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We discuss the existence and uniqueness of solution for two types of fractional order ordinary and delay differential equations.
Fixed point theorems are the main tool used here to establish the existence and uniqueness results. First we use Banach contraction
principle to prove the uniqueness of solution and then Krasnoselskii’s fixed point theorem to show the existence of the solution
under certain conditions in a Banach space.

1. Introduction

In mathematics delay differential equations are a type of
differential equation in which the derivative of unknown
function at a certain time is given in terms of the values of
the function at previous times.

While physical events such as acceleration and deceler-
ation take little time compared to the times needed to travel
most distances, times involved in biological processes such as
gestation and maturation can be substantial when compared
to the data-collection times in most population studies.
Therefore, it is often imperative to explicitly incorporate
these process times into mathematical models of population
dynamics. These process times are often called delay times,
and themodels that incorporate such delay times are referred
as delay differential equation models [1, 2].

Recently theory of fractional differential equations
attracted many scientists and mathematicians to work on
them [3–12]. For the existence of solutions for fractional
differential equations, one can see [13–30] and references
therein. The results have been obtained by using fixed
point theorems like Picard’s, Schauder fixed-point theorem,
and Banach contraction mapping principle. About the
development of existence theorems for fractional functional
differential equations, many publications exist [31–35]. Many

applications of fractional calculus amount to replacing the
time derivative in a given evolution equation by a derivative
of fractional order.The results of several studies clearly stated
that the fractional derivatives seem to arise generally and
universally from important mathematical reasons. Recently,
interesting attempts have beenmade to give physicalmeaning
to the initial conditions for fractional differential equations
with Riemann-Liouville fractional derivatives which could
be found in [8, 9, 36, 37].

Recently Benchoohra et al. [28] studied existence of
solutions for a class of fractional differential equations with
infinite delay; namely,

𝐷
𝛼

𝑢 (𝑡) = 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢
𝑡
) , for each 𝑡 ∈ [0, 𝑏] , 0 < 𝛼 < 1,

𝑢 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−∞, 0] ,

(1)

where 𝐷
𝛼 is the standard Riemann-Liouville fractional

derivative and 𝑓 satisfies some assumptions.
First, in this paper we consider nonlinear delayed frac-

tional differential equations:

𝐷
𝛼

𝑢 (𝑡) = 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢
𝑡
) , 𝑡 ∈ (0, 1) , 0 < 𝛼 < 1,

𝑢 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(2)
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associated with boundary conditions

𝑢 (0) = lim
𝑡→0
+

𝑡
1−𝛼

𝑢 (𝑡) = 𝑢 (1) , (3)

where 𝐷
𝛼 is the standard Riemann-Liouville fractional

derivative and 𝑓 is a continuous function. Here 𝑢
𝑡
(⋅) repre-

sents the properitoneal state from time −𝜏 up to time 𝑡which
is defined by 𝑢

𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), −𝜏 ≤ 𝜃 ≤ 0. We proved

the uniqueness of existence solutions for (2) with periodic
boundary condition (3) under some further conditions.

For investigating to establish an existence theorem, we
also consider a class of nonlinear delayed fractional differen-
tial equations of the form

𝐷
𝛼

𝑢 (𝑡) = 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏)) , 𝑡 ∈ (0, 1) ,

𝑢 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] , 0 < 𝛼 < 1,

(4)

with periodic boundary condition

𝑢 (0) = lim
𝑡→0
+

𝑡
1−𝛼

𝑢 (𝑡) = 𝑐 = 𝑢 (1) ,

𝐷
−(1−𝛼)

𝑢(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑐Γ (𝛼) .

(5)

The paper has been organized as follows. In Section 2 we
give basic definitions and preliminary. Unique solution of
(2)-(3) under some conditions is proved in Section 3. The
existence solution of (4)-(5) under some assumptions has
been presented in Section 4.

2. Preliminaries

For the convenience of the readers, we firstly present the
necessary definitions from the fractional calculus theory and
functional analysis.These definitions and results can be found
in the literature [3, 7, 38].

Let 𝐶[0, 1] be the Banach space of all continuous real
functions defined on [0, 1] with the norm

‖𝑢‖ =: max {|𝑢 (𝑡)| : 𝑡 ∈ [0, 1]} . (6)

Let 𝐶
𝑟
[0, 1], 𝑟 ≥ 0, be the space of all functions 𝑓 such that

𝑡
𝑟

𝑢(𝑡) ∈ 𝐶[0, 1] which is a Banach space when endowed with
the norm

‖𝑢‖
𝑟
=: max {𝑡𝑟 |𝑢 (𝑡)| : 𝑡 ∈ [0, 1]} . (7)

Definition 1. For a function 𝑢 defined on an interval [𝑎, 𝑏], the
Riemann-Liouville fractional integral of 𝑢 of order 𝛼 > 0 is
defined by

𝐷
−𝛼

𝑎
+ 𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 > 𝑎, (8)

and Riemann-Liouville fractional derivative of 𝑢(𝑡) of order
𝛼 > 0 defined by

𝐷
𝛼

𝑎
+𝑢 (𝑡) =

𝑑
𝑛

𝑑𝑡𝑛
{𝐷
−(𝛼−𝑛)

𝑎
+ 𝑢 (𝑡)} , 𝑛 − 1 < 𝛼 ≤ 𝑛, (9)

provided that the right-hand side of the pervious equation is
pointwise defined on (𝑎, +∞).

We denote 𝐷
𝛼

𝑎
+𝑢(𝑡) as 𝐷𝛼

𝑎
𝑦(𝑡) and 𝐷

−𝛼

𝑎
+ 𝑢(𝑡) as 𝐷−𝛼

𝑎
𝑢(𝑡).

Further 𝐷
𝛼

0
+𝑢(𝑡) and 𝐷

−𝛼

0
+ 𝑢(𝑡) are referred as 𝐷

𝛼

𝑢(𝑡) and
𝐷
−𝛼

𝑢(𝑡), respectively.

Definition 2. A two-parameter function of the Mittag-Leffler
type is defined by

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
, (𝛼 > 0, 𝛽 > 0) . (10)

Definition 3. The beta function is usually defined by

𝐵 (𝑧, 𝑤) = ∫

1

0

𝜏
𝑧−1

(1 − 𝜏)
𝑤−1

𝑑𝜏,

(Re (𝑧) > 0, Re (𝑤) > 0) .

(11)

and we have also the following expression for the beta
function:

𝐵 (𝑧, 𝑤) =
Γ (𝑧) Γ (𝑤)

Γ (𝑧 + 𝑤)
. (12)

Theorem 4 (Arzela-Ascoli’s theorem). A subset of 𝐶[𝑎, 𝑏] is
compact if and only if it is closed, bounded, and equicontinuous.

Theorem5 (Banach’s fixed point theorem). Consider ametric
space𝑋 = (𝑋, 𝑑), where𝑋 ̸= 0. Suppose that𝑋 is complete and
𝑇 : 𝑋 → 𝑋 is a contraction on 𝑋. Then 𝑇 has precisely one
fixed point.

Theorem 6 (Krasnoselskii’s fixed point theorem). Let 𝐵 be a
nonempty closed convex subset of a Banach space (𝑋, ‖ ⋅ ‖).
Suppose that 𝑇

1
, and 𝑇

2
map 𝐵 into𝑋 such that

(1) for any 𝑥, 𝑦 ∈ 𝐵 we have 𝑇
1
𝑥 + 𝑇
2
𝑦 ∈ 𝐵,

(2) 𝑇
1
is a contraction,

(3) 𝑇
2
is continuous and 𝑇

2
(𝐵) is contained in a compact

set.

Then there exists 𝑧 ∈ 𝐵 such that z = 𝑇
1
𝑧 + 𝑇
2
𝑧.

3. Uniqueness of Solution

In this section we prove (2) with boundary condition (3) and
another condition on𝑓has a unique solution. Before proving,
we need to introduce some notations that will be provided in
the following.

Let Ω = {𝑢 : [−𝜏, 1] → R, 𝑢 ∈ 𝐶
1−𝛼

[0, 1]}. Consider the
operator𝑁 : Ω → Ω defined by

𝑁𝑢 (𝑡) =

{{{

{{{

{

𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠, 𝑡 ∈ (0, 1) ,

(13)
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where

𝐺
1,𝛼

(𝑡, 𝑠) =

{{{{{{{{{{

{{{{{{{{{{

{

Γ (𝛼) 𝐸
𝛼,𝛼

(𝑡
𝛼

) 𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

+(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((𝑡 − 𝑠)
𝛼

) ,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

Γ (𝛼) 𝐸
𝛼,𝛼

(𝑡
𝛼

) 𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(14)

is given in Section 4. Let 𝑥(⋅) : [−𝜏, 1] → R be the function
defined by

𝑥 (𝑡) = {
0, 𝑡 ∈ (0, 1) ,

𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] .
(15)

For each 𝑧 ∈ 𝐶
1−𝛼

([0, 1],R) with lim
𝑡→0
+𝑡
1−𝛼

𝑧(𝑡) = 𝑐 we
denote 𝑧 the function defined by

𝑧 (𝑡) = {
𝑧 (𝑡) , 𝑡 ∈ (0, 1) ,

0, 𝑡 ∈ [−𝜏, 0] .
(16)

If 𝑢(⋅) satisfies the integral equation,

𝑢 (𝑡) = ∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠, (17)

we can decompose 𝑢(⋅) as 𝑢(𝑡) = 𝑧(𝑡) + 𝑥(𝑡), 0 < 𝑡 < 1, which
implies 𝑢

𝑡
= 𝑧
𝑡
+ 𝑥
𝑡
for every 0 < 𝑡 < 1, and function 𝑧(⋅)

satisfies

𝑧 (𝑡) = ∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓 (𝑠, 𝑧
𝑠
+ 𝑥
𝑠
) 𝑑𝑠. (18)

Set 𝐶
0
= {𝑧 ∈ (𝐶

1−𝛼
[0, 1],R) : lim

𝑡→0
+𝑡
1−𝛼

𝑧(𝑡) = 𝑐}. 𝐶
0

is Banach space with the norm ‖ ⋅ ‖
𝑟
. Let 𝑇 : 𝐶

0
→ 𝐶
0
be

defined by

𝑇𝑧 (𝑡) = ∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓 (𝑠, 𝑧
𝑠
+ 𝑥
𝑠
) 𝑑𝑠, 0 < 𝑡 < 1. (19)

Note that as operator𝑁 has a fixed point, equivalently 𝑇 has
a fixed point and so instead we try to prove that 𝑇 has a fixed
point.

Theorem 7. Assume that there exists a constant 𝐾 > 0 such
that |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ 𝐾|𝑢 − V| for each 𝑡 ∈ [0, 1] and all
𝑢, V ∈ R. Then the problem (2)-(3) has a unique solution in
𝐶
0
⊆ 𝐶
1−𝛼

[0, 1] provided that

𝐾(
Γ (𝛼) 𝐸

𝛼,𝛼
(1)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 1)𝐸
𝛼,𝛼

(1)
(Γ (𝛼))

2

Γ (2𝛼)
< 1. (20)

Proof. We prove that 𝑇 : 𝐶
0
→ 𝐶
0
is a contraction map. For

each 𝑡 ∈ [0, 1] and for 𝑧
1
, 𝑧
2
∈ 𝐶
0
we have

𝑡
1−𝛼 󵄨󵄨󵄨󵄨𝑇𝑧1 (𝑡) − 𝑇𝑧

2
(𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑧

1𝑠
+ 𝑥
𝑠
) − 𝑓 (𝑠, 𝑧

2𝑠
+ 𝑥
𝑠
)
󵄨󵄨󵄨󵄨 𝑑𝑠,

≤ 𝐾𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑧1𝑠 − 𝑧
2𝑠

󵄨󵄨󵄨󵄨 𝑑𝑠;

(21)

using the definition of ‖ ⋅ ‖
1−𝛼

we get

󵄩󵄩󵄩󵄩𝑇𝑧1 (𝑡) − 𝑇𝑧
2
(𝑡)

󵄩󵄩󵄩󵄩1−𝛼

≤ 𝐾max
𝑡∈[0,1]

{𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑠
𝛼−1

𝑑𝑠}

×
󵄩󵄩󵄩󵄩𝑧1 − 𝑧

2

󵄩󵄩󵄩󵄩1−𝛼
.

(22)

Moreover,

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑠
𝛼−1

𝑑𝑠

≤ (
Γ (𝛼) 𝐸

𝛼,𝛼
(1)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 1)𝐸
𝛼,𝛼

(1)
Γ(𝛼)
2

Γ (2𝛼)
.

(23)

Indeed we have

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑠
𝛼−1

𝑑𝑠

≤
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

×

∞

∑

𝑖=0

1

Γ (𝛼𝑖 + 𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑑𝑠

+ 𝑡
𝛼−1

∞

∑

𝑖=0

1

Γ (𝛼𝑖 + 𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑑𝑠
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

× 𝐸
𝛼,𝛼

(1) ∫

1

0

(1 − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑑𝑠

+ 𝑡
1−𝛼

𝐸
𝛼,𝛼

(1) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑑𝑠.

(24)

Note that

∫

𝑡

0

𝑠
𝛼−1

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠 = 𝑡
2𝛼−1

Γ(𝛼)
2

Γ (2𝛼)
. (25)
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Hence we have

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑠
𝛼−1

𝑑𝑠

≤
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

𝐸
𝛼,𝛼

(1)
Γ(𝛼)
2

Γ (2𝛼)

+ 𝑡
1−𝛼

𝐸
𝛼,𝛼

(1) 𝑡
2𝛼−1

Γ(𝛼)
2

Γ (2𝛼)

= (
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 𝑡
𝛼

)𝐸
𝛼,𝛼

(1)
(Γ (𝛼))

2

Γ (2𝛼)
.

(26)

Using (22) and (23) we get

󵄩󵄩󵄩󵄩𝑇𝑧1 − 𝑇𝑧
2

󵄩󵄩󵄩󵄩1−𝛼
≤ 𝐾(

Γ (𝛼) 𝐸
𝛼,𝛼

(1)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 1)

× 𝐸
𝛼,𝛼

(1)
Γ(𝛼)
2

Γ (2𝛼)

󵄩󵄩󵄩󵄩𝑧1 − 𝑧
2

󵄩󵄩󵄩󵄩1−𝛼
.

(27)

This completes the proof.

4. Existence of Solution

In this section, by using Krasnoselskii’s theorem, we discuss
the existence solution of (4) under some assumptions on
𝑓 and further conditions. Before proving this theorem, we
prove the following lemma which will be used in the next
theorem.

Lemma 8. Consider the following nonlinear fractional differ-
ential equation of the form

𝐷
𝛼

𝑢 (𝑡) = 𝑢 (𝑡) + ℎ (𝑡) , 0 < 𝑡 < 1, 0 < 𝛼 < 1, (28)

with periodic boundary conditions

𝑢 (0) = lim
𝑡→0
+

𝑡
1−𝛼

𝑢 (𝑡) = 𝑐 = 𝑢 (1) ,

𝐷
−(1−𝛼)

𝑢(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑐Γ (𝛼) ,

(29)

where ℎ is a continuous function. Then the periodic boundary
value problem (28)-(29) is equivalent to an integral equation
given by 𝑢(𝑡) = ∫

1

0

𝐺
1,𝛼
(𝑡, 𝑠)ℎ(𝑠)𝑑𝑠 ∈ 𝐶

1−𝛼
[0, 1], where

𝐺
1,𝛼

(𝑡, 𝑠) =

{{{{{{{{{{

{{{{{{{{{{

{

Γ (𝛼) 𝐸
𝛼,𝛼

(𝑡
𝛼

) 𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

+(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((𝑡 − 𝑠)
𝛼

) ,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

Γ (𝛼) 𝐸
𝛼,𝛼

(𝑡
𝛼

) 𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(30)

Proof. We consider the following fractional differential equa-
tion:

𝐷
𝛼

𝑦 (𝑡) − 𝑦 (𝑡) = ℎ (𝑡) , (0 < 𝑡 < 1, 0 < 𝛼 < 1) , (31)

with

[𝐷
𝛼−1

𝑦(𝑡)]
𝑡=0

= 𝑏
1
= 𝑐Γ (𝛼) , (32)

where lim
𝑡→0
+𝑡
1−𝛼

𝑦(𝑡) = 𝑐. Laplace transform of (31) yields

𝑠
𝛼

𝑌 (𝑠) − 𝑌 (𝑠) = 𝐻 (𝑠) + 𝑏
1

(33)

from which

𝑌 (𝑠) =
𝐻 (𝑠)

𝑠𝛼 − 1
+

𝑏
1

𝑠𝛼 − 1
(34)

and the inverse Laplace transform gives the solution

𝑦 (𝑡) = 𝑏
1
𝑡
𝛼−1

𝐸
𝛼,𝛼

(𝑡
𝛼

)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

(𝑡 − 𝑠)
𝛼

ℎ (𝑠) 𝑑𝑠.

(35)

Hence we have

𝑦 (𝑡) = 𝑐Γ (𝛼) 𝑡
𝛼−1

𝐸
𝛼,𝛼

(𝑡
𝛼

)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

(𝑡 − 𝑠)
𝛼

ℎ (𝑠) 𝑑𝑠.

(36)

Therefore,

𝑦 (1) = 𝑐Γ (𝛼) + 𝐸
𝛼,𝛼

(1)

+ ∫

1

0

(1 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) ℎ (𝑠) 𝑑𝑠,

(37)

which leads to

𝑐 (1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1))

= ∫

1

0

(1 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) ℎ (𝑠) 𝑑𝑠;

(38)

since Γ(𝛼)𝐸
𝛼,𝛼

(1) ̸= 1 we have

𝑐 =
1

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
∫

1

0

(1 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) ℎ (𝑠) 𝑑𝑠.

(39)

Then the solution of the problem (28)-(29) is given by

𝑦 (𝑡) =
Γ (𝛼)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
𝑡
𝛼−1

𝐸
𝛼,𝛼

(𝑡
𝛼

)

× ∫

1

0

(1 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) ℎ (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((𝑡 − 𝑠)
𝛼

) ℎ (𝑠) 𝑑𝑠.

(40)

This completes the proof.
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Now we prove our main result using Lemma 8 and two
more assumptions which follow next.

(H1) We assume that 𝑓(𝑡, 𝑢, V) can be written as 𝑓
1
(𝑡, 𝑢) +

𝑓
2
(𝑡, 𝑢, V), where 𝑓

1
, 𝑓
2
are Lipschitz continuous.

Moreover assume that the function 𝑓
1
, 𝑓
2
satisfies the

following relations:

󵄨󵄨󵄨󵄨𝑓1 (𝑡, 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝑀

1
‖𝑢 (𝑡)‖

1−𝛼
,

󵄨󵄨󵄨󵄨𝑓2 (𝑡, 𝑢 (𝑡) , V (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝑀

2
‖𝑢 (𝑡)‖

1−𝛼
‖V(𝑡)‖

1−𝛼
.

(41)

(H2) Let Ω = 𝐶
1−𝛼

([−𝜏, 1],R) denote collection of the
space of all function 𝑢 such that 𝑡1−𝛼𝑢(𝑡) ∈ 𝐶[0, 1].
Define the set 𝐵 = {𝑢 ∈ Ω : 𝑡

1−𝛼

|𝑢| ≤ 𝑟}, where 𝑟
satisfies

(𝑀
1
‖𝑢‖
1−𝛼

+𝑀
2
‖𝑢‖
2

1−𝛼
)

× (

󵄨󵄨󵄨󵄨Γ (𝛼)
󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡

𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

𝐸
𝛼,𝛼+1

(1) + 𝑡𝐸
𝛼,𝛼+1

(𝑡
𝛼

)) ≤ 𝑟.

(42)

Furthermore we assume that

𝐿
𝑓
1

(
Γ (𝛼) 𝐸

𝛼,𝛼
(1)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 1)𝐸
𝛼,𝛼

(1)
(Γ (𝛼))

2

Γ (2𝛼)
< 1, (43)

where 𝐿
𝑓
1

is a Lipschitz constant of 𝑓.

Theorem 9. If the assumptions (H1) and (H2) satisfied, then
the problem (4)with periodic boundary value condition (5) has
at least one solution.

Proof. (i) Note that by Lemma 8, (4)-(5) is equivalent to
integral equation (17). Define 𝑇

1
, 𝑇
2
: Ω → Ω by

𝑇
1
𝑢 (𝑡) = ∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑇
2
𝑢 (𝑡) = ∫

1

0

𝐺
1,𝛼

(𝑡, 𝑠) 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠.

(44)

For 𝑢 ∈ 𝐵 we have,

𝑡
1−𝛼 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑡) + 𝑇

2
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1 (𝑠, 𝑢 (𝑠))

+𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ (𝑀
1
‖𝑢‖
1−𝛼

+𝑀
2
‖𝑢‖
2

1−𝛼
) 𝑡
1−𝛼

× ∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ (𝑀
1
‖𝑢‖
1−𝛼

+𝑀
2
‖𝑢‖
2

1−𝛼
)

× (
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

𝐸
𝛼,𝛼+1

(1)

+ 𝑡𝐸
𝛼,𝛼+1

(𝑡
𝛼

) ) ≤ 𝑟.

(45)

(ii) We will prove that 𝑇
1
is a contraction:

󵄨󵄨󵄨󵄨𝑇1𝑢 − 𝑇
1
V󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨1−𝛼

= 𝑡
1−𝛼 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑡) − 𝑇

1
V (𝑡)󵄨󵄨󵄨󵄨 ,

≤ 𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1 (𝑠, 𝑢 (𝑠)) − 𝑓

1
(𝑠, V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠,

≤ 𝐿
𝑓
1

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑢 − V󵄨󵄨󵄨󵄨 𝑑𝑠,

≤ 𝐿
𝑓
1

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝐺
1,𝛼

(𝑡, 𝑠) 𝑠
𝛼−1

𝑠
1−𝛼

󵄨󵄨󵄨󵄨󵄨
𝑢 − V

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝐿
𝑓
1

(
Γ (𝛼) 𝐸

𝛼,𝛼
(1)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

+ 1)

× 𝐸
𝛼,𝛼

(1)
(Γ (𝛼))

2

Γ (2𝛼)
‖𝑢 − V‖

1−𝛼
.

(46)

Then 𝑇
1
is a contraction.

(iii) Finally we prove that 𝑇
2
is continuous and 𝑇

2
(𝐵) is

contained in a compact set. To prove the continuity of 𝑇
2
let

us consider a sequence 𝑢
𝑛
converging to 𝑢. Taking the norm

of 𝑇
2
𝑢
𝑛
(𝑡) − 𝑇

2
𝑢(𝑡) we have

󵄩󵄩󵄩󵄩𝑇2𝑢𝑛 (𝑡) − 𝑇
2
𝑢 (𝑡)

󵄩󵄩󵄩󵄩1−𝛼

= 𝑡
1−𝛼 󵄨󵄨󵄨󵄨𝑇2𝑢𝑛 (𝑡) − 𝑇

2
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓2 (𝑠, 𝑢𝑛 (𝑠) , 𝑢𝑛 (𝑠 − 𝜏))

−𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑡
1−𝛼

𝐿
𝑓
2

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

× (
󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠) − 𝑢 (𝑠)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠 − 𝜏) − 𝑢 (𝑠 − 𝜏)

󵄨󵄨󵄨󵄨) 𝑑𝑠

≤ 2𝐿
𝑓
2

𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑠
𝛼−1

× 𝑑𝑠
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩1−𝛼
.

(47)

Hence whenever 𝑢
𝑛
→ 𝑢 we have 𝑇

2
𝑢
𝑛
→ 𝑇
2
𝑢. This proves

the continuity of 𝑇
2
.
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On the other hand for 0 ≤ 𝑡
1
< 𝑡
2
≤ 1 and 𝑢 ∈ 𝐵 we have

󵄨󵄨󵄨󵄨󵄨
𝑡
1−𝛼

1
𝑇
2
𝑢 (𝑡
1
) − 𝑡
1−𝛼

2
𝑇
2
𝑢 (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
1−𝛼

1
∫

1

0

𝐺
1,𝛼

(𝑡
1
, 𝑠) 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

− 𝑡
1−𝛼

2
∫

1

0

𝐺
1,𝛼

(𝑡
2
, 𝑠) 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ (𝛼) 𝐸
𝛼,𝛼

(𝑡
𝛼

1
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

𝑡
1

0

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) (1 − 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

+ 𝑡
1−𝛼

1
∫

𝑡
1

0

𝐸
𝛼,𝛼

((𝑡
1
− 𝑠)
𝛼

) (𝑡
1
− 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

−
Γ (𝛼) 𝐸

𝛼,𝛼
(𝑡
𝛼

2
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

𝑡
1

0

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) (1 − 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏))

− 𝑡
1−𝛼

2
∫

𝑡
1

0

𝐸
𝛼,𝛼

((𝑡
2
− 𝑠)
𝛼

) (𝑡
2
− 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏))

+
Γ (𝛼) 𝐸

𝛼,𝛼
(𝑡
𝛼

1
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

𝑡
2

𝑡
1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) (1 − 𝑠)
𝛼−1

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

−
Γ (𝛼) 𝐸

𝛼,𝛼
(𝑡
𝛼

2
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

𝑡
2

𝑡
1

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) (1 − 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

− 𝑡
1−𝛼

2
∫

𝑡
2

𝑡
1

𝐸
𝛼,𝛼

(𝑡
2
− 𝑠)
𝛼

(𝑡
2
− 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

+
Γ (𝛼) 𝐸

𝛼,𝛼
(𝑡
𝛼

1
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

1

𝑡
2

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼

) (1 − 𝑠)
𝛼−1

× 𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

−
Γ (𝛼) 𝐸

𝛼,𝛼
(𝑡
𝛼

2
)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

× ∫

1

𝑡
2

𝐸
𝛼,𝛼

((1 − 𝑠)
𝛼−1

) (1 − 𝑠)
𝛼−1

×𝑓
2
(𝑠, 𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(48)
Then we have

󵄨󵄨󵄨󵄨󵄨
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1−𝛼
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𝑇
2
𝑢 (𝑡
1
) − 𝑡
1−𝛼

2
𝑇
2
𝑢 (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
2
‖𝑢‖
2

1−𝛼

× (
Γ (𝛼)

1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

1
) − 𝐸
𝛼,𝛼

(𝑡
𝛼

2
)
󵄨󵄨󵄨󵄨

× ∫

𝑡
1

0

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 ((1 − 𝑠)
𝛼

)
󵄨󵄨󵄨󵄨 (1 − 𝑠)

𝛼−1

𝑑𝑠

+ ∫

𝑡
1

0

󵄨󵄨󵄨󵄨󵄨
𝑡
1−𝛼

1
𝐸
𝛼,𝛼

((𝑡
1
− 𝑠)
𝛼

) (𝑡
1
− 𝑠)
𝛼−1

−𝑡
1−𝛼

2
(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

((𝑡
2
− 𝑠)
𝛼

)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+
Γ (𝛼)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

1
) − 𝐸
𝛼,𝛼

(𝑡
𝛼

2
)
󵄨󵄨󵄨󵄨

× ∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 ((1 − 𝑠)
𝛼

)
󵄨󵄨󵄨󵄨 (1 − 𝑠)

𝛼−1

𝑑𝑠

− 𝑡
1−𝛼

2
∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨󵄨
𝐸
𝛼,𝛼

((𝑡
2
− 𝑠)
𝛼

)
󵄨󵄨󵄨󵄨󵄨
(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠

+
Γ (𝛼)

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡

𝛼

1
) −

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

2
)
󵄨󵄨󵄨󵄨

× ∫

1

𝑡
2

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 ((1 − 𝑠)
𝛼

)
󵄨󵄨󵄨󵄨 (1 − 𝑠)

𝛼−1
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(49)

Hence we deduce that if |𝑡
1
− 𝑡
2
| → 0 then |𝑡

1−𝛼

1
𝑇
2
(𝑡
2
) −

𝑡
1−𝛼

2
𝑇
2
(𝑡
2
)| → 0.

Then {𝑡
1−𝛼

𝑇
2
𝑢 : 𝑢 ∈ 𝐵} is equicontinuous. Moreover we

show that {𝑡1−𝛼𝑇
2
𝑢 : 𝑢 ∈ 𝐵} is a bounded set in𝐶[0, 1]. Indeed

we have
𝑡
1−𝛼 󵄨󵄨󵄨󵄨𝑇2𝑢 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑀
2
‖𝑢‖
2

1−𝛼
𝑡
1−𝛼

∫

1

0

󵄨󵄨󵄨󵄨𝐺1,𝛼 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑀
2
‖𝑢‖
2

1−𝛼

× (
Γ (𝛼)

󵄨󵄨󵄨󵄨𝐸𝛼,𝛼 (𝑡
𝛼

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − Γ (𝛼) 𝐸
𝛼,𝛼

(1)
󵄨󵄨󵄨󵄨

𝐸
𝛼,𝛼+1

(1) + 𝑡𝐸
𝛼,𝛼+1

(𝑡
𝛼

)) .

(50)
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Then by Arzela-Ascoli’s theorem we conclude that 𝑇
2
is

compact. By using Krasnoselskii’s theorem there exists 𝑧 ∈ 𝐵

such that 𝑧 is a fixed point of𝑇.This completes the proof.

5. Conclusions

We considered two types of nonlinear delay fractional dif-
ferential equations (FDE) with periodic boundary conditions
involving Remann-Liouville fractional derivative possessing
with a lower terminal at 0. In order to obtain the results in
this paper, we have shown the existence and the uniqueness of
solution for a class of nonlinear delayed FDE by Banach con-
traction principle.Then using Krasnoselskii’s fixed point the-
orem we established an existence theorem for a different type
of the equation that we have proven its uniqueness theorem.
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