the following integral
inequalities.

Corollary 9. Let f and g be two synchronous functions on
[0, 00). Iff' € L,([0,00)), g/ € L ([0,00)), 7> 1, rlest=
1, then

T(u+1)T(1-B+n)

—B—p gouforrop
F(l—ﬁ)l“(y+l+(x+11)t ‘1, {f () g®)}

L O g )
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IN

I? (o)
t
x ” okt - 1) (t - p)*
0
x ,F, <oc+[3+;4,—17;oc;l - ;)

x,F <oc+[5+y,—;7;oc;l— §)|T—p|dep

<71 Jo'l,-

P I (- By e
PPA-pr2(p+l+a+n)

(40)
wheret >0, < 1, u > =1, > max{0,—f—u}, -1 <y <0.

Corollary 10. Let f and g be two synchronous functions on
[0, 00). Iff' € L,([0,00)), g' € L ([0,00)), 7> 1, riest=
1, then

T(p+ )T (1-B+n)
TA-B)T(u+1+a+n)

xR (f (1) g (1)

T+ 1)Ir1-6+40 5
TFA-8)T(v+1+y+Q)

x [P F (6 g 0 = P {F 0} 1% {g (0}

IO O} P g (1))

e )
T(@)T(y)

F, (oc+ﬁ+y,—;1;(x;1—%)

IA

F, <y+8+v,—€;y;1— g)‘r“p”

x|t - p|drdp

!

|

g

r N

T(p+ DT+ DT(1-B+n)T(1-8+Q)
FTA-B)T(u+1l+a+n)TA-HT(v+1+y+Q)

% tl—ﬁ—&—Zp—Zv’

(41)

forallt >0,B <1, u>-1,a>max{0,-f—-u}, -1 <y <0,
d<Lv>-1,y>max{0,-0-7,8-1<{<0.

We now, briefly consider some consequences of the
results derived in the previous section. Following Curiel and

Galué [31], the operator (5) would reduce immediately to the
extensively investigated Saigo, Erdélyi-Kober, and Riemann-
Liouville type fractional integral operators, respectively, given
by the following relationships (see also [30, 32]):

L f@F =17 (f o)
Pt
T T(w) Jo( R
F, ((x+ Bl — %)f(r)d‘r,
(>0,Bn€eR),
(42)
aq aOnO
{fo})= {f ®}
= ?::)1 Jt t -0 ' f (1) dr, (43)
0
(a>0,n€R)
R{f 0} =177 {f (1)}
1 a-1 (44)
F( ) J t-0)" f(n)dr, (a>0).

Now, if we consider ¢ = 0 (and v = 0 additionally
for Theorem 5) and make use of the relation (42), Theorems
4 and 5 provide, respectively, the known fractional integral
inequalities due to Purohit and Raina [29]. Again, if we set
¢ = 0 and replace 3 by —«a (and v = 0 and replace & by —y
additionally for Theorem 5) and make use of the relation (44),
then Theorems 4 and 5 correspond to the known integral
inequalities due to Dahmani et al. [28, pages 39-42, Theorems
3.1 to 3.2] involving the Riemann-Liouville type fractional
integral operator.

Lastly, we conclude this paper by remarking that we
have introduced new general extensions of Chebyshev type
inequalities involving fractional integral hypergeometric
operators. By suitably specializing the arbitrary function p(t),
one can further easily obtain additional integral inequalities
involving the Riemann-Liouville, Erdélyi-Kober, and Saigo
type fractional integral operators from our main results in
Theorems 4 and 5.
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