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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF CONTROL ALGORITHMS  

FOR STABILIZATION OF ROTARY INVERTED PENDULUM 

ŞEN, Fatma Nur 

M.Sc., Department of Mechatronics Engineering 

Supervisor: Assist. Prof. Dr. Ulaş BELDEK 

 

JUNE 2019, 82 pages 

 

Rotary Inverted Pendulum is a popular test-bed in control theory applications as it has a 

nonlinear characteristics and unstable structure. To drive the pendulum to upright position 

and holding the stick of the pendulum stabilized in that condition is one of the important 

benchmark problems in control theory. Generally, the control structure of this system 

consists of two modes. The first mode is known as the swing up mode where the pendulum 

is brought into nearly upright position from a stand still downward orientation. The second 

control mode is called as hold mode and it switches the swing up mode when the pendulum 

is in an epsilon neighborhood of the upright position and its aim is to stabilize the 

pendulum and keeping it motionless at this condition. The intention in this thesis is 

developing hold mode control structures integrating the State Feedback Control, Routh 

Hurwitz method and Genetic Algorithms. 

Keywords: Rotary Inverted Pendulum, Genetic Algorithm, State Feedback, Routh 

Hurwitz, Multi Criteria Optimization. 
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ÖZ 

 

DÖNER TERS SARKAÇ SİSTEMİNİN STABİLİZASYONU İÇİN KONTROL 

ALGORİTMALARININ TASARIMI VE UYGULANMASI 

ŞEN, Fatma Nur 

Yüksek Lisans, Mekatronik Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Dr. Öğr. Üyesi Ulaş BELDEK 

 

HAZİRAN 2019, 82 sayfa 

 

Döner ters sarkaç sistemi kontrol teorisi uygulamalarında popüler bir test ortamıdır. Çünkü 

döner ters sarkaç doğrusal olmayan özelliklere ve dengesiz bir yapıya sahiptir. Sarkacı dik 

pozisyona getirmek ve sarkacın çubuğunu bu durumda kararlı tutmak kontrol teorisindeki 

en önemli değerlendirme problemlerindendir. Genellikle, bu sistemin kontrol yapısı iki 

moddan oluşur. İlk mod, sarkacın hareketsiz baş aşağı pozisyondan neredeyse dik 

pozisyona getirildiği salınım yaparak yukarı kaldırma modu olarak bilinir. İkinci kontrol 

moduna tutma modu denir ve sarkaç dik pozisyonun çalışma noktası komşuluğunda 

olduğunda salınım yaparak yukarı kaldırma modunun yerine görevi devralır. Bunun amacı 

sarkacı kararlı hale getirmek ve bu durumda hareketsiz kalmasını sağlamaktır. Bu tezin 

amacı durum geri beslemesi kontrolü, Routh Hurwitz metodu ve Genetik Algoritmaları 

entegre ederek tutma modu kontrol yapılarını geliştirmektir. 

 

Anahtar Kelimeler: Döner Ters Sarkaç Sistemi, Genetik Algoritma, Durum Geri 

Beslemesi, Routh Hurwitz, Çok Kriterli Optimizasyon 
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CHAPTER 1 

INTRODUCTION 

1.1. Background  

The inverted pendulum [1]is a well-known problem in control theory and is used to test 

the control strategies. Due to complex behaviors, lots of versions of inverted pendulum 

are developed. The rotary inverted pendulum is one of the versions of the inverted 

pendulum. It has also similar characteristic with inverted pendulum such as nonlinearity 

and instability. In real time applications, the rotary inverted pendulum is used in different 

areas such as transportation vehicles, rockets and missile systems and aircraft landing 

systems. [2] 

The rotary inverted pendulum is a clear example for a system with two degrees of freedom. 

The working principle of this system is as follows: the pendulum is connected the 

horizontal arm and the arm is linked with the servo motor. The degrees of freedom of the 

system comes from the rotation of the horizontal arm and the motion of the inverted 

pendulum which are perpendicular to each other. [3] 

The rotary inverted pendulum is called as Furuta [4] pendulum because rotary inverted 

pendulum is invented at the Tokyo Institute of Technology by Katsuhisa Furuta, a 

Japanese researcher, who was a pioneer for many researchers about designing control 

theories about the rotary inverted pendulum. Therefore, rotary inverted pendulum is a 

popular test-bed in control theory applications as it has a nonlinear characteristics and 

unstable structure. To drive the pendulum to upright position and holding the stick of the 

pendulum stabilized in that condition is one of the important benchmark problems in 

control theory. 
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Generally, the control structure of this system consists of two modes. The first mode is 

known as the swing up mode where the pendulum is brought into nearly upright position 

from a stand still downward position.  

The second control mode is called as hold mode and it switches the swing up mode when 

the pendulum is in an epsilon neighborhood of the upright position and its aim is to 

stabilize the pendulum and keeping it motionless (nearly motionless) at this condition.  

1.2. Methodology and literature survey 

In order to design control strategies for rotary inverted pendulum, various methods are 

augmented and applied. Linear techniques such as state feedback, pole placement, and 

linear quadratic regulator are well known. On the other hand, nonlinear techniques such 

as energy based control and robust control are developed. Besides, artificial intelligence 

methods are also applied to develop controllers for rotary inverted pendulum. Mainly 

fuzzy logic and genetic algorithms can be accounted in this field. [2] 

The genetic algorithm(GA)[5] is a search and optimization technique using criteria of 

genetics and natural selection.  Genetic algorithm was evolved by John Holland in 1975 

at the University of Michigan and this theorem was popularized by, one of the students of 

John Holland, David Goldberg.[6] Goldberg used this method to solve the problem like 

as controlling of gas-pipeline transmission.  

GAs are also defined as simulations of the methods used when biological systems modify 

to their environment furnished in computer software models for solving optimization. 

Search techniques are used for solving problems such as in engineering, science, finance 

and economics. Especially, in engineering, genetic algorithm gain favor from various 

fields as a robust optimization tool and genetic algorithms are used in machine learning, 

image processing, pattern recognition and operational research.[7]  
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1.3. Thesis objective  

The intention in this thesis is developing hold mode control structures integrating the State 

Feedback Control, Routh Hurwitz [8] method and Genetic Algorithms: Firstly, the 

linearized system dynamic model when the pendulum is in upright position is utilized in 

order to obtain the Routh Hurwitz array.  

Then the stability criteria coming from the Routh Hurwitz array and some extra criteria 

coming from the system’s closed loop poles’ relative locations due to state feedback and 

an extra criterion coming from the restriction of gain values at the state feedback control 

process are integrated into the cost function of the genetic algorithm search that yields a 

suitable state feedback gain values. Hence the genetic algorithm search represents a multi 

criteria cost optimization process and depending on different choices of parameters in 

contribution of the cost function, the search has given interesting and promising results. 

1.4. Organization of thesis  

The organization of the remaining part of the thesis is as follows; in Chapter 2 the system 

description, the mathematical model of the rotary inverted pendulum and the linearization 

procedure of this system is explained. In Chapter 3, the controller design strategies, state 

feedback controller and genetic algorithms, and Routh Hurwitz stability criterion are 

mentioned briefly. In Chapter 4, the simulation and experimental results are both tabulated 

and shown graphically.  Lastly, in Chapter 5, all work done in this thesis are summarized 

and it clarify the outcomes of this thesis and the future works briefly.  
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CHAPTER 2 

SYSTEM DESCRIPTION 

2.1 System description  

The Quanser rotary inverted pendulum (ROTPEN) is illustrated in Figure 2.1. [9] The 

rotary inverted pendulum is made up of three major parts: a motor, a rotary arm and 

pendulum.  A DC voltage is applied to the motor and by this way it supplies the necessary 

actuating motion signals to the arm. The motor is attached to the load gear. This gear is 

used to reduce the speed and transmit the motion to the arm. In this ROTPEN, the motor 

is classified as a servo motor SRV02. SRV02 is suitable for obtaining faster response 

compared to traditional DC motors as it has low inductance and rotor inductance values 

as well as a high efficiency value. In addition, three sensors are fitted. These sensors are 

tachometer, encoder and potentiometer. The encoder and potentiometer is used the 

measure the angular positon of the load gear and the tachometer is used for the velocity 

of the motor.  

In one end the rotary arm it is attached to the load gear via pin and from the other end it 

is connected the metal shaft. This rotary arm is actuated by the motor and it rotates on a 

horizontal plane. The pendulum stick is connected the shaft via a T-fitting and it has a 

perpendicular motion with respect to the motion of the rotary arm.  The pendulum rotates 

360° freely on the vertical plane. Furthermore, the determine the angular position of the 

pendulum, another encoder is also used that is connected to the shaft.   
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The rotary inverted  pendulum system can be represented as a Single Input Multiple 

Output (SIMO) system where the input is the applied DC motor voltage and the system 

states and outputs can be assigned as the arm angle (𝑥1 = 𝜃), inverted pendulum angle 

(𝑥2 = 𝛼)  and  angular velocities of the arm and the inverted pendulum (𝑥3 = �̇�, 𝑥4 = �̇�)   

As the system structure is inspected, it is observed that the set of unstable equilibrium 

points are reached when the pendulum is at upright position (𝛼 = 0°) with any arm angle 

value and the stable equilibrium points are reached when the pendulum is at downright 

position (𝛼 = 180°) with any arm angle value (reached when all the states derivatives are 

equal to 0).  

The mission of balancing the inverted pendulum in vertical position, at one of the unstable 

equilibrium points starting from one of the stable equilibrium points is called as Swing 

Up and Hold (Stabilization) process. In this thesis, hold (stabilization) position is focused. 

Hence, set of equilibrium points are defined in upright position when the pendulum angle 

equals to zero 𝛼 = 0)  .  

 

 

 

Figure 2.1: SRV02 ROTPEN system 
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2.2 System components 

The components of ROTPEN are described in Table 2.1 and associated locations of these 

components are given in Figure 2.2. [10] 

 

 

 

 

Figure 2.2: The components of ROTPEN 
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Table 2.1: The ROTPEN components 

ID  Components  ID Components  

1 SRV02 6 Pendulum T Fitting 

2 Thumbscrews 7 Pendulum Link  

3 Rotary Arm  8 Pendulum Encoder 

Connector  

4 Shaft Housing 9 Pendulum Encoder  

5 Shaft   
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2.3 System dynamics  

The rotary inverted pendulum diagram is represented in Figure 2.3.[11] 

 

 

Figure 2.3: The rotary inverted pendulum diagram 

 

According to the diagram, the Cartesian coordinate system is used to determine the 

location of the arm and the pendulum.  X axis is horizontal, vertical side is z axis and 

finally y axis is determined accordingly. Origin of the system is assumed as a center of 

the arm’s pivot. Lp, 𝓁p and α are total length of pendulum, the pendulum length from the 

arm’s pivot to center of mass of pendulum and the angle of the pendulum respectively. 

The angle of pendulum is positive when the pendulum is rotated counterclockwise in the 

plane perpendicular to the arm. θ is the rotation angle of the arm with respect around z 

axis. Lr and 𝓁r are the total length of the arm and the length from the pivot to the center of 

mass of the arm respectively. Finally, τα is the torque which affected the pendulum due to 

the viscous friction and τθ is the torqued that applied to the arm. 

The dynamic equations of rotary inverted pendulum depend on the center of mass of the 

arm and the pendulum.   
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In order to find the center of masses, the position of the pendulum and the arm is found. 

From Figure 2.4 and 2.5[11] top and front views of the system are used.  

 

Figure 2.4: The top view of rotary inverted pendulum 

 

 

Figure 2.5: The front view of rotary inverted pendulum 

The position of the center of mass of the pendulum are given by the following x, y and z 

coordinate values: 

𝑥𝑝 = 𝐿𝑟 cos 𝜃 + 𝓁𝑝 sin 𝛼 sin 𝜃                                                                                                (2.1) 

𝑦𝑝 = 𝐿𝑟 sin 𝜃 − 𝓁𝑝 sin 𝛼 cos 𝜃                                                                                               (2.2) 
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𝑧𝑝 = 𝓁𝑝 cos 𝛼                                                                                                                             (2.3) 

The position of the center of mass of the arm are given by the following x, y and z 

coordinate values: 

𝑥𝑟 = 𝓁𝑟 cos 𝜃                                                                                                                               (2.4) 

𝑦𝑟 = 𝓁𝑟 sin 𝜃                                                                                                                                (2.5) 

𝑧𝑟 = 0                                                                                                                                           (2.6) 

The velocity of the pendulum and arm is necessary to calculate the kinetic energy of the 

system. Hence, the position of pendulum and arm are differentiated with respect to time. 

Vp (Vp,x, Vp,y, Vp,z) and Vr ( Vr,x ,Vr,y, Vr,z ) denote the velocity components of pendulum 

and arm respectively. 

𝑉𝑝,𝑥 = −𝐿𝑟�̇� sin 𝜃 + 𝓁𝑝�̇� cos𝛼 sin 𝜃 + 𝓁𝑝�̇� cos 𝜃 sin 𝛼                                                    (2.7) 

𝑉𝑝,𝑦 = 𝐿𝑟�̇� cos 𝜃 − 𝓁𝑝�̇� cos𝛼 cos𝜃 + 𝓁𝑝�̇� sin 𝛼 sin 𝜃                                                       (2.8) 

𝑉𝑝,𝑧 = −𝓁𝑝�̇� sin 𝛼                                                                                                                     (2.9)  

𝑉𝑟,𝑥 = −𝓁𝑟�̇� sin 𝜃                                                                                                                    (2.10) 

𝑉𝑟,𝑦 = 𝓁𝑟�̇� cos 𝜃                                                                                                                       (2.11) 

𝑉𝑟,𝑧 = 0                                                                                                                                      (2.12) 

Due to the formulation of kinetic energy, the square of the velocities of the arm and the 

pendulum should be calculated.  

The velocity of the pendulum is 

𝑉𝑝 = √(𝑉𝑝,𝑥
2 + 𝑉𝑝,𝑦

2 + 𝑉𝑝,𝑧
2)                                                                                               (2.13) 

where 
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𝑉𝑝,𝑥
2 = 𝐿𝑟

2�̇�2 sin2 𝜃 + 𝓁𝑝
2�̇�2 sin2 𝛼 cos2 𝜃 +𝓁𝑝

2�̇�2 sin2 𝜃 cos2 𝛼 −

2𝐿𝑟𝓁𝑝�̇�
2 sin 𝛼 sin 𝜃 cos 𝜃 − 2𝐿𝑟𝓁𝑝�̇��̇� sin 𝛼 sin2 𝜃 cos𝛼 +

2𝓁𝑝
2�̇��̇� sin 𝛼 cos𝛼 sin 𝜃 cos𝜃                                                                                             (2.14)   

𝑉𝑝,𝑦
2 = 𝐿𝑟

2�̇�2 cos2 𝜃 + 𝓁𝑝
2�̇�2 sin2 𝛼 sin2 𝜃 + 𝓁𝑝

2�̇�2 cos2 𝛼 cos2 𝜃 +

2𝐿𝑟𝓁𝑝�̇�
2 sin 𝛼 sin 𝜃 cos 𝜃 − 2𝐿𝑟𝓁𝑝�̇��̇� sin 𝛼 cos2 𝜃 cos 𝛼 −

2𝓁𝑝
2�̇��̇� sin 𝛼 cos𝛼 sin 𝜃 cos𝜃                                                                                             (2.15)  

𝑉𝑝,𝑧
2 = 𝓁𝑝

2�̇�2 sin2 𝛼                                                                                                              (2.16) 

After some simplified steps, 𝑉𝑝
2
 becomes, 

𝑉𝑝
2 = 𝓁𝑝

2�̇�2 sin2 𝛼 + 𝐿𝑟
2�̇�2 + 𝓁𝑝

2�̇�2 − 2𝐿𝑟𝓁𝑝�̇��̇� cos 𝛼                                              (2.17) 

For the arm;  

𝑉𝑟 = √𝑉𝑟,𝑥
2 + 𝑉𝑟,𝑦

2 + 𝑉𝑟,𝑧
2                                                                                                    (2.18) 

𝑉𝑟,𝑥
2 = 𝓁𝑟

2�̇�2 sin2 𝜃                                                                                                               (2.19) 

𝑉𝑟,𝑦
2 = 𝓁𝑟

2�̇�2 cos2 𝜃                                                                                                              (2.20) 

𝑉𝑟,𝑧
2 = 0                                                                                                                                    (2.21) 

When the components simplified, 𝑉𝑟
2
 becomes, 

𝑉𝑟
2 = 𝓁𝑟

2�̇�2                                                                                                                              (2.22) 

2.4. Lagrange method 

A Lagrangian formulation is used to define the equation of motions of the mechanical 

system and it is a common approach for robot and multiple joint systems. In Lagrange 

method, equations are used to transform Cartesian coordinates into the generalized 

coordinates (qi).   
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Then, the general terms of Lagrangian formulation are  

𝐿(𝑞(𝑡), �̇�(𝑡)) = 𝐾(𝑞(𝑡), �̇�(𝑡)) − 𝑈(𝑞(𝑡))                                                                        (2.23) 

K represents the Kinetic Energy. Kinetic Energy can be due to rotational and translational 

motions and for this reason it can be written as a function of generalized coordinate 

variables q(t) and their derivatives �̇�(𝑡). U shows the Potential Energy. The potential 

energy is created via conservative forces such as gravity and springs. Hence this energy is 

related only with the generalized coordinate variables q(t). Associated with these 

information, Lagrange formulation is defined as; 

𝐿 = 𝐾 − 𝑈                                                                                                                                (2.24)  

The Euler-Lagrange equations for n degrees of freedom system: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖                                                                                                                (2.25) 

where i=1,….,n and Qi describes the generalized force. It is supplied from external forces. 

These forces should be non-conservative external forces. (e.g. friction)  

The rotary inverted pendulum has two-degrees of freedom. Hence, the angles of pendulum 

and arm (α and θ) are generalized coordinates in this system. The first generalized 

coordinate is taken as the position of the arm (θ) and the second generalized coordinate is 

taken as the position of the pendulum (α). And the generalized forces are defined as:  

𝑄1 = τ𝜃 = τ − 𝐵𝑟�̇�                                                                                                                (2.26)  

𝑄2 = τ𝛼 = −𝐵𝑝�̇�                                                                                                                    (2.27)  

Br and Bp are viscous damping coefficient. τ describes the torque applied on the arm which 

is generated via servo motor. Additionally  

 𝜏 =
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑉𝑚−𝑘𝑔𝑘𝑚�̇�)

𝑅𝑚
                                                                                                      (2.28) 
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Where  

 𝜂𝑔 and 𝜂𝑚  : the gearbox efficiency and the motor efficiency . 

 𝑘𝑡 ,𝑘𝑔 and 𝑘𝑚 : the motor-torque constant,  the gear ratio and  the back-emf 

constant  

 𝑅𝑚: the armature resistance  

 𝑉𝑚: the back – emf voltage  

Then the Euler –Lagrange equations of the rotary inverted pendulum are defined as  

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= τ − 𝐵𝑟�̇�                                                                                                       (2.29) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝛼
= −𝐵𝑝�̇�                                                                                                          (2.30) 

The total kinetic energy of the system: 

𝐾𝑇 = 𝐾𝑝 + 𝐾𝑟                                                                                                                            (2.31) 

Kp and Kr are total kinetic energy of pendulum and arm respectively.  

For the pendulum: 

𝐾𝑝 = 𝐾𝑃,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐾𝑝,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙                                                                                   (2.32) 

𝐾𝑃,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑚𝑝𝑣𝑝

2                                                                                                    (2.33) 

𝐾𝑃,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑚𝑝𝓁𝑝

2�̇�2 sin2 𝛼 + 𝐿𝑟
2�̇�2 + 𝓁𝑝

2�̇�2 − 2𝐿𝑟𝓁𝑝�̇��̇� cos 𝛼               (2.34) 

𝐾𝑃,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝐽𝑝�̇�2 +

1

2
𝐽𝑝 sin2 𝛼 �̇�2                                                                              (2.35) 

The equation (2.34) and (2.35) substituted into the equation (2.32) 



14 
 

𝐾𝑝 =
1

2
𝑚𝑝𝓁𝑝

2�̇�2 sin2 𝛼 + 𝐿𝑟
2�̇�2 + 𝓁𝑝

2�̇�2 − 2𝐿𝑟𝓁𝑝�̇��̇� cos 𝛼 +
1

2
𝐽𝑝�̇�2

+
1

2
𝐽𝑝 sin2 𝛼 �̇�2                                                                                            (2.36) 

 

For the arm: 

𝐾𝑟 = 𝐾𝑟,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐾𝑟,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙                                                                                    (2.37) 

𝐾𝑟,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑚𝑟𝑣𝑟

2                                                                                                     (2.38) 

𝐾𝑟,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑚𝑟𝓁𝑟

2�̇�2                                                                                                (2.39) 

𝐾𝑟,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 
1

2
𝐽𝑟�̇�

2                                                                                                            (2.40) 

The equation (2.37) and (2.38) substituted into equation (2.35); 

𝐾𝑟 =
1

2
𝑚𝑟𝓁𝑟

2�̇�2 + 
1

2
𝐽𝑟 �̇�

2                                                                                                    (2.41) 

The total kinetic energy of the system; 

𝐾𝑇 =
1

2
𝑚𝑝𝓁𝑝

2�̇�2 sin2 𝛼 + 𝐿𝑟
2�̇�2 + 𝓁𝑝

2�̇�2 − 2𝐿𝑟𝓁𝑝�̇��̇� cos 𝛼 +
1

2
𝐽𝑝�̇�2 +

1

2
𝐽𝑝 sin2 𝛼 �̇�2

+
1

2
𝑚𝑟𝓁𝑟

2�̇�2 + 
1

2
𝐽𝑟�̇�

2                                                                               (2.42) 

The potential energy of the rotary inverted pendulum occurs only due to the gravity and 

only pendulum generates the energy. So, 

𝑈 = 𝑚𝑝𝑔ℎ                                                                                                                                 (2.43) 

Where ℎ = (1 − cos 𝛼) 

The potential energy is in downward position. So, equation is denoted as a;  

𝑈 = −𝑚𝑝𝑔𝓁𝑝(1 − cos𝛼)                                                                                                     (2.44) 
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Using Lagrange formulation (2.24), the Lagrange formulation of the rotary inverted 

pendulum is; 

𝐿 =
1

2
�̇�2(𝑚𝑝𝐿𝑟

2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2) +
1

2
�̇�2(𝑚𝑝𝓁𝑝

2 + 𝐽𝑝)

− 𝑚𝑝𝐿𝑟𝓁𝑝�̇��̇� cos 𝛼 + 𝑚𝑝𝑔𝓁𝑝(1 − cos𝛼)                                             (2.45) 

The components of the Euler-Lagrange equation for the first generalized coordinates; 

𝜕𝐿

𝜕𝜃
= 0                                                                                                                                       (2.46) 

𝜕𝐿

𝜕�̇�
= �̇�(𝑚𝑝𝐿𝑟

2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2) − 𝑚𝑝𝐿𝑟𝓁𝑝�̇� cos 𝛼               (2.47) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = �̈�(𝑚𝑝𝐿𝑟

2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2)

+ 2(𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̇��̇� cos𝛼 sin 𝛼 − �̈�(𝑚𝑝𝐿𝑟𝓁𝑝 cos 𝛼)

+ 𝑚𝑝𝐿𝑟𝓁𝑝�̇�
2 sin 𝛼                                                                                       (2.48)  

Substitute these components, equation (2.44) and (2.46), into equation (2.29), the first 

nonlinear equation becomes; 

�̈�(𝑚𝑝𝐿𝑟
2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝

2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟
2) − �̈�(𝑚𝑝𝐿𝑟𝓁𝑝 cos𝛼)

+ �̇� ((𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̇� cos 𝛼 sin 𝛼)

+ �̇� ((𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̇� cos 𝛼 sin 𝛼 + 𝑚𝑝𝐿𝑟𝓁𝑝�̇� sin 𝛼) = 𝜏 − 𝐵𝑟�̇�      (2.49) 

When the all terms are collected, the first nonlinear equation is;  

�̈�(𝑚𝑝𝐿𝑟
2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝

2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟
2) − �̈�(𝑚𝑝𝐿𝑟𝓁𝑝 cos 𝛼)

+ �̇�(𝐵𝑟 + (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̇� cos 𝛼 sin 𝛼)

+ �̇� ((𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̇� cos𝛼 sin 𝛼 + 𝑚𝑝𝐿𝑟𝓁𝑝�̇� sin 𝛼) = 𝜏                  (2.50) 
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For the second generalized coordinates (pendulum position), the components of the Euler 

– Lagrange equation are calculated as  

𝜕𝐿

𝜕𝛼
= (𝐽𝑝 + 𝑚𝑝𝓁𝑝

2)�̇�2 cos 𝛼 sin 𝛼 + 𝑚𝑝𝐿𝑟𝓁𝑝�̇��̇� sin 𝛼 + 𝑚𝑝𝑔𝓁𝑝 sin 𝛼                     (2.51) 

𝜕𝐿

𝜕�̇�
= (𝐽𝑝 + 𝑚𝑝𝓁𝑝

2)�̇� − 𝑚𝑝𝐿𝑟𝓁𝑝�̇� cos 𝛼                                                                          (2.52) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = �̈�(−𝑚𝑝𝐿𝑟𝓁𝑝 cos𝛼) + �̈�(𝐽𝑝 + 𝑚𝑝𝓁𝑝

2) + 𝑚𝑝𝐿𝑟𝓁𝑝�̇��̇� sin 𝛼                      (2.53) 

The second nonlinear equation is defined as 

�̈�(−𝑚𝑝𝐿𝑟𝓁𝑝 cos𝛼) + �̈�(𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + �̇�(−(𝐽𝑝 + 𝑚𝑝𝓁𝑝

2)�̇� sin 𝛼 cos 𝛼)

− 𝑚𝑝𝑔𝓁𝑝 sin 𝛼 = −𝐵𝑝�̇�                                                                             (2.54) 

When all terms are collected in the left hand side of the equation, the second nonlinear 

equation will be  

�̈�(−𝑚𝑝𝐿𝑟𝓁𝑝 cos𝛼) + �̈�(𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + �̇�(−(𝐽𝑝 + 𝑚𝑝𝓁𝑝

2)�̇� sin 𝛼 cos𝛼)

− 𝑚𝑝𝑔𝓁𝑝 sin 𝛼 + 𝐵𝑝�̇� = 0                                                                        (2.55) 

The dynamic equations are highly non-linear. In order to find transfer functions of system 

and design the controller, these equations should be linearized. The equation (2.28) is 

substituted into nonlinear equation (2.50) for linearization. 

2.5 Linearization  

The common method for linearization is Taylor series expansion. Accordance with this 

theorem, a non-linear function f(z) which depends on multiple inputs or states z is defined 

where 𝑧 = (𝑧1, 𝑧2, 𝑧3 …… , 𝑧𝑛). Then, the corresponding linearized function flin(z) at the 

operating point 𝑧0 = (𝑎, 𝑏,… . , 𝑛) is: 

𝑓𝑙𝑖𝑛(𝑧) = 𝑓(𝑧0) + (
𝜕𝑓(𝑧)

𝜕(𝑧1)
) |𝑧=𝑧0

(𝑧1 − 𝑎) + ⋯+ (
𝜕𝑓(𝑧)

𝜕(𝑧𝑛)
) |𝑧=𝑧0

(𝑧𝑛 − 𝑛)                (2.56) 
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For the rotary inverted pendulum, z variables  are defined as a 𝑧𝑇 = [�̈�, �̈�, �̇�, �̇�, 𝜃, 𝛼]  

And for this set up all initial conditions are zero.  

Hence, equilibrium points are:  𝑧0
𝑇 = [0,0,0,0,0,0]. 

For the first non-linear equation  

𝑓𝑙𝑖𝑛,1(𝑧) = 𝑓(𝑧0) + (
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0(�̈�) + (

𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0(�̈�) + (

𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0(�̇�)

+ (
𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0(�̇�) + (

𝜕𝑓(𝑧)

𝜕(𝜃)
) |𝑧=0(𝜃) + (

𝜕𝑓(𝑧)

𝜕(𝛼)
) |𝑧=0(𝛼)             (2.57) 

(
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0 = 𝑚𝑝𝐿𝑟

2 + sin2 𝛼 (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2) + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2 = 𝑚𝑝𝐿𝑟
2 + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2
 

(
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0 = −𝑚𝑝𝐿𝑟𝓁𝑝 cos 𝛼 = −𝑚𝑝𝐿𝑟𝓁𝑝 

(
𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0 = (𝐵𝑟 + (𝐽𝑝 + 𝑚𝑝𝓁𝑝

2)�̇� cos 𝛼 sin 𝛼) +
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑘𝑔𝑘𝑚)

𝑅𝑚
 

= 𝐵𝑟 +
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑘𝑔𝑘𝑚)

𝑅𝑚
 

 

The other �̇�, 𝜃, 𝛼  based derivatives are zero and 𝑓(𝑧0) = 0. The first linear equation 

becomes; 

(𝑚𝑝𝐿𝑟
2 + 𝐽𝑟 + 𝑚𝑟𝓁𝑟

2)�̈� + (−𝑚𝑝𝐿𝑟𝓁𝑝)�̈� + (𝐵𝑟 +
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑘𝑔𝑘𝑚)

𝑅𝑚
) �̇�

=
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡𝑉𝑚

𝑅𝑚
                                                                                           (2.58) 
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For the other non-linear equation using equation (2.57); 

𝑓𝑙𝑖𝑛,2(𝑧) = 𝑓(𝑧0) + (
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0(�̈�) + (

𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0(�̈�) + (

𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0(�̇�)

+ (
𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0(�̇�) + (

𝜕𝑓(𝑧)

𝜕(𝜃)
) |𝑧=0(𝜃) + (

𝜕𝑓(𝑧)

𝜕(𝛼)
) |𝑧=0(𝛼) 

(
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0 = −𝑚𝑝𝐿𝑟𝓁𝑝 cos 𝛼 = −𝑚𝑝𝐿𝑟𝓁𝑝 

(
𝜕𝑓(𝑧)

𝜕(�̈�)
) |𝑧=0 = 𝐽𝑝 + 𝑚𝑝𝓁𝑝

2
 

(
𝜕𝑓(𝑧)

𝜕(�̇�)
) |𝑧=0 = 𝐵𝑝 

(
𝜕𝑓(𝑧)

𝜕(𝛼)
) |𝑧=0 = −𝑚𝑝𝑔𝓁𝑝 

The other �̇�, 𝜃  based derivatives are zero and 𝑓(𝑧0) = 0. The second linear equation 

becomes: 

(−𝑚𝑝𝐿𝑟𝓁𝑝)�̈� + (𝐽𝑝 + 𝑚𝑝𝓁𝑝
2)�̈� − 𝑚𝑝𝑔𝓁𝑝𝛼 = 0                                                           (2.59) 

2.6 State space representation  

The linear state space equations define as  

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                                                                            (2.60) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                                                                                            (2.61) 

Where x represents the state and u is control input. A, B, C and D define as a system, 

input, output and direct coupled matrices, respectively.   
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There are some parameters to ease the task for linear equations of the rotary inverted 

pendulum; 

𝛽 = 𝐽𝑟 + 𝑚𝑟𝓁𝑟
2 + 𝑚𝑝𝐿𝑟

2
 

𝜌 = 𝐽𝑝 + 𝑚𝑝𝓁𝑝
2
 

𝛿 = 𝑚𝑝𝐿𝑟𝓁𝑝 

𝛾 = 𝑚𝑝𝓁𝑝𝑔 

𝐽𝑇 = 𝐽𝑝𝑚𝑝𝐿𝑟
2 + 𝑚𝑝𝑚𝑟𝓁𝑝

2𝓁𝑟
2 + 𝐽𝑟𝑚𝑝𝓁𝑝

2 + 𝐽𝑝𝑚𝑟𝓁𝑟
2 + 𝐽𝑝𝐽𝑟   

𝑇1 =
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑘𝑔𝑘𝑚�̇�)

𝑅𝑚
 

𝑇2 =
𝜂𝑔𝑘𝑔𝜂𝑚 𝑘𝑡(𝑉𝑚)

𝑅𝑚
 

To obtain the state space model, the states are defined as 𝑥1 = 𝜃, 𝑥2 = 𝛼, 𝑥3 = �̇� and 

 𝑥4 = �̇�. With these states, the linear equations of rotary inverted pendulum are written in 

matrices form as  

  

𝐴 =

[
 
 
 
 
 
0 0 1 0
0 0 0 1

0
𝛾𝛿

𝐽𝑇
⁄

−𝜌(𝐵𝑟 + 𝑇1)
𝐽𝑇

⁄
−𝛿𝐵𝑝

𝐽𝑇
⁄

0
𝛾𝛽

𝐽𝑇
⁄

−𝛿(𝐵𝑟 + 𝑇1)
𝐽𝑇

⁄
−𝛽𝐵𝑝

𝐽𝑇
⁄ ]

 
 
 
 
 

                                                               (2.62) 

 

 𝐵 = [

0
0

(𝜌𝑇2)/𝐽𝑇
(𝛿𝑇2)/𝐽𝑇

]                                                                                                                      (2.63) 
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Only the position of the servo and link angles are measured. Hence, the output matrix 

becomes: 

𝐶 = [
1 0 0 0
0 1 0 0

]                                                                                                                (2.64) 

𝐷 = [
0
0
]                                                                                                                                     (2.65) 

2.7 System parameters  

The all system parameters are presented in Table 2.2 and these parameters are taken user 

manual of the set-up and manual of the SRV02.[12] 

The parameters of the system are substituted into system and input matrices; 

𝐴 = [

0 0 1 0
0 0 0 1
0 53.29853 −16.5724 −0.6582
0 108.2996 −19.5897 −1.3373

]                                                               (2.66)    

𝐵 = [

0
0

29.8002
35.2259

]                                                                                                                       (2.67) 

  

The eigenvalues of the systems are 0, -4.6674, -20.9277, 7. 6853.As it can be seen that, 

one of the poles of system is on the right side of the plane. Hence, the system is unstable.  
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Table 2.2: The system parameters 

 

Symbol  Description  Value Unit 

mp Mass of pendulum 0.127 kg 

Lp Total length of pendulum 0.337 m 

Ɩp Distance from pivot to center of mass 0.156 m 

Jp Pendulum moment of inertia about center of 

mass 

0.0012 kg.m2 

Bp Pendulum viscous damping coefficient as seen 

at the pivot axis 

0.0024 N.m.s/rad 

mr Mass of rotary arm with two thumbscrews 0.257 kg 

r Rotary arm length from pivot to tip 0.216 m 

Ɩr Rotary arm length from pivot to center of mass 0.0619 m 

Jr,cm Rotary arm moment of inertia about its center 

of mass 

9.98 10-4 kg.m2 

mb Rotary arm viscous damping coefficient 

as seen at the pivot axis 

0.0024 N.m.s/rad 

Jr Rotary arm moment of inertia about pivot 0.0020 kg.m2 

Kenc Pendulum encoder resolution 4096 counts/rev 

Br Viscous damping coefficient of arm 0.0024 Nms/rad 

Lr Total length of arm 0.256 m 

Rm Armature resistance 2.6 Ω 

Beq Equivalent viscous damping coefficient 0.015 Nms/rad 

Jeq Equivalent moment of inertia 0.00358 kgm2 

kg SVR02 system gear ratio 70 -- 

km Back-emf constant 7.68×103 Vs/rad 

kt Motor-torque constant 7.68×103 Nm/A 

ηg Gearbox efficiency 0.9 --- 

ηm Motor efficiency 0.69 --- 
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CHAPTER 3 

CONTROLLERS DESIGN 

In this chapter, two different controller design approaches depending on state feedback 

control method that are applicable for hold mode of control for inverted pendulum are 

considered. In the first on state feedback is directly applied to the inverted pendulum via 

a suitable pole placement procedure. In the second one pole placement procedure is carried 

out using Genetic Algorithms such that the state feedback gain values are determined due 

to a multi criteria optimization procedure. 

 

Figure 3.1: The sample block diagram of the system 

According to the Figure 3.1, the system has a state feedback controller. Each state which 

is defined in chapter 2, has a proportional gain value and hence K the gain vector is defines 

as  

𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4] 

K1 is the proportional gain of the angular position of arm (θ), K2 is the proportional gain 

of angular position of the inverted pendulum (α) and K3, K4 are defined as proportional 

gain values of angular velocities of arm and inverted pendulum, respectively. 
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3.1 The state feedback control 

The locations of closed loop poles of the system effects the transient and steady responses 

of the system. If the system is fully controllable, the controllability matrix has full rank 

and all eigenvalues can be placed at any desired locations by a suitable choice of state 

feedback gain. The linearized system model has the following state space representation 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                                                                              (3.1)   

and using state feedback the control signal can be computed using, 

𝑢 = 𝑟(𝑡) − 𝐾𝑥(𝑡)                                                                                                                      (3.2) 

Where K is feedback gain, r(t) is reference input or desired behavior and x(t) is the state 

variable vector. When equation (3.1) is substituted into equation (3.2), one gets 

�̇� = (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑟                                                                                                              (3.3)   

In equation (3.3) a new system matrix is obtained due to state feedback 

 𝐴∗ = (𝐴 − 𝐵𝐾) 

If a system is completely controllable, it is possible to replace each eigenvalue of the 

system to desired locations using state feedback. The controllability of a system is checked 

using controllability test. According to this test, the nth order linear and time invariant 

system is completely controllable if and only if the n×nr (r: size of input matrix) composite 

controllability matrix  M. 

𝑀 = [𝐵:𝐴𝐵:𝐴2𝐵: … . : 𝐴𝑛−1𝐵]                                                                                               (3.4) 

is rank of n.  

If (A, B) are controllable and B nx1 the system is represented in controllable canonical 

form. 
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The controllable canonical form; 

�̃� =

[
 
 
 
 

0 1 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

−𝑎1 −𝑎2 ⋯ −𝑎𝑛]
 
 
 
 

                                                                                                (3.5) 

�̃� = [

0
0
⋮
1

]                                                                                                                                        (3.6) 

If these matrices are not in controllable canonical form, there is a linear transformation P 

which brings them into controllable canonical form. 

𝑃 = 𝑀�̃�−1                                                                                                                                  (3.7) 

Where �̃� = [�̃� ⋮ �̃��̃� ⋮ ⋯ ⋮ �̃��̃�𝑛]                                                                                            (3.8) 

𝑃−1𝐴𝑃 = �̃�                                                                                                                                (3.9) 

𝑃−1𝐵 = �̃�                                                                                                                                  (3.10) 

Using these new matrices, the gain 𝐾 is calculated via desired locations. For the finding 

original feedback gain; 

𝐾 = �̌�𝑃−1                                                                                                                                (3.11) 

For the rotary inverted pendulum; 

The controllability matrix; 

𝑀 = 1 × 105 [

0 0.0003 −0.0052 0.1086
0 0.0004 −0.0063 0.1479

0.0003 −0.0052 0.1086 −2.2336
0.0004 −0.0063 0.1479 −3.0087

]                                        (3.12) 

The rank of M is 4. In other words, the system is completely controllable. Hence, all poles 

of the system can be replaced to any desired locations by state feedback. 
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In the default Quanser setup, the gearbox efficiency and motor efficiency are chosen as 1 

when the system’s equations are found. However, in this thesis these values are selected 

from SRV02 manual and these values are shown in Table 2.2.  

For the both cases (ideal case and with actual efficiency), the design specifications are 

chosen same with setup values. According to the setup workbook, [9] 

Specification 1: Damping ratio should be 0.7.  (𝜁 = 0.7) 

Specification 2:  Natural frequency should be 4 rad/s. (𝑤𝑛 = 4  𝑟𝑎𝑑/𝑠) 

Specification 3: Maximum pendulum angle deflection should be |𝛼| < 15 𝑑𝑒𝑔. 

Specification 4: Maximum control voltage |𝑉𝑚| < 10 𝑉. 

Specification 5:  Two desired poles are chosen at -30 and -40.  

The other poles (dominant poles) should be satisfying the damping ratio and natural 

frequency identifications. Hence, dominant poles can define as:  

𝑝1 = −𝜎 + 𝑗𝑤𝑑                                                                                                                        (3.13) 

𝑝2 = −𝜎 − 𝑗𝑤𝑑                                                                                                                         (3.14) 

Where  𝑤𝑑 is  the damped natural frequency and it is calculated as  

𝑤𝑑 = 𝑤𝑛√1 − 𝜁2                                                                                                                     (3.15) 

and σ is calculated as; 

𝜎 = 𝜁𝑤𝑛                                                                                                                                      (3.16) 

Using equations 3.15 and 3.16, the desired locations of dominant poles are found as  

𝑝1,2 = −2.80 ∓ 𝑗2.86                                                                                                             (3.17) 

The system and input matrices given in (2.66) and (2.67) aren’t in controllable canonical 

form.  Hence, these matrices are transformed into controllable canonical form using 

transformation matrix P.  
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Using equation (3.7), (3.8) and (3.9), transformation, new system and input matrices are 

found. These are; 

 

𝑃 = 103 × [

−1.349 0.0167 0.0298 0
0 0 0.0352 0
0 −1.349 0.0167 0.0298
0 0 0 0.0352

]                                                      (3.18) 

�̃� = [

0 1 0 0
0 0 1 0
0 0 0 1
0 750.685 99.029 −17.9098

]                                                                       (3.19) 

�̃� = [

0
0
0
1

]                                                                                                                                     (3.20) 

After the transformation, using the new state space matrices the desired gain matrix is 

found as  

𝐾 = 104[1.920 0.8591 0.1707 0.0058]                                                                 (3.21) 

Using equation (3.11) the original system’s gain is found  

𝐾 = [−14.224 63.587 −6.5397 7.1702]                                                              (3.22) 
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3.2. Routh Hurwitz stability criterion  

Routh Hurwitz stability criterion represents the stability condition of system with respect 

to the characteristic equation of the system.  The coefficients of the characteristic equation 

composed of the Routh Hurwitz table’s elements.  

If the characteristic equation of the system is defined as  

𝐷(𝑠) = 𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯⋯ + 𝑎1𝑠 + 𝑎0 = 0                                                         (3.23) 

 

The stability table is: 

 

Figure 3.2: The sample Routh Hurwitz table 

For the first two rows are created from characteristic equation and the other coefficients 

of rows (in Figure 3.3) are found such as  
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Figure 3.3: Calculation of the table elements 

 

According to this theory, for stability, the necessary condition defines as all coefficients 

must be nonzero and sufficient condition is that coefficients of the characteristic equation 

should have positive signs. In addition, according to the Routh Hurwitz table, number of 

unstable poles are found without solving characteristic equation. For stability, the first 

column of this table should be positive. If there is any sign change in the first column, the 

number of sign changes will give the number of the instable poles of the system.   

In order to determine the stability condition in the genetic algorithm, the gain values of 

proportional controller are checked by Routh Hurwitz stability criteria. And in the first 

column of the table should not be sign change. 

The characteristic equation of the system is determined as 

𝐷(𝑠) = 𝑠4 + 𝑠3(29.8002𝐾3 + 35.2259𝐾4 + 17.9098)

+ 𝑠2(29.8002𝐾1 + 35.2259𝐾2 + 16.6688𝐾3 − 6.2510 × 10−14𝐾4

− 99.0298)

+ 𝑠(16.6688𝐾1 − 6.2510 × 10−14𝐾2 − 1349.9𝐾3 − 750.6851)

− 1349.9𝐾1                                                                                                   (3.24) 
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The values of first column of Routh Hurwitz table; 

𝑅1 = 29.8002𝐾3 + 35.2259𝐾4 + 17.9098                                                                      (3.25) 

 

𝑅2 = [(6.25 × 10−14𝐾2) − (16.6688𝐾1) + (1.3499 × 103𝐾3)

+ ((29.8002𝐾3) + (35.2259𝐾4) + 17.9098)

× ((29.8002𝐾1) + (35.2259𝐾2) + (16.6688𝐾3) − (6.25 × 10−14𝐾4)

− 99.0298) + 750.6851]

÷ [29.8002𝐾3 + 35.2259𝐾4 + 17.9098]                                             (3.26) 

 

𝑅3 = [  −( 6.25 × 10−14𝐾2) + (16.6688𝐾1) − (1.3499 × 103𝐾3)

+ (296838677059371𝐾1((29.8002𝐾3) + (35.2259𝐾4)

+ (320.7592)]

÷ [(219902325552 × ( 6.25 × 10−14𝐾2)

− (16.6688𝐾1)(1.3499 × 103𝐾3)

+ ((29.8002𝐾3) + (35.2259𝐾4) + 17.9098) × (29.8002𝐾1)

+ (35.2259𝐾2) + (16.6688𝐾3) − (6.25 × 10−14𝐾4) − (99.0298)

+ (750.685)) − 7.5069 × 105]                                                              (3.27) 

 

𝑅4 = −1.3499 × 103𝐾1                                                                                                        (3.28) 
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3.3. Genetic Algorithms  

Genetic Algorithm is one of the popular meta-heuristic search method that is generally 

applied to optimization problems of different types design controllers’ method. This 

method is inspired by Darwin’s theorem of natural selection. The search starts by 

composing a population of random potential solutions that are called as chromosomes. 

The relative success of each chromosome in the population to solve the given optimization 

problem is called as the fitness of the chromosome. If the fitness value for a chromosome 

is relatively high that means chromosome is well equipped to solve the optimization 

problem. After evaluation of the fitness values of each chromosome in the population, a 

selection procedure is carried out to determine the chromosomes that will contribute to 

the construction of the new population through genetic operations that are called as 

crossover, mutation and reproduction. The selection operation is generally based a 

criterion depending on the fitness of the chromosomes that gives more chance for the 

chromosomes having relatively higher fitness values. However, sometimes the selection 

operation can also happen to choose random chromosomes as well. If the selection 

procedure is carried out wisely, generally the average fitness value of the next population 

will be greater than the previous one. Besides the best chromosome in the population will 

probably have the highest fitness value of each chromosome created until that point. This 

process is carried out for several generations and it is terminated when assumed that the 

best chromosome is somehow achieved. In this process, three genetic operations and how 

these three genetic operations are carried out are significant for genetic algorithm. These 

are selection, mutation and crossover. These genetic operations are milestone to guarantee 

that the search continuous properly and in general better chromosomes are obtained and 

selected in new generations.  
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Figure 3.4: The flow chart of genetic algorithms 

  

3.3.1 Creating the initial population  

 Population defines as a subset of solutions in the present generation. Also, it is made up 

of a group of chromosomes. In order to start the genetic algorithms, initial population is 

generated randomly for attempted solutions. In this thesis, gain values of controllers are 

determined as individuals or chromosomes.  
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A chromosome for the considered optimization problem is a vector with four different 

state feedback gain values hence it can be formulated as  

𝐶ℎ = [𝐾1 𝐾2 𝐾3 𝐾4]                                                                                                     (3.29)  

Here K1, K2, K3 and K4 are the genes of chromosome. The definition for K1, K2, K3 and K4 

are given in the beginning of Chapter 3.  

Each gene in the chromosomes of the initial population are selected randomly in the range 

between -100 and 100 with one exception: As we check the R4 of the Routh Hurwitz array, 

it seems that in order to have a positive R4 that is required to have stable closed loop poles 

as the result of state feedback K1 value should be negative. Hence the gene K1 for each 

chromosome is selected from a range of values between 0 and -100. This process narrows 

the search space and it will make improve the computation time of the genetic algorithm 

search.  

3.3.2 Cost functions and fitness  

In order to measure the competitiveness and achievement of any chromosome to solve the 

optimization problem a suitable non-negative cost function should be constructed. The 

cost function penalties the undesired outcomes a chromosome possesses. If more than one 

condition should be checked during optimization, the cost function should include more 

than one criterion. For this reason, seven different criteria (conditions) are determined to 

contribute to the cost function and hence a multi criteria optimization procedure is carried 

out.   

The first four conditions are related with Routh- Hurwitz array. The first column of the 

Routh Hurwitz array (for the problem it corresponds to 1, R1, R2, R3 and R4) should all 

have the same sign (they should all be positive) to guarantee that all the poles of the system 

after state feedback are replaced in the left open half plane making the system theoretically 

stable. 
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Hence R1, R2, R3 and R4   can be converted into inequalities in the cost function to support 

stability as: 

If 𝑅1 > 0 𝑐𝑜𝑠𝑡1 = 0.001 × |𝑅1| else 𝑐𝑜𝑠𝑡1 = 0                                                               (3.30) 

 If 𝑅2 > 0 𝑐𝑜𝑠𝑡2 = 0.001 × |𝑅2| else 𝑐𝑜𝑠𝑡2 = 0                                                             (3.31) 

If 𝑅3 > 0 𝑐𝑜𝑠𝑡3 = 0.001 × |𝑅3| else 𝑐𝑜𝑠𝑡3 = 0                                                              (3.32) 

If 𝑅4 > 0 𝑐𝑜𝑠𝑡4 = 0.001 × |𝑅4| else 𝑐𝑜𝑠𝑡4 = 0                                                              (3.33) 

The procedure to determine cost1 to cost4 punishes a potential solution (chromosome) 

which replaces one or any of the poles to the right half plane, hence makes the system 

unstable. In other words, if the values of the first column of Routh table are not greater 

than zero, the chromosome is punished. These four cost functions are necessary to show 

that the system is stable however they are not sufficient to exactly show the locations of 

the closed loop poles. Routh Hurwitz only give information of the closed loop system 

implicitly.  

The fifth condition examines the location of the closed loop eigenvalues of the system 

explicitly and it also checks the relative locations of the eigenvalues based on some 

relative stability criterion. For these two sub conditions two different cost contributions 

are measured based on either the chromosome is stable or not.  

Sub condition 1: If all the eigenvalues are replaced to the open left half plane, the cost 

function checks their relative positions of eigenvalues with respect to imaginary axis. If a 

pole is close to the imaginary axis, it has relatively a higher contribution to the cost 

function and if a pole is far away from the imaginary axis its contribution to the cost is 

limited. 

When the real parts of all eigenvalues are negative, the condition will be  

𝑐𝑜𝑠𝑡51 = 0.25 × ∑
1

|𝑟𝑒𝑎𝑙(𝑝𝑖)| + 1

4

𝑖=1

                                                                                   (3.34) 
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Where the real parts of where pi is the ith eigenvalue of the chromosome. When the real 

part of at least one eigenvalue is greater than or equal to zero, the condition will be 

𝑐𝑜𝑠𝑡51 = 0.25 × ∑|𝑟𝑒𝑎𝑙(𝑝𝑖)| + 𝑛

𝑛

𝑖=1

                                                                                    (3.35) 

Where n is the number of eigenvalues that are in the right half plane, pi is the value of the 

ith eigenvalue in the right half plane.  

Sub condition 2: Cost51 in its current shape only considers the position of the poles with 

respect to imaginary axis, however if a stable eigenvalue is very close to the imaginary, 

in practical applications it has potential to make the system unstable. For this reason, to 

guarantee that all the stable eigenvalues are relatively away from the imaginary axis a new 

cost contribution is also added as an extra term. For this reason, the eigenvalues which are 

between the imaginary axis and s=-2 line in s-plane are further punished. Hence for a 

chromosome which has stable eigenvalues  

𝑐𝑜𝑠𝑡52 = 0.25 × ∑𝑟𝑒𝑎𝑙(𝑚𝑖) + 𝑘 × 0.5

𝑘

𝑖=1

                                                                         (3.36) 

Where k is the number of eigenvalues which reside between the imaginary axis and s=-2 

line of s-plane and mi is the value of the corresponding eigenvalue. 

The term cost52 evaluated for a stable chromosome should also be calculated for an 

unstable chromosome to balance the effect of punishment. The maximum value of cost52 

for a stable chromosome can be equal to 2 hence a punishment cost of two units is also 

added to cost5 for unstable chromosomes using 

𝑐𝑜𝑠𝑡52 = 2                                                                                                                                (3.37) 

Finally, cost5 is calculated for some of the applications only accounting cost51 hence for 

these applications: 

𝑐𝑜𝑠𝑡5 = 𝑐𝑜𝑠𝑡51                                                                                                                         (3.38) 
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For the remaining applications the relative stability sub condition is also considered hence 

for these remaining applications cost5 is calculated using, 

𝑐𝑜𝑠𝑡5 = 𝑐𝑜𝑠𝑡52                                                                                                                         (3.39) 

The sixth condition is linked with total values of gains of restriction. Absolute values of 

gains should be equal or less than some total values.  These total values selected as 

30,60,90 and 120.  If the summation of gain values is greater than total value, the condition 

is defined as  

|𝐾1| + |𝐾2| + |𝐾3| + |𝐾4| ≥ 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

 𝑐𝑜𝑠𝑡6 = 𝑐𝑜𝑠𝑡6 + 0.01 × (|𝐾1| + |𝐾2| + |𝐾3| + |𝐾4|) − 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒                        (3.40) 

The last condition is correlated with absolute values of real and imaginary parts of 

eigenvalues. If a stable poles has some imaginary parts, the imaginary part/absolute (real 

part) ratio should be smaller than a threshold value in order to minimize the effect of 

undamped oscillations. If the absolute value of real parts is four times less than absolute 

value of imaginary part, the condition will be, 

𝑐𝑜𝑠𝑡7 = 𝑐𝑜𝑠𝑡7 + 0.01 × (4 × |(𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡)| − |(𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡)|)                     (3.41)  

The total cost function is defined for different four cases.  For all case, the first four 

conditions are common. In case one, dominant poles and ratio of imaginary part /real part 

conditions are neglected. Then the cost function defined as for case one, 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡1−4 + 𝑐𝑜𝑠𝑡51 + 𝑐𝑜𝑠𝑡6                                                                           (3.42) 

In case two, only dominant pole condition does not be included and the cost function 

defined as; 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡1−4 + 𝑐𝑜𝑠𝑡51 + 𝑐𝑜𝑠𝑡6 + 𝑐𝑜𝑠𝑡7                                                           (3.43) 

For the last two cases, case one and case two are examined again with the dominant pole 

case condition.  

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡1−4 + 𝑐𝑜𝑠𝑡51 + 𝑐𝑜𝑠𝑡52 + 𝑐𝑜𝑠𝑡6                                                         (3.44)  
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𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡1−4 + 𝑐𝑜𝑠𝑡51 + 𝑐𝑜𝑠𝑡52 + 𝑐𝑜𝑠𝑡6 + 𝑐𝑜𝑠𝑡7                                         (3.45) 

The fitness function is depicted as a function which the algorithm tries to optimize. It is 

an essential part in genetic algorithms because the fitness function tests the candidate 

solutions and measures each candidate solutions’ ability to solve the optimization 

problem. 

Fitness can be defined in many ways. However, for the sake of simplicity in the 

simulations for all cases it is defined as 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
                                                                                                            (3.46) 

3.3.3 Fitness normalization 

 Fitness normalization is necessary in order to define the relative fitness values of each 

individual (chromosome) with respect to each other. For that reason, the fitness values of 

each individual is recalculated by dividing the fitness values by the summation of fitness 

values of each individual in the generation. Therefore, after this normalization process, 

the summation of all fitness values becomes 1.  

3.3.4 Selection 

Selection is the mechanism to choose chromosomes for genetic operators with generally 

based on the fitness function. In this thesis, the most common selection approach, Roulette 

Wheel, is used.  According to this approach, population is located on the roulette wheel 

based on their normalized fitness values. The portion of each section is correlated with the 

normalized fitness value of the corresponding chromosome. In other words, the fittest 

individuals have large portions and the weakest individuals have smallest portions in the 

roulette wheel.  
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Therefore, the individual with the largest portion in the roulette wheel has the highest 

probability to be selected for the genetic operations and the individuals ordered after the 

fittest individual have slightly less probability to be selected for the genetic operations 

with the least fit individual having the worst selection chance for the genetic operations.  

 

Figure 3.5: The roulette wheel approach   

[13] 

3.3.5 Crossover and mutation reproduction 

 Crossover is similar to biological crossover procedure. Hence, the crossover in genetic 

algorithm is defined as a method of recombination and knowledge transfer between two 

selected adult chromosomes to yield two new offspring (chromosomes generated for next 

generation). Generally, crossover can be handled by different methods: either some genes 

of the adult chromosome are exchanged or some genes of the adult chromosomes 

generated by linear interpolation.  In genetic algorithms, mutation is defined as a random 

deformation in a single chromosome (a simple or multiple gene modification), of with a 

certain probability. 
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In this thesis, the adult chromosomes for crossover operation are determined with mixed 

selection procedures. The first half of chromosomes are chosen with respect to their fitness 

values using roulette wheel selection.  

The other half of the chromosomes are selected as a mixture of random selection and 

roulette wheel selection where the abundance of the chromosomes in this half are chosen 

by roulette wheel selection and only 5 of the chromosomes are selected randomly. 

Mutation and reproduction procedures are applied randomly however in reproduction the 

elitism method is also applied (the fittest chromosome of the current generation is directly 

inserted into next generation) 

3.4 Genetic Algorithm’s parameter  

In all the simulations the genetic algorithm search parameters are presented in Table 3.1 

for genetic algorithms.  

Table 3.1: Genetic Algorithm's parameters 

Population Size=200 Number of Chromosome =400  

Number of Variables (Genes)=4 Ratio of Crossover=0.9  

Number of Generation=500 Ratio of Reproduction=0.06 

Ratio of Mutation=0.04  
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CHAPTER 4 

SIMULATION AND EXPERIMENTAL RESULTS 

In this chapter, genetic algorithm optimization results for different simulation are 

tabulated. The optimization results give the gain values and corresponding eigenvalues as 

the result of state feedback control. Then in real time applications, these gain values are 

used in hold mode of the rotary inverted pendulum and the performance of corresponding 

real time applications are compared with the default state feedback computation.  In real 

time application some of the gain values obtained as the result of optimization process are 

not able to keep the pendulum in hold mode. However, some of the gain values managed 

to keep the pendulum at upright position. For the gain values where the real time 

application becomes successful corresponding arm angle (θ), pendulum angle (α) and 

applied voltage waveforms are drawn. The main mechanism that makes some of the real 

time application successful and some unsuccessful seems to be the total absolute gain 

values in the optimization simulations. When total absolute gain value is limited to 30 

(means extra penalty is given to the chromosomes that passes this limit value), for all four 

cases given by the cost equations 3.42, 3.43, 3.44, 3.45, the pendulum is not able to pass 

from swing up mode to hold mode successfully. What is observed is the pendulum makes 

a full cyclic turn, tries to get into hold on mode once again by speeding up and generally 

hits the corner of the set up and restarts swing up mode of operation. When the total 

absolute gain value is limited to 60, only one case is unsuccessful (given by the cost 

equation 3.44). When the total absolute gain value is limited to 90, the pendulum is 

successful only one case (given by cost equation 3.45). And finally when the total absolute 

gain value is 120, two cases are successful (given by cost 3.43 and 3.45) 

After this step, the most successful genetic algorithm and default setup results are once 

again tested for reference signal tracking due to different type of reference changes in arm 
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angle in steady state conditions and application of disturbance that increases the arm’s 

mass.  

4.1.  Experimental results  

4.1.1 Default result  

Gain values are defined in setup manual as a 

𝐾 = [−5.2612  28.1568  2.7576  3.2190] 

These gain values are obtained when the motor efficiencies are taken as 1 and these gain 

values are assumed to replace the eigenvalues of the system to locations -30, -40 and 

2.80±j2.86. When these gain values are used in state feedback in hold mode of operation 

in real time application, the corresponding arm angle, pendulum angle and applied voltage 

plots are obtained in Figure 4.1, 4.2 and 4.3 respectively.  

 

Figure 4.1:The arm angle of setup 

To observe the oscillation, Figure 4.1 is zoomed out and this area shows in Figure 4.1.1 
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Figure 4.1.1: The oscillation in the pendulum angle 

 

 

Figure 4.2: The pendulum angle of setup 
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Figure 4.3: The voltage of setup 

All the plots are drawn only after the pendulum controller enters to hold mode of operation 

for the first time. As seen from Figure 4.2, the pendulum first enters the hold mode of 

operation but it cannot stabilize in hold mode at first step and then it returns back to swing 

up mode and makes a cyclic turn of 360 degrees (the switch between 0 to -180 degree, the 

jump from -180 degree to 180 degrees and the drop from 180 degrees to nearly 0 degree 

in the first 2-3 seconds of the figure) and then finally stabilizes at the second step.  The 

pendulum stabilizes at the unstable equilibrium point.  

However, in Figure 4.1 and Figure 4.1.1 some oscillations are observed around the 

reference set point (θ = 0 degrees). These oscillations are not at desired levels however 

they keep the pendulum at upright position. (Oscillation degree is ±2 degree) In Figure 

4.3, except for the transient situations where the system turns from swing up mode to hold 

mode, it seems the applied voltage levels are staying in desirable ranges (in the figure only 

the voltage levels at hold mode of operation are shown). 
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4.1.2 State feedback result 

When the efficiencies of the motor are taken from Table 2.2, the gain values that should 

be applied at state feedback control to replaces the eigenvalues of the system to -30, -40, 

-2.80±j2.86 are calculated as 

𝐾 = [−14.224 63.587 −6.5397 7.1702]  

When these gain values are used in state feedback in hold mode of operation in real time 

application, the corresponding arm angle, pendulum angle and applied voltage plots are 

obtained in Figure 4.4, 4.5 and 4.6 respectively.  

 

Figure 4.4:The arm angle for state feedback controller 

To observe the oscillation, Figure 4.4 is zoomed out and this area shows in Figure 4.4.1 
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Figure 4.4.1: The oscillation in the pendulum angle 

 

 

 

Figure 4.5:The pendulum angle  for state feedback controller 
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Figure 4.6:The voltage for state feedback controller 

  

Accordance with Figure 4.4 and Figure 4.4.1 although the oscillation is observed, its range 

is smaller than default setup values. (Oscillation range is between 0° and -1°) The second 

component of the gain value (K2=63.587) of pendulum angle is almost three times higher 

than the same gain component of the default set up. Hence, high gain value at this 

component seems to create the vibration. Besides, for both state feedback configurations 

eigenvalues satisfy the desired pole locations which are found in Chapter 3. 

4.1.3 Genetic Algorithm results  

The gain values and eigenvalues are tabulated for each case and they are presented in 

Table 4.1, Table 4.2, Table 4.3 and Table 4.4, respectively and between Figure 4.7 and 

Figure 4.24 show three parameters in graphically. 
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Table 4.1:  Gain values and eigenvalues for case 1 

 

Total gain limit K Eigenvalues  

30 [-3.3574 22.2601 -4.7755 4.5875] -25.8170; -5.2570±13.225i; 

-0.8667 

60* [-6.9181 45.5623 -4.7962 5.7963] -60.5832; -12.385; 

-3.1321±1.6236i 

90 [-11.5339 51.0750 -14.1884 

13.0375] 

-37.0866; -8.1808±19.9495i; 

-0.9030 

120 [-19.8067 69.5498  -15.4636 

14.2932] 

-32.1925; -1.5146 

-13.4375±19.1722i 

 

Associated with Table 4.1, all four conditions have complex eigenvalues.  Apart from the 

result with total gain limit is 60, the imaginary parts of complex eigenvalues have high 

value. And dominant poles are very close to imaginary axis. Among these result only 

condition 2 where the absolute gain is limited with 60 is successful. What is observed in 

condition 2 its dominant pole is more away from the imaginary axis with respect to 

dominant poles of other conditions.  

 

 

 

 

 “ * “ represents the succesful conditions in each case 



47 
 

Table 4.2:  Gain values and eigenvalues for case 2 

Total gain limit K Eigenvalues  

30 [-6.7941 52.5941 -8.5575 8.5723] -25.6137; -19.6845;  

-18.5846;-0.9788 

60* [-4.2142 41.0792 -4.0519 5.6020] -80.9256; -6.6712; -4.6205;  

-2.2805 

90 [-12.1542 58.2901 -8.6790 8.7829] -37.2222; -14.7065±1.216i;  

-2.0241 

120* [-11.1376 70.4842 -7.6880 9.6869] -113.8569; -8.0871; -4.2462; 

-3.8452 

 

 

According to the Table 4.2 all eigenvalues except the condition where the total absolute 

gain limit value equals 90 are real and still in this condition the absolute imaginary part to 

absolute real part ratio is low due to cost function 3.43. Except for the first condition where 

the gain limit is 30, dominant poles are comparably away from the imaginary axis. Among 

these results the second and the fourth conditions are successful, the first and the third 

conditions are unsuccessful. 

 

 

 

 

 

 

 

 

“ * “ represents the succesful conditions in each case 
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Table 4.3: Gain values and eigenvalues for  case 3 

Total gain limit K Eigenvalues  

30 [-16.3777 43.4141 -9.9133 9.0397] -27.9306; -2.0194; 

 -5.4865±19.0225i; 

60 [-14.4045 52.7235 -20.3744 21.7687] 100×(-1.7273; -0.0075; 

-0.0205±0.1207i) 

90 [-22.3198 50.6343 -13.0103 12.2167] -50.8915; - 1.9994;  

-3.8268±16.7765i; 

120  [-16.5060 41.7552 -5.7214 5.5727] -11.0012±8.2449i; 

-10.8560±0.1871i 

 

Table 4.4: Gain values and eigenvalues for  case 4 

Total gain limit K Eigenvalues  

30 [-21.0713 86.6592 -14.2016 13.8867] -47.8376; -2.0007; 

-17±2.7633i 

60* [-13.9091 77.1822 -10.3866 11.2741] -82.8702; -2.0;  

-10.3285±2.5701i; 

90* [-6.4366 61.7867 -5.6803 8.8923] -150.2543; -4.1609; 

-3.8503;-3.6094 

120 * [-11.9264 77.7633 -8.6061 10.4792] -112.3599; -10.7552; 

-4.5285;-2.9418 

 

 

“ * “ represents the succesful conditions in each case 
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According to the Table 4.3, for condition 1 there is a slightly dominant pole however the 

complex conjugate poles have slightly high imaginary parts and that makes the system 

prone to oscillatory behavior. For condition 2, the dominant pole is very close to the 

imaginary axis. Condition 3 represents similarities with condition 1 and interestingly 

condition 4 has no dominant poles with one complex conjugate pair eigenvalues having 

imaginary part values being slightly close to the real part values. None of the 

corresponding conditions are able to successfully hold the pendulum. None of the 

conditions in Table 4.3 are able to hold the pendulum successfully. For that reason, real 

time applications of pendulum angle, arm angle and applied voltage don’t be given in this 

case. 

In Table 4.4, all eigenvalues for each condition are at the left side of s= -2. In real time 

application except for the condition where absolute gain limit is 30, all conditions manage 

to keep the pendulum in upright position.  However, condition will cause of   some 

oscillation in second component of the gain values in each condition appears to be very 

big. In addition, all dominant poles are close to -2. Hence, the effect of dominant poles is 

reduced and the pendulum gets into steady state more rapidly. The figures of arm angle 

pendulum angle and applied voltage for successful real time applications are given starting 

from Figure 4.7 to Figure 4.24. 
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For case 1, only total absolute gain value limitation  60 condition is graphed and real time 

applications are given Figure 4.7 to Figure 4.9 

 

Figure 4.7:The arm angle when total gain value=60 for case 1 

 

To observe the oscillation, Figure 4.7 is zoomed out and this area is shown in Figure 4.7.1. 

 

Figure 4.7.1:The oscillation in the arm angle 

The oscillation range is between 0 and -1 degrees. This range is smaller than default 

condition.  
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Figure 4.8: The pendulum angle when total gain value=60 for case 1 

 

 

Figure 4.9: The voltage when total  gain value=60 for case 1 
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For the case 2, total absolute gain value=60 and total absolute gain value=120 conditions 

are successful. Therefore, their real time applications are given Figure 4.10 to Figure 4.15 

 

Figure 4.10: The arm angle when total  gain value=60 for case 2 

 

 

 

Figure 4.11: The pendulum angle when total gain value=60 for case 2 
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Figure 4.12: The voltage when total gain value=60 for case 2 

 

 

 

Figure 4.13 The arm angle when total gain value=120 for case 2 
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Figure 4.14: The pendulum angle when total  gain value=120 for case 2 

 

 

 

Figure 4.15: The voltage when total gain value =120 for case 2 
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For the case 4, total absolute gain value=60, total absolute gain value=90 and total absolute 

gain value=120 conditions are successful. Therefore, their real time applications are given 

Figure 4.16 to Figure 4.24 

 

 

Figure 4.16: The arm angle when total gain value=60 for case 4 

 

 

 

Figure 4.17:  The pendulum angle when total gain value=60 for case 4 
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Figure 4.18: The voltage when total gain value=60  for case 4 

 

 

 

Figure 4.19: The arm angle when total gain value=90 for case 4 
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Figure 4.20: The pendulum angle when total gain value=90 for  case 4 

 

 

Figure 4.21: The voltage when total gain value=90 for case 4 
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Figure 4.22: The arm angle when total gain value=120 for case 4 

 

 

 

Figure 4.23: The pendulum angle when total  gain value=120 for case 4 
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Figure 4.24:  The voltage when total gain value=120 for case 4 

 

Compared with the results of 4.1.1 and 4.1.2 the genetic algorithm methods provide better 

solution even if some oscillation and vibration are also observed in these results. However, 

in the genetic algorithm results, these side effects are comparably removed at some extent.  

K2 gain value is related with pendulum angle. As K2 gain value gets higher we generally 

observe unsuccessful transition from the swing up mode to hold mode of operation that 

produces unsuccessful hold mode of operation.  

This can be due to other parameters of the swing up mode of operation such as the epsilon 

value which represents the threshold pendulum angle value when the controller passes 

from swing up mode to hold mode. Epsilon is nearly ± 12 degrees and in the transition 

from swing up mode to hold mode that K2 is multiplied with ± 12 degrees in state feedback 

operation and this occasion probably produces very significant applied voltage component 

to the system which can make the pendulum move rapidly when it is nearly in upright 

position.     
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In real time applications, one interesting thing has happened. That is observed in case 4 

when the total absolute gain value is limited to 60. The pendulum stayed in upright 

position motionless (α=0°) after a transient period and after that no oscillations are 

observed. (in Figure 4.16, Figure 4.17 and Figure 4.18) 

4.2 Reference input tracking capability 

The reference input tracking capabilities of the controllers is a significant test for 

concluding whether the controllers are working properly or not. For this reason, some real 

time reference signal tracking applications are proposed. The system performance is tested 

in the existence of square and sinusoidal reference signals applied to arm angle (θ) with 

frequencies of 0.1 and 0.5 Hertz and with an amplitude of 1 (1 degrees). When the 

frequency is 0.5 Hertz, in of the applications, the amplitude of the reference signal is taken 

as 2 degrees. For this purpose, default values, the result in state feedback controller and 

some cases in genetic algorithm is tested.  All results are shown in graph and in these 

graphs, the real time applications present between 10th and 30th seconds.  In other words, 

only hold positions are graphed. In these graphs reference input signal compares to arm 

angle.  
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4.2.1 Default results  

 

Figure 4.25:The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.1 Hz 

 

 

Figure 4. 26: The reference input(green) in sinusoidal wave, the arm angle of the system 

(blue) when f=0.1 Hz 
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Figure 4.27: The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz 

 

 

Figure 4.28: The reference input (green) in sinusoidal wave, the arm angle of the system 

(blue) when f=0.5 Hz 
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Figure 4.29: The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz with amplitude =2 

 

As it can see that, from Figures 4.25 to Figure 4.29, the difference between the reference 

signal and degree of the arm angle is high. Hence, default controller cannot track the 

reference input signals very well. 

4.2.2 State feedback results 

Figure 4.30: The reference signal in square wave (green) and the arm angle of the system (blue) 

when f=0.1 Hz 
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Figure 4.31: The reference signal in sinusoidal wave (green) and the arm angle of the 

system (blue) when f=0.1 Hz 

The state feedback is only drawn for reference signals that has 0.1 Hertz frequency and an 

amplitude of 1 degree as the other reference signal tracking applications terminated 

unsuccessfully.  In 0.1 Hertz, in Figure 4.31 the maximum difference in reference input 

and arm angle degree is 1.5 degree. This difference is shown in red ellipse. However, in 

low frequency and amplitude reference tracking is somehow successful.  

4.2.3 Genetic Algorithm’s results  

Among genetic algorithm results we only have shown the results for case 1 when the total 

absolute gain value is limited to 60 as it has the best performance. The results for reference 

tracking are given Figure 4.32 to Figure 4.37. 
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Figure 4.32: The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.1 Hz for case 1 

 

 

 

Figure 4.33: The reference signal in sinusoidal wave (green) and the arm angle of the 

system (blue) when f=0.1 Hz for case 1 
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Figure 4.34: The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz for case 1 

 

  

 

Figure 4.35:The reference signal in sinusoidal wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz for case 1 
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Figure 4.36:The reference signal in square wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz amplitude =2 for case 1 

 

 

Figure 4.37:The reference signal in sinusoidal wave (green) and the arm angle of the 

system (blue) when f=0.5 Hz amplitude=2 for case 1 

In these results generally the controller is successful in tracking reference signals with 

lower frequencies. However, as the frequency increases the tracking capability decreases 

still sustaining the pendulum in upright position. Hence we can conclude that the 

controller is successful in reference signal tracking in general. 
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4.3 The effects of disturbances  

In order to observe effect of disturbances in rotary inverted pendulum, two different extra 

masses are putting to the arm when the system is stabilized around the equilibrium point.  

For this purpose, two materials are selected and their masses are 216.2 g and 516.2 g. 

Then, the arm angle and voltage values are monitored in two conditions: without reference 

input signal and with reference input tracking condition. In without reference input signal 

condition, reference input is adjusted as a zero. In other condition, reference input signal 

is a square wave signal and its frequency 0.1 Hz and its amplitude is 2.  

Firstly, real time application is run as in section 4.2, using design controllers, and the 

position of set point is set to 0. At the 13th second (after the system is stabilized at the 

unstable equilibrium point), light extra mass (216.2 gram) is put on the rotary arm and the 

following the arm angle and control voltage signals are observed in. Similar steps are 

applied for heavy extra mass. To monitor the effects of disturbances, state feedback 

controller’s results and in GA, total value=60 for case 1 are selected.  

For the without reference input signal case: 

 

Figure 4.38:The arm angle in case of a light extra mass disturbance for state feedback 

controller 
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Figure 4.39:The voltage in case of a light extra mass disturbance for state feedback 

controller 

 

 

Figure 4.40:The arm angle in case of a heavy extra mass disturbance for state feedback 

controller 
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Figure 4.41:The voltage in case of a heavy extra mass disturbance for state feedback 

controller 

 

 

 

Figure 4.42:The arm angle in case of light extra mass disturbance for case 1  

total gain value=60 
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Figure 4.43:The voltage in case of light extra mass disturbance for case 1  

total gain value=60 

 

Figure 4.44:The arm angle in case of heavy extra mass disturbance for case 1 
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Figure 4.45:The voltage in case of a heavy extra mass disturbance for case 1  

total gain value=60 

 

For the with the reference input track condition: 

 

Figure 4.46: The arm angle (blue) in case of a light extra mass disturbance for state 

feedback controller and the reference input signal (green) 
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Figure 4.47: The voltage in case of a light extra mass disturbance for state feedback 

controller in the reference input signal tracking condition 

 

Figure 4.48:The arm angle (blue) in case of a heavy extra mass disturbance for state 

feedback controller and the reference input signal (green) 
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Figure 4.49: The voltage in case of a heavy extra mass disturbance for state feedback 

controller in the reference input signal tracking condition 

 

 

Figure 4.50:The arm angle (blue) in case of a light extra mass disturbance for case 1 

total gain value=60 and the reference input signal (green) 
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Figure 4.51:The voltage in case of a light extra mass disturbance for case 1 

 total gain value=60 in the reference input signal tracking condition 

 

 

 

Figure 4.52:The arm angle (blue) in case of a heavy extra mass disturbance for case 1 

total gain value=60 and the reference input signal (green)  
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Figure 4.53: The voltage in case of a light extra mass disturbance for case 1 total gain 

value=60 in the reference input signal tracking condition 

 

In all disturbance conditions both the state feedback controller with lower DC motor 

efficiency values and the controller obtained by genetic algorithm shows satisfactory 

results. According to the Figure 4.44 and Figure 4.52, when the disturbance is added, the 

difference between reference input and the arm angle is high. After this time, the arm 

angle tracks the reference input. 

4.4 Performance index measurement of controller  

In control theory, a performance index is a quantitative measurement of the performance 

of the system. This index is chosen to meet design specifications of important parameters 

of the system. An optimum control system is that the system parameters are arranged so 

that the index reaches an extremum value, commonly a minimum value. There are some 

common performance indexes such as:  

 Integral Square Error (ISE)  

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
𝑡=∞

𝑡=0

                                                                                                   (4.1) 
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 Integral of Absolute Magnitude of Error (IAE) 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡 
𝑡=∞

𝑡=0

                                                                                                 (4.2) 

 Integral Time Absolute Error (ITAE) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡 
𝑡=∞

𝑡=0

                                                                                            (4.3) 

 Integral Time Square Error (ITSE)  

𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑡=∞

𝑡=0

                                                                                              (4.4) 

In all of the above equations e(t) represents error response of the system. Integral  defines 

between 0 and ∞. But, upper and lower limits can be changed depending on system 

response duration. 

In this thesis, integral square error for the arm angle and power of the applied input signal 

(voltage) are defined as the performance index values. As the system signals are (arm 

angle and applied voltage) have discrete nature instead of exact computation an 

approximation is used.  In the integral square error computation (the same is valid for 

power calculation), the upper and lower limits of integration are chosen as 15 and 25 

seconds of real time applications (as signals seem to be in steady state condition in this 

duration).  

The sampling rate of the data is 1000 Hz between these two limit values hence there are 

10000 data available. So, between each consecutive data there is a time step of 0.001 

seconds. Then the approximation for the integral square error for arm angle equation 

becomes;  

∑ (𝜃𝑖 − 0)2 × 0.001

10000

𝑖=1

                                                                                                            (4.5) 
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For the input voltage signal, the power can be written as 

∑ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑖 
2 × 0.001

𝑖=10000

𝑖=1

                                                                                                     (4.6) 

For comparison, default setup, state feedback controller with efficiency and in genetic 

algorithm case 1 and case 3 when the total absolute gain value is limited to 60 cases are 

selected and the results are tabulated.  

 

Table 4.5:  The results of performance of measurement controller 

Case ISE for arm Angle  Power of Voltage Signal 

Default (Setup) 119.7017 0.7657 

State Feedback Controller 

(with efficiency) 

1.7146 0.8070 

Case 1 total absolute gain 

value is limited to 60 

2.1810 0.5166 

Case 4 total absolute gain 

value is limited to 60 

3.8257 2.1044 

 

Default (setup) case is the worst case among other cases as it has a high ISE value. In 

genetic algorithm cases, especially case 1 power of the applied voltage signal is the least 

one hence it can be concluded that the controller balances the system by relatively a small 

effort with respect to other controllers as its ISE value for the arm angle is also relatively 

small. The state feedback controller is also a good choice as it has the best ISE value with 

slightly higher voltage signal power value.  
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CHAPTER 5 

CONCLUSIONS AND RESULTS 

In this thesis, main purpose is to obtain state feedback controllers by genetic algorithm 

due to optimization of a multi-criteria cost functions. These controllers are designed for 

highly nonlinear, complex and unstable system. In order to complete the design some 

procedures are accomplished in an order one by one. Initially, using dynamics of the 

system, the nonlinear equations of the system are determined. These equations are 

linearized around the unstable equilibrium point. From linear equations, the information 

about of this system such as state space matrices, eigenvalues are determined. In the lights 

of these information, the system is stabilize using state feedback controllers. While 

obtaining state feedback controller by genetic algorithm different cost criteria are set. 

These criteria include the general stability criteria of the linearized system (Routh Hurwitz 

table) and relative stability criteria that corresponds to replacing closed loop eigenvalues 

of the system to suitable locations (they should be to the left of s= -2, their imaginary 

part/real part ratio should be smaller than a threshold value) and criteria related with state 

feedback gain values. Hence in total genetic algorithm optimization runs turns into a multi 

criteria optimization method to produce state feedback controllers. In the real time 

applications, the produced controllers as the result of optimization process are tested. For 

each real time run, the arm angle, the pendulum angle and applied voltage waveforms are 

observed and variables are compared for all cases.   

The designed controllers by genetic algorithm are more successful than set-up controller. 

In both methods, eigenvalues are non-positive. Hence, the system is stable for all cases.  

In reference signal tracking and application of disturbance the sate feedback controller 

(obtained for less DC motor efficiency) and the seemingly best controller obtained by 
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genetic algorithm are compared. The controller obtained by genetic algorithm has given 

better results in reference signal tracking in general. In the presence of mass type of 

disturbances, the controllers generally demonstrated similar performances. 

In the future works, a deeper analysis should be carried out in order to identify the effects 

of swing up mode parameters and gain values of state feedback controller in stability and 

transient and steady state responses. 
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