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We suggest a new model of the scale conservation equation in the mathematical theory of vehicular traffic flow on the fractal
network based on the local fractional calculus.

1. Introduction

Continuum model was applied to describe the traffic flow
with the continuous functions which was analogous to one of
fluid dynamics and material models based on the conserva-
tion laws.The approach started with Lighthill, Whitham, and
Richards’s (LWR) works [1, 2]. The LWR model was studied
bymany authors, for example, Daganzo [3], Zhang [4], Li [5],
Gasser [6], Aw et al. [7], Bellomo andCoscia [8], and Bellomo
et al. [9]. The LWR model of kinematic traffic waves derived
from the conservation laws was [1–9]

𝜕
𝛼

𝜕𝑡𝛼
𝜌 +

𝜕
𝛼

𝜕𝑥𝛼
𝜙 = 0, (1)

where the quantity 𝑢 is the density of time 𝑡 and space 𝑥 and
the quantity 𝜙 is the vehicle flux as a function of density 𝑢
and speed 𝜐 with 𝜙 = 𝑢𝜐, and its solution for the equation
was discussed by using the finite difference method [10].

Starting with Mandelbrot [11] there were many reports to
determine the fractal structure of nature in various fields of

science and engineering. We recall that the geometric simi-
larity of traffic networks was reported by many researchers,
for example, Erramilli et al. [12], Lam and Wornell [13],
Shang et al. [14], Li et al. [15], and Campari and Levi [16].
Recently, the local fractional calculus suggested in [17] was
applied to deal with the nondifferentiable phenomena [18–
22]. For example, local fractional Navier-Stokes equations
were suggested in [18] and the local fractional Helmholtz
and diffusion equations were reported in [19]. The local
fractional Maxwell’s equations were proposed in [20]. Local
fractional nonhomogeneous heat equations were investigated
in [21]. The heat transfer in silk cocoon hierarchy with
local fractional derivative was proposed in [22]. When the
physical quantity of density or speed (denoted in Figure 1 by
𝑓(𝑥, 𝑡)) for vehicular traffic flow on the fractal network is a
nondifferentiable function with time and space defined on
Cantor sets, the classical conservation law is no valid.

In order to overcome the above drawback, in this paper
we discuss the fractal dynamical model of vehicular traffic
flowwithin the local fractional conservation laws.The outline
of the paper is as follows. In Section 2, we recall the local
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Figure 1: The nondifferentiable physical quantity 𝑓(𝑥, 𝑡) defined in
Cantor sets with time 𝑡 and space 𝑥.

fractional conservation laws. In Section 4, a mathematical
model of vehicular traffic flow with fractal network is sug-
gested. In Section 5, the nonhomogeneous partial differential
equations for the vehicular traffic flow with fractal network
are discussed. The conclusions are shown in Section 5.

2. Local Fractional Conservation Laws

In this section, we introduce the local fractional conservation
laws based on the local fractional calculus. We start with the
conception of the local fractional vector integrals used in the
paper.

Definition 1. The local fractional surface integral is defined as
given below [17–21]:

∬𝑢(𝑟
𝑃
) 𝑑S(𝛽) = lim

𝑁→∞

𝑁

∑

𝑃=1

𝑢 (𝑟
𝑃
)n
𝑃
Δ𝑆
(𝛽)

𝑃
, (2)

where the quantityΔ𝑆(𝛽)
𝑃

is the elements of fractal surface,𝑁 is
the elements of area with a unit normal local fractional vector
n
𝑃
, and Δ𝑆(𝛽)

𝑃
→ 0 as𝑁 → ∞.

Definition 2. The local fractional volume integral of the
function u is defined as [17–21]

∭u (𝑟
𝑃
) 𝑑𝑉
(𝛾)

= lim
𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) Δ𝑉
(𝛾)

𝑃
, (3)

where the quantityΔ𝑉(𝛾)
𝑃

is the elements of fractal volume and
Δ𝑉
(𝛾)

𝑃
→ 0 as𝑁 → ∞.

Definition 3. The local fractional gradient of the scale func-
tion 𝜙 has the form [17, 20]

∇
𝛼

𝜙 = lim
𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(𝛽)

𝜙𝑑S(𝛽)) , (4)

where the quantity ∇𝛼 is the local fractional Laplace operator
[17], 𝛾 = 3𝛼, and 𝛽 = 2𝛼.

The local fractional Gauss theorem of the fractal vector
field states that [17–21]

∭
𝑉
(𝛾)

∇
𝛼

⋅ u𝑑𝑉(𝛾) =∯
𝑆
(𝛽)

u ⋅ 𝑑S(𝛽). (5)

The integral form of local fractional conservation laws in
fractal flow was suggested as [17, 21]

𝑑
𝛼

𝑑𝑡𝛼
∭
𝑉
(𝛾)

𝜌 (𝑟, 𝑡) 𝑑𝑉
(𝛾)

= −∯
𝑆
(𝛽)

𝜎 (𝑟, 𝑡) ⋅ 𝑑S(𝛽), (6)

where the quantity 𝜌(𝑟, 𝑡) is the density of the material, the
equality 𝜎(𝑟, 𝑡) is the fractal flux vector, and 𝜎(𝑟, 𝑡) = 𝜌(𝑟, 𝑡)𝜐.

By using (5), (6) can be rewritten as

∭
𝑉
(𝛾)

{
𝜕
𝛼

𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼

⋅ 𝜎 (𝑟, 𝑡)} 𝑑𝑉
(𝛾)

= 0. (7)

For any arbitrary volume, from (6) we obtain the local
fractional differential form of the local fractional conserva-
tion laws as

𝜕
𝛼

𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼

⋅ 𝜎 (𝑟, 𝑡) = 0. (8)

In view of (8), the local fractional conservation law in the
direction 𝑥 reads as follows:

𝜕
𝛼

𝜌 (𝑥, 𝑡)

𝜕𝑡𝛼
+
𝜕
𝛼

𝜎 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0, (9)

where the fractal flux denotes 𝜎(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝜐(𝑥, 𝑡) and
the local fractional partial derivative of 𝑓(𝑥, 𝑡) of order 𝛼 is
defined as [17]

𝜕
𝛼

𝑓 (𝑥
0
, 𝑡)

𝜕𝑥𝛼
=
Δ
𝛼

(𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡))

(𝑥 − 𝑥
0
)
𝛼

, (10)

where

Δ
𝛼

(𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥, 𝑡) − 𝑓 (𝑥

0
, 𝑡)] .

(11)

We recall the local fractional conservation laws, which
had been successfully applied to deal with elasticity [17], fluid
mechanics [18], diffusion [19], electromagnetic [20] and heat
[21] flows, and so on.

3. Fractal Dynamical Model of Vehicular
Traffic Flow with Network

In this section, we study the fractal dynamical model of
vehicular traffic flow with network. In order to derive it,
we consider that the number of vehicles on the fractal
homogeneous road without sources and sinks is always
conserved and that fractal flow is a product of the density and
speed, which is a differentiable function. We now start with
the derivation of the local fractional conservative law shown
in Figure 2.
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Figure 2: A segment of road is from 𝑥
1
to 𝑥
2
. The fractal flow in at

the position 𝑥
1
is 𝑄(𝑥

1
, 𝑡) and the fractal flow out at the position 𝑥

2

is 𝑄(𝑥
2
, 𝑡).

The local fractional integral of 𝑓(𝑥) of order 𝛼 in the
interval [𝑎, 𝑏] is given by [17]

𝑎
𝐼
𝑏

(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(12)

where the partitions of the interval [𝑎, 𝑏] are denoted as
(𝑡
𝑗
, 𝑡
𝑗+1
), 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, and 𝑡

𝑁
= 𝑏 with Δ𝑡

𝑗
=

𝑡
𝑗+1

− 𝑡
𝑗
and Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .}. The number of the

vehicular traffics in the segment 𝑥
1
< 𝑥 < 𝑥

2
at time 𝑡 is

1

Γ (1 + 𝛼)
∫

𝑥2

𝑥1

𝜑 (𝑥, 𝑡) (𝑑𝑥)
𝛼

= 𝑁 (𝑥
2
, 𝑡) − 𝑁 (𝑥

1
, 𝑡) , (13)

which leads to

1

Γ (1 + 𝛼)
∫

𝑥2

𝑥1

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
(𝑑𝑥)
𝛼

= 𝑄 (𝑥
2
, 𝑡) − 𝑄 (𝑥

1
, 𝑡) , (14)

where the density of traffic flow is 𝜑(𝑥, 𝑡) and the quantities
of traffic flux in fixed time 𝑡 are

𝜕
𝛼

𝜕𝑡𝛼
𝑁(𝑥
1
, 𝑡) = 𝑄 (𝑥

1
, 𝑡) ,

𝜕
𝛼

𝜕𝑡𝛼
𝑁(𝑥
2
, 𝑡) = 𝑄 (𝑥

2
, 𝑡) .

(15)

Let us consider

1

Γ (1 + 𝛼)
∫

𝑥2

𝑥1

𝜕
𝛼

𝑄 (𝑥, 𝑡)

𝜕𝑥𝛼
(𝑑𝑥)
𝛼

= 𝑄 (𝑥
2
, 𝑡) − 𝑄 (𝑥

1
, 𝑡) . (16)

In view of (14) and (16), we have

1

Γ (1 + 𝛼)
∫

𝑥2

𝑥1

{
𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+
𝜕
𝛼

𝑄 (𝑥, 𝑡)

𝜕𝑥𝛼
} (𝑑𝑥)

𝛼

= 0; (17)

therefore,

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+
𝜕
𝛼

𝑄 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0, (18)

where 𝑡 > 0 and 𝑥
1
, 𝑥
2
∈ 𝑅 are arbitrary. Equation (18)

represents the Lighthill-Whitham-Richards model of fractal
traffic flowwith local fractional derivative.We notice that (18)
is in agreement with (9).

For the traffic flow 𝑄(𝑥, 𝑡) = 𝜑(𝑥, 𝑡)𝜐(𝑥, 𝑡), (18) can be
written as

𝜕
𝛼

𝜑

𝜕𝑡𝛼
+
𝜕
𝛼

𝜕𝑥𝛼
(𝜑𝜐) = 0 (19)

with the initial value condition

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) . (20)

We denote the traffic flow by 𝑄 = 𝑄(𝜑); thus,

𝑄 (𝜑) = 𝜑𝜐 (𝜑) . (21)

With the help of (21) and by using (19) we conclude that

𝜕
𝛼

𝜑

𝜕𝑡𝛼
+ 𝜂 (𝜑)

𝜕
𝛼

𝜑

𝜕𝑥𝛼
= 0, (22)

where

𝜂 (𝜑) = 𝑄
(1)

(𝜑) . (23)

If the velocity 𝜐 = 𝜐(𝜑) = 𝜇 is constant, then from (22)
and (23) we get the Cauchy problem of the linear Lighthill-
Whitham-Richards model given by

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜇

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0 (24)

subject to the initial value condition

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) . (25)

From (24), we easily obtain the Lighthill-Whitham-
Richards model on a finite length highway

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜇

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0 (26)

with the initial and boundary conditions

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) .

𝜑 (0, 𝑡) = 𝜔 (𝑡) .

(27)

This equation is the liner Lighthill-Whitham-Richards
model of fractal traffic flow with local fractional derivative.

Let us consider a linear velocity given as

𝜐 = 𝜐 (𝜑) = 𝜉 + 𝜂𝜑; (28)

then, the expression of the traffic flow becomes

𝑄 (𝑥, 𝑡) = 𝜉𝜑 (𝑥, 𝑡) + 𝜂𝜑
2

(𝑥, 𝑡) , (29)

where 𝜉 is the fractal unimpeded traffic speed and 𝜂 repre-
sents the maximum density.

From (19) and (29) we obtain the nonlinear local frac-
tional partial differential equation

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜉

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 2𝜂𝜑 (𝑥, 𝑡)

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0, (30)



4 Abstract and Applied Analysis

where 𝜑(𝑥, 𝑡) is density of fractal traffic flow.This equation is
the nonlinear Lighthill-Whitham-Richards model of fractal
traffic flow with local fractional derivative.

From (30) we derive Cauchy problem of the nonlinear
Lighthill-Whitham-Richards model of fractal traffic flow

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜉

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 2𝜂𝜑 (𝑥, 𝑡)

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0, (31)

such that

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) . (32)

From (30), the initial-boundary problem for nonlinear
Lighthill-Whitham-Richards model of fractal traffic flow is
suggested as

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜉

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 2𝜂𝜑 (𝑥, 𝑡)

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 0,

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) ,

𝜑 (0, 𝑡) = 𝜔 (𝑡) ,

(33)

provided that [17]
𝜑0 (𝑥) − 𝜑0 (𝑥0)

 < 𝜀
𝛼

,

𝜔 (𝑡) − 𝜔 (𝑡0)
 < 𝜅
𝛼

,

(34)

with |𝑥 − 𝑥
0
| < 𝛿, |𝑡 − 𝑡

0
| < 𝜏 for 𝜀, 𝜅, 𝛿, 𝜏 > 0, 0 < 𝛼 < 1.

4. Discussions

In this section, we investigate the nonhomogeneous partial
differential equations for the vehicular traffic flowwith fractal
network.

From (24) and (25), theCauchy problemof the nonhomo-
geneous partial differential equation of Lighthill-Whitham-
Richards model with nondifferentiable source term 𝜓(𝑥, 𝑡) is
given by

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜇

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 𝜓 (𝑥, 𝑡) , (35)

subject to the initial value condition

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) . (36)

In view of (26) and (27), the initial and boundary prob-
lems for the nonhomogeneous partial differential equation
of Lighthill-Whitham-Richardsmodel with nondifferentiable
source term 𝜓(𝑥, 𝑡) on a finite length highway become

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜇

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 𝜓 (𝑥, 𝑡) , (37)

with the initial and boundary conditions

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) ,

𝜑 (0, 𝑡) = 𝜔 (𝑡) .

(38)

Considering (31) and (32), the Cauchy problem of the
nonhomogeneous nonlinear partial differential equation of
Lighthill-Whitham-Richards model with nondifferentiable
source term 𝜓(𝑥, 𝑡) becomes

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜉

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 2𝜂𝜑 (𝑥, 𝑡)

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 𝜓 (𝑥, 𝑡) ,

(39)

with the initial value condition

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) . (40)

By taking into account (33), the initial-boundary problem
for nonhomogeneous nonlinear partial differential equation
of Lighthill-Whitham-Richardsmodel with nondifferentiable
source term 𝜓(𝑥, 𝑡) can be written as

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝜉

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 2𝜂𝜑 (𝑥, 𝑡)

𝜕
𝛼

𝜑 (𝑥, 𝑡)

𝜕𝑥𝛼
= 𝜓 (𝑥, 𝑡) ,

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) ,

𝜑 (0, 𝑡) = 𝜔 (𝑡) ,

(41)

subjected to

𝜑0 (𝑥) − 𝜑0 (𝑥0)
 < 𝜀
𝛼

,

𝜔 (𝑡) − 𝜔 (𝑡0)
 < 𝜅
𝛼

,

(42)

with |𝑥 − 𝑥
0
| < 𝛿, |𝑡 − 𝑡

0
| < 𝜏 for 𝜀, 𝜅, 𝛿, 𝜏 > 0, 0 < 𝛼 < 1.

5. Conclusions

In this work, the fractal dynamical models of vehicular traffic
flow within the local fractional conservation laws, where the
density and speed of fractal traffic flow are nondifferentiable
functions, are investigated. Besides, the linear and nonlinear
partial differential equations for Lighthill-Whitham-Richards
models of the vehicular traffic flows with fractal networks are
obtained.The classical results are special case of the ones with
nondifferentiable conditions when the fractal dimension 𝛼 is
equal to 1.
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