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ABSTRACT

DESIGN AND IMPLEMENTATION OF CONTROL ALGORITHMS
FOR STABILIZATION OF ROTARY INVERTED PENDULUM
SEN, Fatma Nur
M.Sc., Department of Mechatronics Engineering

Supervisor: Assist. Prof. Dr. Ulas BELDEK

JUNE 2019, 82 pages

Rotary Inverted Pendulum is a popular test-bed in control theory applications as it has a
nonlinear characteristics and unstable structure. To drive the pendulum to upright position
and holding the stick of the pendulum stabilized in that condition is one of the important
benchmark problems in control theory. Generally, the control structure of this system
consists of two modes. The first mode is known as the swing up mode where the pendulum
is brought into nearly upright position from a stand still downward orientation. The second
control mode is called as hold mode and it switches the swing up mode when the pendulum
is in an epsilon neighborhood of the upright position and its aim is to stabilize the
pendulum and keeping it motionless at this condition. The intention in this thesis is
developing hold mode control structures integrating the State Feedback Control, Routh
Hurwitz method and Genetic Algorithms.

Keywords: Rotary Inverted Pendulum, Genetic Algorithm, State Feedback, Routh

Hurwitz, Multi Criteria Optimization.
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DONER TERS SARKAC SISTEMININ STABILiZASYONU ICiN KONTROL
ALGORITMALARININ TASARIMI VE UYGULANMASI

SEN, Fatma Nur
Yiiksek Lisans, Mekatronik Miihendisligi Anabilim Dali
Tez Yoneticisi: Dr. Ogr. Uyesi Ulas BELDEK

HAZIRAN 2019, 82 sayfa

Doner ters sarkag sistemi kontrol teorisi uygulamalarida popiiler bir test ortamidir. Cilinkii
doner ters sarkac dogrusal olmayan 6zelliklere ve dengesiz bir yapiya sahiptir. Sarkaci dik
pozisyona getirmek ve sarkacin gubugunu bu durumda kararli tutmak kontrol teorisindeki
en 6nemli degerlendirme problemlerindendir. Genellikle, bu sistemin kontrol yapis1 iki
moddan olusur. ik mod, sarkacn hareketsiz bas asag1 pozisyondan neredeyse dik
pozisyona getirildigi salinim yaparak yukar1 kaldirma modu olarak bilinir. ikinci kontrol
moduna tutma modu denir ve sarka¢ dik pozisyonun calisma noktasi komsulugunda
oldugunda salinim yaparak yukar1 kaldirma modunun yerine goérevi devralir. Bunun amaci
sarkact kararli hale getirmek ve bu durumda hareketsiz kalmasmi saglamaktir. Bu tezin
amac1 durum geri beslemesi kontrolii, Routh Hurwitz metodu ve Genetik Algoritmalar1

entegre ederek tutma modu kontrol yapilarimi gelistirmektir.

Anahtar Kelimeler: Doner Ters Sarka¢ Sistemi, Genetik Algoritma, Durum Geri

Beslemesi, Routh Hurwitz, Cok Kriterli Optimizasyon
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CHAPTER 1

INTRODUCTION

1.1. Background

The inverted pendulum [1]is a well-known problem in control theory and is used to test
the control strategies. Due to complex behaviors, lots of versions of inverted pendulum
are developed. The rotary inverted pendulum is one of the versions of the inverted
pendulum. It has also similar characteristic with inverted pendulum such as nonlinearity
and instability. In real time applications, the rotary inverted pendulum is used in different
areas such as transportation vehicles, rockets and missile systems and aircraft landing

systems. [2]

The rotary inverted pendulum is a clear example for a system with two degrees of freedom.
The working principle of this system is as follows: the pendulum is connected the
horizontal arm and the arm is linked with the servo motor. The degrees of freedom of the
system comes from the rotation of the horizontal arm and the motion of the inverted

pendulum which are perpendicular to each other. [3]

The rotary inverted pendulum is called as Furuta [4] pendulum because rotary inverted
pendulum is invented at the Tokyo Institute of Technology by Katsuhisa Furuta, a
Japanese researcher, who was a pioneer for many researchers about designing control
theories about the rotary inverted pendulum. Therefore, rotary inverted pendulum is a
popular test-bed in control theory applications as it has a nonlinear characteristics and
unstable structure. To drive the pendulum to upright position and holding the stick of the
pendulum stabilized in that condition is one of the important benchmark problems in

control theory.



Generally, the control structure of this system consists of two modes. The first mode is
known as the swing up mode where the pendulum is brought into nearly upright position

from a stand still downward position.

The second control mode is called as hold mode and it switches the swing up mode when
the pendulum is in an epsilon neighborhood of the upright position and its aim is to
stabilize the pendulum and keeping it motionless (nearly motionless) at this condition.

1.2. Methodology and literature survey

In order to design control strategies for rotary inverted pendulum, various methods are
augmented and applied. Linear techniques such as state feedback, pole placement, and
linear quadratic regulator are well known. On the other hand, nonlinear techniques such
as energy based control and robust control are developed. Besides, artificial intelligence
methods are also applied to develop controllers for rotary inverted pendulum. Mainly

fuzzy logic and genetic algorithms can be accounted in this field. [2]

The genetic algorithm(GA)[5] is a search and optimization technique using criteria of
genetics and natural selection. Genetic algorithm was evolved by John Holland in 1975
at the University of Michigan and this theorem was popularized by, one of the students of
John Holland, David Goldberg.[6] Goldberg used this method to solve the problem like

as controlling of gas-pipeline transmission.

GAs are also defined as simulations of the methods used when biological systems modify
to their environment furnished in computer software models for solving optimization.
Search techniques are used for solving problems such as in engineering, science, finance
and economics. Especially, in engineering, genetic algorithm gain favor from various
fields as a robust optimization tool and genetic algorithms are used in machine learning,

image processing, pattern recognition and operational research.[7]



1.3. Thesis objective

The intention in this thesis is developing hold mode control structures integrating the State
Feedback Control, Routh Hurwitz [8] method and Genetic Algorithms: Firstly, the
linearized system dynamic model when the pendulum is in upright position is utilized in
order to obtain the Routh Hurwitz array.

Then the stability criteria coming from the Routh Hurwitz array and some extra criteria
coming from the system’s closed loop poles’ relative locations due to state feedback and
an extra criterion coming from the restriction of gain values at the state feedback control
process are integrated into the cost function of the genetic algorithm search that yields a
suitable state feedback gain values. Hence the genetic algorithm search represents a multi
criteria cost optimization process and depending on different choices of parameters in

contribution of the cost function, the search has given interesting and promising results.
1.4. Organization of thesis

The organization of the remaining part of the thesis is as follows; in Chapter 2 the system
description, the mathematical model of the rotary inverted pendulum and the linearization
procedure of this system is explained. In Chapter 3, the controller design strategies, state
feedback controller and genetic algorithms, and Routh Hurwitz stability criterion are
mentioned briefly. In Chapter 4, the simulation and experimental results are both tabulated
and shown graphically. Lastly, in Chapter 5, all work done in this thesis are summarized

and it clarify the outcomes of this thesis and the future works briefly.



CHAPTER 2

SYSTEM DESCRIPTION

2.1 System description

The Quanser rotary inverted pendulum (ROTPEN) is illustrated in Figure 2.1. [9] The
rotary inverted pendulum is made up of three major parts: a motor, a rotary arm and
pendulum. A DC voltage is applied to the motor and by this way it supplies the necessary
actuating motion signals to the arm. The motor is attached to the load gear. This gear is
used to reduce the speed and transmit the motion to the arm. In this ROTPEN, the motor
is classified as a servo motor SRV02. SRV02 is suitable for obtaining faster response
compared to traditional DC motors as it has low inductance and rotor inductance values
as well as a high efficiency value. In addition, three sensors are fitted. These sensors are
tachometer, encoder and potentiometer. The encoder and potentiometer is used the
measure the angular positon of the load gear and the tachometer is used for the velocity

of the motor.

In one end the rotary arm it is attached to the load gear via pin and from the other end it
is connected the metal shaft. This rotary arm is actuated by the motor and it rotates on a
horizontal plane. The pendulum stick is connected the shaft via a T-fitting and it has a
perpendicular motion with respect to the motion of the rotary arm. The pendulum rotates
360° freely on the vertical plane. Furthermore, the determine the angular position of the

pendulum, another encoder is also used that is connected to the shaft.



The rotary inverted pendulum system can be represented as a Single Input Multiple
Output (SIMO) system where the input is the applied DC motor voltage and the system

states and outputs can be assigned as the arm angle (x; = 8), inverted pendulum angle

(x, = @) and angular velocities of the arm and the inverted pendulum (x; = 6,x, = @)

As the system structure is inspected, it is observed that the set of unstable equilibrium
points are reached when the pendulum is at upright position (a« = 0°) with any arm angle
value and the stable equilibrium points are reached when the pendulum is at downright
position (&« = 180°) with any arm angle value (reached when all the states derivatives are

equal to 0).

The mission of balancing the inverted pendulum in vertical position, at one of the unstable
equilibrium points starting from one of the stable equilibrium points is called as Swing
Up and Hold (Stabilization) process. In this thesis, hold (stabilization) position is focused.
Hence, set of equilibrium points are defined in upright position when the pendulum angle

equalsto zeroa = 0) .

Figure 2.1: SRV02 ROTPEN system



2.2 System components

The components of ROTPEN are described in Table 2.1 and associated locations of these
components are given in Figure 2.2. [10]

Figure 2.2: The components of ROTPEN



Table 2.1: The ROTPEN components

ID Components ID Components

1 SRV02 6 Pendulum T Fitting

2 Thumbscrews 7 Pendulum Link

3 Rotary Arm 8 Pendulum Encoder
Connector

4 Shaft Housing 9 Pendulum Encoder

Shaft




2.3 System dynamics

The rotary inverted pendulum diagram is represented in Figure 2.3.[11]
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Figure 2.3: The rotary inverted pendulum diagram

According to the diagram, the Cartesian coordinate system is used to determine the
location of the arm and the pendulum. X axis is horizontal, vertical side is z axis and
finally y axis is determined accordingly. Origin of the system is assumed as a center of
the arm’s pivot. Lp, €p and o are total length of pendulum, the pendulum length from the
arm’s pivot to center of mass of pendulum and the angle of the pendulum respectively.
The angle of pendulum is positive when the pendulum is rotated counterclockwise in the
plane perpendicular to the arm. 0 is the rotation angle of the arm with respect around z
axis. Lr and ¢, are the total length of the arm and the length from the pivot to the center of
mass of the arm respectively. Finally, . is the torque which affected the pendulum due to

the viscous friction and T is the torqued that applied to the arm.

The dynamic equations of rotary inverted pendulum depend on the center of mass of the

arm and the pendulum.



In order to find the center of masses, the position of the pendulum and the arm is found.

From Figure 2.4 and 2.5[11] top and front views of the system are used.
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v y

Figure 2.4: The top view of rotary inverted pendulum

Figure 2.5: The front view of rotary inverted pendulum

The position of the center of mass of the pendulum are given by the following x, y and z

coordinate values:
Xp = Ly cos8 + £, sinasinf (2.1)

Yp = Lysinf — £, sina cos 6 (2.2)



z, =4{,cosa (2.3)

The position of the center of mass of the arm are given by the following x, y and z

coordinate values:

x, =¥, cos0 (2.4)
Vr =4,sinf (2.5)
z,=0 (2.6)

The velocity of the pendulum and arm is necessary to calculate the kinetic energy of the
system. Hence, the position of pendulum and arm are differentiated with respect to time.
Vp (Vpx, Vpy, Vpz) and Vi ( Vix,Vry, Viz) denote the velocity components of pendulum

and arm respectively.

Vox = —L,0sin 6 + £y cosasin 6 + {’pé cosfsina (2.7)
Voy = L,6cos@ —{,d cosacosé +{’p9 sin a sin 8 (2.8)
V,z = —fpasina (2.9)
V., =—¢.0sin6 (2.10)
V., =40 cosf (2.11)
V,=0 (2.12)

Due to the formulation of kinetic energy, the square of the velocities of the arm and the

pendulum should be calculated.

The velocity of the pendulum is

by = JGpa® 15+ 15.7) @13

where

10



Vox’ = L,6%sin? 0 + £,%62 sin? a cos? § + £,°d? sin? O cos? a —
2L,£,6%sinasin6 cos @ — 2L, €,d0 sinasin? 6 cosa +

2¢,%d0 sin @ cos a sin 8 cos 6 (2.14)

. 2 A . . 2 .
Wy’ = L,20% cos? 8 + £,°0% sin? asin? 0 + £,°d? cos? a cos? 0 +

2L,£,6%sin asin6 cos @ — 2L, €,d0 sin a cos? 6 cosa —

2¢,°d0 sin @ cos a sin @ cos (2.15)
V,,” =€, d?sin? a (2.16)

After some simplified steps, 17,> becomes,

2 =¢,°d%sin? a + L,°02 + £,°a? — 2L, £,d6 cos a (2.17)
For the arm;

o= (Vo + Uy + 2 (218)
V.* =¢.6%sin? @ (2.19)
V% = £.62 cos?0 (2.20)
V.,>=0 (2.21)

When the components simplified, V.* becomes,
V2 =¢,%602 (2.22)
2.4. Lagrange method

A Lagrangian formulation is used to define the equation of motions of the mechanical
system and it is a common approach for robot and multiple joint systems. In Lagrange
method, equations are used to transform Cartesian coordinates into the generalized

coordinates (qi).

11



Then, the general terms of Lagrangian formulation are

L(g(®),4®) = K(q(®),4(®) - U(q®) (2.23)

K represents the Kinetic Energy. Kinetic Energy can be due to rotational and translational
motions and for this reason it can be written as a function of generalized coordinate
variables q(t) and their derivatives ¢(t). U shows the Potential Energy. The potential
energy is created via conservative forces such as gravity and springs. Hence this energy is
related only with the generalized coordinate variables q(t). Associated with these
information, Lagrange formulation is defined as;

L=K-U (2.24)
The Euler-Lagrange equations for n degrees of freedom system:
d (6L) oL 225
dt \ag; aqi‘Qi (2.25)

where i=1,....,n and Q; describes the generalized force. It is supplied from external forces.

These forces should be non-conservative external forces. (e.g. friction)

The rotary inverted pendulum has two-degrees of freedom. Hence, the angles of pendulum
and arm (o and 0) are generalized coordinates in this system. The first generalized
coordinate is taken as the position of the arm (0) and the second generalized coordinate is

taken as the position of the pendulum (a)). And the generalized forces are defined as:
Q=19 =1-B,0 (2.26)
Q; =T, = —B,d (2.27)

Br and Bpare viscous damping coefficient. T describes the torque applied on the arm which

is generated via servo motor. Additionally

= Ngkgnm ke (Vm—kgkm8)

Rm

(2.28)
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Where

e 14 andn,, :the gearbox efficiency and the motor efficiency .

e k¢ k; and k,, : the motor-torque constant, the gear ratio and the back-emf
constant

e R,,:the armature resistance

e 1},: the back — emf voltage

Then the Euler —Lagrange equations of the rotary inverted pendulum are defined as

d (aL) i B.9 2.29
dt\gg) a6 " T (2.29)
d(aL) oL P 230
dt\oa)  oa P (2.30)

The total kinetic energy of the system:
Kr =K, +K, (2.31)
Kp and K; are total kinetic energy of pendulum and arm respectively.

For the pendulum:

Kp = KP,translational + Kp,rotational (2-32)
1 2
KP,translational = Empvp (2.33)
1 2.2 .2 2A2 2.2 . A
Kp transiational = Emp{’p a“sin“a+ L,."0° + £,"a* — 2L, £,a60 cosa (2.34)
1 s 2 1 P2 )2
Kp rotationat = E]pa + E]p sin“a 8 (2.35)

The equation (2.34) and (2.35) substituted into the equation (2.32)

13



1 . . 1

K, = Empfpzdz sin? @ + L,20% + £,°¢% — 2L,£,d0 cos a + E]pc'x2

1 ) .
+§]p sin? a 62 (2.36)

For the arm:

Kr = Kr,translational + Kr,rotational (2-37)
1 2

K transiationat = Emrvr (2.38)
1 240

K transiational = Emrfr 0 (2.39)

1 . )
Ky rotational = E]re (2.40)

The equation (2.37) and (2.38) substituted into equation (2.35);

K =lm{’ 292 + l] 62 (2.41)
T 2 r*r 27' .

The total kinetic energy of the system;

1 . . ) . |
Kr = Emp{’pzdz sin? a + Lr292 + {’pZdZ — 2Lr{’pd9 cosa + E]pdz + fjp sin? o 62
1 2pp . 1
tometr 07 )0 (2.42)

The potential energy of the rotary inverted pendulum occurs only due to the gravity and

only pendulum generates the energy. So,

U=mygh (2.43)
Where h = (1 — cos a)

The potential energy is in downward position. So, equation is denoted as a;

U=-my,gf,(1—cosa) (2.44)
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Using Lagrange formulation (2.24), the Lagrange formulation of the rotary inverted
pendulum is;
1 12 2 -2 2 2 1 .2 2
L= EH (mer + sin‘ a (]p +my,t, ) + /. +m.4, ) +§a (mp{’p +]p)
—m,L,£,d0 cosa + m,g€,(1 — cosa) (2.45)

The components of the Euler-Lagrange equation for the first generalized coordinates;

5~ " 2.46
" (246)
oL . ., y y |

30 H(mer + sin“ a (]p + m,t, ) + /. +m. L, ) —myL,fpacosa (2.47)
d (0L b

%(%) = 0(mpL,” +sin* a (J,, + mpfpz) +J, + m.£,%)

+ 2(]p 3 mp{’pz)dé cosasina — c'r'(mert’p cosa)

+ myL,£,d® sina (2.48)

Substitute these components, equation (2.44) and (2.46), into equation (2.29), the first

nonlinear equation becomes;
6(m,L,* +sin? a (J, + my€,%) + J, + m,£,%) — é&(m,L, €, cosa)

+6 ((]p + mp{’pz)d cos a sin a)

+a ((]p + mp{’pz)é cosasina + myL,£,d sin a) =1t—B.0 (249
When the all terms are collected, the first nonlinear equation is;

6(myL,* +sin? a (J, + my?,?) + J, + mp,°) — @(m,L,€, cos a)
+6(B, + (]p + mp{’pz)d cosasina)

+a ((]p + mp{’pz)é cosasina + myL,£,d sin a) =T (2.50)
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For the second generalized coordinates (pendulum position), the components of the Euler
— Lagrange equation are calculated as

oL , .
= (U, + mppr)ez cos asina + m,L,£,d0 sina + m,g¥, sina (2.51)
oL N _

£y = (]p + my,t, )a —myL,.£,0 cosa (2.52)
d (0L .. ) , L

T (£> = 0(—mer{’p cos a) + a(]p +my,t, ) + myL,. £ a0 sina (2.53)

The second nonlinear equation is defined as

é(—mpLT{’p cosa) + c'r'(]p + mp{’pz) + 9(—(]p + mp{,’pz)é sin & cos «)
—my,gt,sina = —B,a (2.54)

When all terms are collected in the left hand side of the equation, the second nonlinear

equation will be

5(—mer{’p cosa) + c'r'(]p + mp{’pz) + 9(—(]p + mpt’pz)é sin & cos )
—mygt,sina+ B,a =0 (2.55)

The dynamic equations are highly non-linear. In order to find transfer functions of system

and design the controller, these equations should be linearized. The equation (2.28) is

substituted into nonlinear equation (2.50) for linearization.
2.5 Linearization

The common method for linearization is Taylor series expansion. Accordance with this
theorem, a non-linear function f(z) which depends on multiple inputs or states z is defined
where z = (24, Z3, 25 .. ... ,Zyn). Then, the corresponding linearized function fiin(z) at the

operating point z, = (a, b, ....,n) is:

0 d
flin (Z) = f(ZO) + (%) |Z=ZO (Zl - a) + ot <%> |z=zo(zn - Tl) (256)
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For the rotary inverted pendulum, z variables are defined asa z” = [, &, 6, 4,6, «|
And for this set up all initial conditions are zero.
Hence, equilibrium points are: z,” = [0,0,0,0,0,0].

For the first non-linear equation
f(2) X of (z) of (z)
flml(z) f(ZO)+<a(0)>|z=0(9) <6( )>|z 0( ) <a(9)>|z 0(9)

af<) (Y@ af()

of (z
( f( )> |Z B pLTZ + Sil’lz a (]P + mpfpz) +]r + mr‘grz = mpLTZ +]7' + mr{)rz

a(6)

af (z)
of (2) NgkgTm ke (kgkm)
(0(6))'2 0= (B +(]p + m,¥, )acosasma)+ T
— Br + ngkgnm kt(kgkm)
Rm

The other &, 8, a based derivatives are zero and f(z,) = 0. The first linear equation

becomes;
2] k ke(kyk ,
(merz + /i + mr‘grz)e + (—merfp)d + (Br + Mg gnmR t( g m)> 0
m
k k.V,
_ Ng%g'm Xt Vm 258)
Rm

17



For the other non-linear equation using equation (2.57);
N 0 d
flmz(z) f(ZO) + <af((0))) |z=0(0) (af(( ))> |z 0( ) <6f((9))> Iz 0(9)
af( ) f (2) af( )

0f (2)

|z=0 = —mpL, £y, cosa = —m, L. ¢,

|ZO B

)lz 0 _]p +mp€p2

0f (2) y p
0(0{) |z=0 =—Mmpgiy

The other 6,6 based derivatives are zero and f(z,) = 0. The second linear equation

(7@
(5
(7@
(5@

becomes:
(-myL.€,)8 + (J, + m,£,°)d —m,gépa =0 (2.59)
2.6 State space representation

The linear state space equations define as
% = Ax + Bu (2.60)
y=Cx+Du (2.61)

Where X represents the state and u is control input. A, B, C and D define as a system,

input, output and direct coupled matrices, respectively.
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There are some parameters to ease the task for linear equations of the rotary inverted

pendulum;

=] + mrfrz +myL,

p=Jpt mpfpz
6 =m,L,. ¢,
Y = mpfpg

Jr = IpmyL? + mym, £,%8,% + om, €,% + [ym 4.2 + JJ,

_ NgKglm kt(kgkmé)

T.

_ NgkgNm ke (V)
T, = A
m

To obtain the state space model, the states are defined as x; = 6, x, = @, x; = 6 and

x4 = a. With these states, the linear equations of rotary inverted pendulum are written in

matrices form as

0 0 1 0
0 0 0 1
— )/6 _p(Br +T ) —6B
A=i0 /]T 1 /]T P/]T (2.62)
144 —6(B, +Ty) —BB
0 "7/}, v T

0

B = 0
| (T /]r
(6T2) /]t

(2.63)
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Only the position of the servo and link angles are measured. Hence, the output matrix

becomes:
1 0 0 O
C—[O 10 0 (2.64)
_T0
D_[O] (2.65)

2.7 System parameters

The all system parameters are presented in Table 2.2 and these parameters are taken user
manual of the set-up and manual of the SRV02.[12]

The parameters of the system are substituted into system and input matrices;

0 0 1 0
_ 10 0 0 1
A=10 5329853 —165724 —0.6582 (2.66)
0 108.2996 -19.5897 —1.3373
0
B=|y08 (2.67)
29.8002
35.2259

The eigenvalues of the systems are 0, -4.6674, -20.9277, 7. 6853.As it can be seen that,

one of the poles of system is on the right side of the plane. Hence, the system is unstable.
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Table 2.2: The system parameters

Symbol | Description Value Unit

Mp Mass of pendulum 0.127 kg

Lp Total length of pendulum 0.337 m

lp Distance from pivot to center of mass 0.156 m

Jp Pendulum moment of inertia about center of 0.0012 kg.m?
mass

Bp Pendulum viscous damping coefficient as seen | 0.0024 N.m.s/rad
at the pivot axis

my Mass of rotary arm with two thumbscrews 0.257 kg

r Rotary arm length from pivot to tip 0.216 m

lr Rotary arm length from pivot to center of mass | 0.0619 m

Jr.em Rotary arm moment of inertia about its center | 9.98 10* | kg.m?
of mass

Mb Rotary arm viscous damping coefficient 0.0024 N.m.s/rad
as seen at the pivot axis

Jr Rotary arm moment of inertia about pivot 0.0020 kg.m?

Kenc Pendulum encoder resolution 4096 counts/rev

Br Viscous damping coefficient of arm 0.0024 Nms/rad

L Total length of arm 0.256 m

Rm Armature resistance 2.6 Q

Beg Equivalent viscous damping coefficient 0.015 Nms/rad

Jeq Equivalent moment of inertia 0.00358 | kgm?

Kg SVRO02 system gear ratio 70 --

Km Back-emf constant 7.68x10° | Vs/rad

Kt Motor-torque constant 7.68x10° | Nm/A

Mg Gearbox efficiency 0.9

Nm Motor efficiency 0.69
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CHAPTER 3

CONTROLLERS DESIGN

In this chapter, two different controller design approaches depending on state feedback
control method that are applicable for hold mode of control for inverted pendulum are
considered. In the first on state feedback is directly applied to the inverted pendulum via
a suitable pole placement procedure. In the second one pole placement procedure is carried
out using Genetic Algorithms such that the state feedback gain values are determined due

to a multi criteria optimization procedure.

® = Ax+Bu o
y = Ca+Du v @

Ootput

State-SpacePlant

State Feedbads Controller

Figure 3.1: The sample block diagram of the system

According to the Figure 3.1, the system has a state feedback controller. Each state which
is defined in chapter 2, has a proportional gain value and hence K the gain vector is defines

as
K=[K1 Kz K3 K4]

K1 is the proportional gain of the angular position of arm (0), K> is the proportional gain
of angular position of the inverted pendulum (o)) and K3, K4 are defined as proportional

gain values of angular velocities of arm and inverted pendulum, respectively.
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3.1 The state feedback control

The locations of closed loop poles of the system effects the transient and steady responses
of the system. If the system is fully controllable, the controllability matrix has full rank
and all eigenvalues can be placed at any desired locations by a suitable choice of state
feedback gain. The linearized system model has the following state space representation

x =Ax + Bu (3.1)
and using state feedback the control signal can be computed using,
u=r() —Kx(t) (3.2)

Where K is feedback gain, r(t) is reference input or desired behavior and x(t) is the state
variable vector. When equation (3.1) is substituted into equation (3.2), one gets

% = (A—BK)x + Br (3.3)
In equation (3.3) a new system matrix is obtained due to state feedback
A* = (A - BK)

If a system is completely controllable, it is possible to replace each eigenvalue of the
system to desired locations using state feedback. The controllability of a system is checked
using controllability test. According to this test, the n'" order linear and time invariant
system is completely controllable if and only if the nxnr (r: size of input matrix) composite

controllability matrix M.
M = [B:AB: A?B: ....: A" 1B] (3.4)
is rank of n.

If (A, B) are controllable and B nx1 the system is represented in controllable canonical

form.
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The controllable canonical form;

- 0 1 0 7
0 0 0 |
A= : | (3.5)
0 0 1|
—a1 _az —anJ
0
g=|" (3.6)
1

If these matrices are not in controllable canonical form, there is a linear transformation P

which brings them into controllable canonical form.

P=MM1 (3.7)
Where M = [B: BA i -+ i BA™] (3.8)
P~1AP = A (3.9)
P'B=28B (3.10)

Using these new matrices, the gain K is calculated via desired locations. For the finding

original feedback gain;
K=Kp (3.11)
For the rotary inverted pendulum;

The controllability matrix;

0 0.0003 —0.0052 0.1086
0 0.0004 -0.0063 0.1479

0.0003 -0.0052 0.1086 —2.2336
0.0004 -0.0063 0.1479 —-3.0087

M=1x10° (3.12)

The rank of M is 4. In other words, the system is completely controllable. Hence, all poles

of the system can be replaced to any desired locations by state feedback.
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In the default Quanser setup, the gearbox efficiency and motor efficiency are chosen as 1
when the system’s equations are found. However, in this thesis these values are selected

from SRV02 manual and these values are shown in Table 2.2.

For the both cases (ideal case and with actual efficiency), the design specifications are

chosen same with setup values. According to the setup workbook, [9]
Specification 1: Damping ratio should be 0.7. ({ = 0.7)

Specification 2: Natural frequency should be 4 rad/s. (w,, = 4 rad/s)
Specification 3: Maximum pendulum angle deflection should be |a| < 15 deg.
Specification 4: Maximum control voltage |V,,| < 10 V.

Specification 5: Two desired poles are chosen at -30 and -40.

The other poles (dominant poles) should be satisfying the damping ratio and natural

frequency identifications. Hence, dominant poles can define as:

p1 = —0 +jwy (3.13)
P2 = —0 — jwy (3.14)
Where w, is the damped natural frequency and it is calculated as

Wg = wpy/1 -2 (3.15)
and o is calculated as;

o={q{w, (3.16)
Using equations 3.15 and 3.16, the desired locations of dominant poles are found as

pr, = —2.80 F j2.86 (3.17)

The system and input matrices given in (2.66) and (2.67) aren’t in controllable canonical
form. Hence, these matrices are transformed into controllable canonical form using

transformation matrix P.
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Using equation (3.7), (3.8) and (3.9), transformation, new system and input matrices are
found. These are;

—1.349 0.0167 0.0298 0
0 0 0.0352 0

— 3
P=107x1"»  _1349 00167 0.0298 (3.18)
0 0 0  0.0352

0 1 0 0

- o 0 1 0

A=, b . . (3.19)
0 750.685 99.029 —17.9098
0

= o

B= 2
0 (320)
1

After the transformation, using the new state space matrices the desired gain matrix is

found as

K =10%[1.920 0.8591 0.1707 0.0058] (3.21)
Using equation (3.11) the original system’s gain is found

K =[-14.224 63.587 —6.5397 7.1702] (3.22)
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3.2. Routh Hurwitz stability criterion

Routh Hurwitz stability criterion represents the stability condition of system with respect
to the characteristic equation of the system. The coefficients of the characteristic equation

composed of the Routh Hurwitz table’s elements.
If the characteristic equation of the system is defined as

D(s) = a,s™ + ap_ sV e +a;s+a,=0 (3.23)

The stability table is:

s" a, y-2  Q,_y4
Jr=|

s a,-1 -3 ady-5
=2

\) bu—l bu—:’n b”,ﬁ.
n=23 .

§ Cn=1 Cp-3 ny-5

5" -

Figure 3.2: The sample Routh Hurwitz table

For the first two rows are created from characteristic equation and the other coefficients

of rows (in Figure 3.3) are found such as
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Ay 1Ay — Ap@,-3 = a, ay -2

bn—l 7 = ’
a, - Ay |y -y ay-3
e 1 a, a,-4
bu—3 2 ‘
ay-1 Q- a,-s

=1 |ay-y  ay-3
bn—l bn—l bn~3

’

Cn-1

Figure 3.3: Calculation of the table elements

According to this theory, for stability, the necessary condition defines as all coefficients
must be nonzero and sufficient condition is that coefficients of the characteristic equation
should have positive signs. In addition, according to the Routh Hurwitz table, number of
unstable poles are found without solving characteristic equation. For stability, the first
column of this table should be positive. If there is any sign change in the first column, the

number of sign changes will give the number of the instable poles of the system.

In order to determine the stability condition in the genetic algorithm, the gain values of
proportional controller are checked by Routh Hurwitz stability criteria. And in the first

column of the table should not be sign change.
The characteristic equation of the system is determined as

D(s) = s* +s3(29.8002K5 + 35.2259K, + 17.9098)
+ 52(29.8002K; + 35.2259K, + 16.6688K; — 6.2510 x 1071*K,
—99.0298)
+ 5(16.6688K; — 6.2510 x 107*K, — 1349.9K; — 750.6851)
—1349.9K; (3.24)
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The values of first column of Routh Hurwitz table;

R, = 29.8002K, + 35.2259K, + 17.9098 (3.25)

R, = [(6.25 x 1071*K,) — (16.6688K;) + (1.3499 x 103K;)
+ ((29.8002K5) + (35.2259K,) + 17.9098)
x ((29.8002K,) + (35.2259K,) + (16.6688K3) — (6.25 x 1071*K,)

—99.0298) + 750.6851]
+ [29.8002K5 + 35.2259K,, + 17.9098] (3.26)

R; = [ —(6.25 x 1071K,) + (16.6688K,) — (1.3499 X 103K)
+ (296838677059371K, ((29.8002K,) + (35.2259K,)
+(320.7592)]
N [(219902325552 x (6.25 x 10~14K,)

— (16.6688K,)(1.3499 x 103K;)
+ ((29.8002K3) + (35.2259K,) + 17.9098) x (29.8002K;)
+ (35.2259K,) + (16.6688K;) — (6.25 x 10~1K,) — (99.0298)

+ (750.685)) — 7.5069 X 105] (3.27)

R, = —1.3499 x 103K, (3.28)
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3.3. Genetic Algorithms

Genetic Algorithm is one of the popular meta-heuristic search method that is generally
applied to optimization problems of different types design controllers’ method. This
method is inspired by Darwin’s theorem of natural selection. The search starts by
composing a population of random potential solutions that are called as chromosomes.
The relative success of each chromosome in the population to solve the given optimization
problem is called as the fitness of the chromosome. If the fitness value for a chromosome
is relatively high that means chromosome is well equipped to solve the optimization
problem. After evaluation of the fitness values of each chromosome in the population, a
selection procedure is carried out to determine the chromosomes that will contribute to
the construction of the new population through genetic operations that are called as
crossover, mutation and reproduction. The selection operation is generally based a
criterion depending on the fitness of the chromosomes that gives more chance for the
chromosomes having relatively higher fitness values. However, sometimes the selection
operation can also happen to choose random chromosomes as well. If the selection
procedure is carried out wisely, generally the average fitness value of the next population
will be greater than the previous one. Besides the best chromosome in the population will
probably have the highest fitness value of each chromosome created until that point. This
process is carried out for several generations and it is terminated when assumed that the
best chromosome is somehow achieved. In this process, three genetic operations and how
these three genetic operations are carried out are significant for genetic algorithm. These
are selection, mutation and crossover. These genetic operations are milestone to guarantee
that the search continuous properly and in general better chromosomes are obtained and

selected in new generations.
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Creating Initial Poulation

Evaluate Cost Function
and Fitness

1!’
Fitness Normalization

Croszover - Mutation
Reproduction

r

New Population

L

Optimal Result No

Yes

r

End

Figure 3.4: The flow chart of genetic algorithms

3.3.1 Creating the initial population

Population defines as a subset of solutions in the present generation. Also, it is made up
of a group of chromosomes. In order to start the genetic algorithms, initial population is

generated randomly for attempted solutions. In this thesis, gain values of controllers are
determined as individuals or chromosomes.
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A chromosome for the considered optimization problem is a vector with four different

state feedback gain values hence it can be formulated as
Ch=[K; K, K; K4 (3.29)

Here K1, Ko, Ksand K are the genes of chromosome. The definition for Ky, Kz, Kzand Ks4

are given in the beginning of Chapter 3.

Each gene in the chromosomes of the initial population are selected randomly in the range
between -100 and 100 with one exception: As we check the R4 of the Routh Hurwitz array,
it seems that in order to have a positive R4 that is required to have stable closed loop poles
as the result of state feedback Kj value should be negative. Hence the gene K for each
chromosome is selected from a range of values between 0 and -100. This process narrows
the search space and it will make improve the computation time of the genetic algorithm

search.
3.3.2 Cost functions and fitness

In order to measure the competitiveness and achievement of any chromosome to solve the
optimization problem a suitable non-negative cost function should be constructed. The
cost function penalties the undesired outcomes a chromosome possesses. If more than one
condition should be checked during optimization, the cost function should include more
than one criterion. For this reason, seven different criteria (conditions) are determined to
contribute to the cost function and hence a multi criteria optimization procedure is carried

out.

The first four conditions are related with Routh- Hurwitz array. The first column of the
Routh Hurwitz array (for the problem it corresponds to 1, R1, Rz, Rz and R4) should all
have the same sign (they should all be positive) to guarantee that all the poles of the system
after state feedback are replaced in the left open half plane making the system theoretically

stable.
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Hence Ry, R2, Rz and R4 can be converted into inequalities in the cost function to support

stability as:

If R, > 0 cost; = 0.001 X |R,]| else cost; =0 (3.30)
If R, > 0 cost, = 0.001 X |R,]| else cost, = 0 (3.31)
If R; > 0 cost; = 0.001 X |R;]| else cost; =0 (3.32)
If R, > 0 cost, = 0.001 x |R,] else cost, =0 (3.33)

The procedure to determine cost: to costs punishes a potential solution (chromosome)
which replaces one or any of the poles to the right half plane, hence makes the system
unstable. In other words, if the values of the first column of Routh table are not greater
than zero, the chromosome is punished. These four cost functions are necessary to show
that the system is stable however they are not sufficient to exactly show the locations of
the closed loop poles. Routh Hurwitz only give information of the closed loop system

implicitly.

The fifth condition examines the location of the closed loop eigenvalues of the system
explicitly and it also checks the relative locations of the eigenvalues based on some
relative stability criterion. For these two sub conditions two different cost contributions

are measured based on either the chromosome is stable or not.

Sub condition 1: If all the eigenvalues are replaced to the open left half plane, the cost
function checks their relative positions of eigenvalues with respect to imaginary axis. If a
pole is close to the imaginary axis, it has relatively a higher contribution to the cost
function and if a pole is far away from the imaginary axis its contribution to the cost is

limited.

When the real parts of all eigenvalues are negative, the condition will be

4
1
costs, = 0.25 X Z— 3.34
ot = |real(pi)| +1 ( )

33



Where the real parts of where p; is the i eigenvalue of the chromosome. When the real

part of at least one eigenvalue is greater than or equal to zero, the condition will be
n

costs; = 0.25 X Z|real(pi)| +n (3.35)
i=1

Where n is the number of eigenvalues that are in the right half plane, p; is the value of the

i"" eigenvalue in the right half plane.

Sub condition 2: Costsz in its current shape only considers the position of the poles with
respect to imaginary axis, however if a stable eigenvalue is very close to the imaginary,
in practical applications it has potential to make the system unstable. For this reason, to
guarantee that all the stable eigenvalues are relatively away from the imaginary axis a new
cost contribution is also added as an extra term. For this reason, the eigenvalues which are
between the imaginary axis and s=-2 line in s-plane are further punished. Hence for a
chromosome which has stable eigenvalues

k
costs, = 0.25 X z real(m;) + k X 0.5 (3.36)

i=1

Where k is the number of eigenvalues which reside between the imaginary axis and s=-2

line of s-plane and mi is the value of the corresponding eigenvalue.

The term costsz evaluated for a stable chromosome should also be calculated for an
unstable chromosome to balance the effect of punishment. The maximum value of costs;
for a stable chromosome can be equal to 2 hence a punishment cost of two units is also

added to costs for unstable chromosomes using
coSts, =2 (3.37)

Finally, costs is calculated for some of the applications only accounting costs: hence for

these applications:

costs = costg, (3.38)
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For the remaining applications the relative stability sub condition is also considered hence
for these remaining applications costs is calculated using,

coSts = coSts, (3.39)

The sixth condition is linked with total values of gains of restriction. Absolute values of
gains should be equal or less than some total values. These total values selected as
30,60,90 and 120. Ifthe summation of gain values is greater than total value, the condition
is defined as

|K,| + |K;| + |K3| + |Ky| = total value
costg = costg + 0.01 X (|K;| + |K,| + |K3| + |K4|) — total value (3.40)

The last condition is correlated with absolute values of real and imaginary parts of
eigenvalues. If a stable poles has some imaginary parts, the imaginary part/absolute (real
part) ratio should be smaller than a threshold value in order to minimize the effect of
undamped oscillations. If the absolute value of real parts is four times less than absolute

value of imaginary part, the condition will be,
cost; = cost; + 0.01 x (4 x |(imaginary part)| — |(real part)|) (3.41)

The total cost function is defined for different four cases. For all case, the first four
conditions are common. In case one, dominant poles and ratio of imaginary part /real part

conditions are neglected. Then the cost function defined as for case one,
total cost = cost,_4 + costs; + costg (3.42)

In case two, only dominant pole condition does not be included and the cost function

defined as;
total cost = cost,_4 + costsy + costg + cost, (3.43)

For the last two cases, case one and case two are examined again with the dominant pole

case condition.

total cost = cost,_4 + costs; + costs, + costg (3.44)
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total cost = cost,_4 + costs; + costs, + costg + cost, (3.45)

The fitness function is depicted as a function which the algorithm tries to optimize. It is
an essential part in genetic algorithms because the fitness function tests the candidate
solutions and measures each candidate solutions’ ability to solve the optimization

problem.

Fitness can be defined in many ways. However, for the sake of simplicity in the

simulations for all cases it is defined as

1

ithess = ———
f total cost

(3.46)

3.3.3 Fitness normalization

Fitness normalization is necessary in order to define the relative fitness values of each
individual (chromosome) with respect to each other. For that reason, the fitness values of
each individual is recalculated by dividing the fitness values by the summation of fitness
values of each individual in the generation. Therefore, after this normalization process,

the summation of all fitness values becomes 1.
3.3.4 Selection

Selection is the mechanism to choose chromosomes for genetic operators with generally
based on the fitness function. In this thesis, the most common selection approach, Roulette
Wheel, is used. According to this approach, population is located on the roulette wheel
based on their normalized fitness values. The portion of each section is correlated with the
normalized fitness value of the corresponding chromosome. In other words, the fittest
individuals have large portions and the weakest individuals have smallest portions in the

roulette wheel.

36



Therefore, the individual with the largest portion in the roulette wheel has the highest
probability to be selected for the genetic operations and the individuals ordered after the
fittest individual have slightly less probability to be selected for the genetic operations
with the least fit individual having the worst selection chance for the genetic operations.

Q‘“eel is rotate o

selection
point

Fittest individual
has largest share of Weakest individual

i o o $ == has smallest share of
the roulette wheel
Figure 3.5: The roulette wheel approach
[13]

3.3.5 Crossover and mutation reproduction

Crossover is similar to biological crossover procedure. Hence, the crossover in genetic
algorithm is defined as a method of recombination and knowledge transfer between two
selected adult chromosomes to yield two new offspring (chromosomes generated for next
generation). Generally, crossover can be handled by different methods: either some genes
of the adult chromosome are exchanged or some genes of the adult chromosomes
generated by linear interpolation. In genetic algorithms, mutation is defined as a random
deformation in a single chromosome (a simple or multiple gene modification), of with a

certain probability.

37



In this thesis, the adult chromosomes for crossover operation are determined with mixed
selection procedures. The first half of chromosomes are chosen with respect to their fitness

values using roulette wheel selection.

The other half of the chromosomes are selected as a mixture of random selection and
roulette wheel selection where the abundance of the chromosomes in this half are chosen
by roulette wheel selection and only 5 of the chromosomes are selected randomly.

Mutation and reproduction procedures are applied randomly however in reproduction the
elitism method is also applied (the fittest chromosome of the current generation is directly
inserted into next generation)

3.4 Genetic Algorithm’s parameter

In all the simulations the genetic algorithm search parameters are presented in Table 3.1

for genetic algorithms.

Table 3.1: Genetic Algorithm's parameters

Population Size=200 Number of Chromosome =400
Number of Variables (Genes)=4 Ratio of Crossover=0.9
Number of Generation=500 Ratio of Reproduction=0.06
Ratio of Mutation=0.04
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CHAPTER 4

SIMULATION AND EXPERIMENTAL RESULTS

In this chapter, genetic algorithm optimization results for different simulation are
tabulated. The optimization results give the gain values and corresponding eigenvalues as
the result of state feedback control. Then in real time applications, these gain values are
used in hold mode of the rotary inverted pendulum and the performance of corresponding
real time applications are compared with the default state feedback computation. In real
time application some of the gain values obtained as the result of optimization process are
not able to keep the pendulum in hold mode. However, some of the gain values managed
to keep the pendulum at upright position. For the gain values where the real time
application becomes successful corresponding arm angle (0), pendulum angle (o) and
applied voltage waveforms are drawn. The main mechanism that makes some of the real
time application successful and some unsuccessful seems to be the total absolute gain
values in the optimization simulations. When total absolute gain value is limited to 30
(means extra penalty is given to the chromosomes that passes this limit value), for all four
cases given by the cost equations 3.42, 3.43, 3.44, 3.45, the pendulum is not able to pass
from swing up mode to hold mode successfully. What is observed is the pendulum makes
a full cyclic turn, tries to get into hold on mode once again by speeding up and generally
hits the corner of the set up and restarts swing up mode of operation. When the total
absolute gain value is limited to 60, only one case is unsuccessful (given by the cost
equation 3.44). When the total absolute gain value is limited to 90, the pendulum is
successful only one case (given by cost equation 3.45). And finally when the total absolute

gain value is 120, two cases are successful (given by cost 3.43 and 3.45)

After this step, the most successful genetic algorithm and default setup results are once

again tested for reference signal tracking due to different type of reference changes in arm
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angle in steady state conditions and application of disturbance that increases the arm’s

mass.
4.1. Experimental results
4.1.1 Default result

Gain values are defined in setup manual as a
K =[-5.2612 28.1568 2.7576 3.2190]

These gain values are obtained when the motor efficiencies are taken as 1 and these gain
values are assumed to replace the eigenvalues of the system to locations -30, -40 and
2.80+j2.86. When these gain values are used in state feedback in hold mode of operation
in real time application, the corresponding arm angle, pendulum angle and applied voltage

plots are obtained in Figure 4.1, 4.2 and 4.3 respectively.
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Figure 4.1:The arm angle of setup

To observe the oscillation, Figure 4.1 is zoomed out and this area shows in Figure 4.1.1
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Figure 4.1.1: The oscillation in the pendulum angle
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Figure 4.2: The pendulum angle of setup
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. Voltage [V]

time [sec]
Figure 4.3: The voltage of setup

All the plots are drawn only after the pendulum controller enters to hold mode of operation
for the first time. As seen from Figure 4.2, the pendulum first enters the hold mode of
operation but it cannot stabilize in hold mode at first step and then it returns back to swing
up mode and makes a cyclic turn of 360 degrees (the switch between 0 to -180 degree, the
jump from -180 degree to 180 degrees and the drop from 180 degrees to nearly O degree
in the first 2-3 seconds of the figure) and then finally stabilizes at the second step. The

pendulum stabilizes at the unstable equilibrium point.

However, in Figure 4.1 and Figure 4.1.1 some oscillations are observed around the
reference set point (6 = 0 degrees). These oscillations are not at desired levels however
they keep the pendulum at upright position. (Oscillation degree is £2 degree) In Figure
4.3, except for the transient situations where the system turns from swing up mode to hold
mode, it seems the applied voltage levels are staying in desirable ranges (in the figure only

the voltage levels at hold mode of operation are shown).

42



4.1.2 State feedback result

When the efficiencies of the motor are taken from Table 2.2, the gain values that should
be applied at state feedback control to replaces the eigenvalues of the system to -30, -40,

-2.804j2.86 are calculated as
K =[-14.224 63.587 —-6.5397 7.1702]

When these gain values are used in state feedback in hold mode of operation in real time
application, the corresponding arm angle, pendulum angle and applied voltage plots are

obtained in Figure 4.4, 4.5 and 4.6 respectively.
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Figure 4.4:The arm angle for state feedback controller

To observe the oscillation, Figure 4.4 is zoomed out and this area shows in Figure 4.4.1
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Figure 4.4.1: The oscillation in the pendulum angle
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Figure 4.5:The pendulum angle for state feedback controller
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Voltage [V]
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Figure 4.6:The voltage for state feedback controller

Accordance with Figure 4.4 and Figure 4.4.1 although the oscillation is observed, its range
is smaller than default setup values. (Oscillation range is between 0° and -1°) The second
component of the gain value (K>=63.587) of pendulum angle is almost three times higher
than the same gain component of the default set up. Hence, high gain value at this
component seems to create the vibration. Besides, for both state feedback configurations

eigenvalues satisfy the desired pole locations which are found in Chapter 3.
4.1.3 Genetic Algorithm results

The gain values and eigenvalues are tabulated for each case and they are presented in
Table 4.1, Table 4.2, Table 4.3 and Table 4.4, respectively and between Figure 4.7 and

Figure 4.24 show three parameters in graphically.
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Table 4.1: Gain values and eigenvalues for case 1

Total gain limit | K Eigenvalues
30 [-3.3574 22.2601 -4.7755 4.5875] | -25.8170; -5.2570+13.225i;
-0.8667
60* [-6.9181 45.5623 -4.7962 5.7963] | -60.5832; -12.385;
-3.1321+1.62361
90 [-11.533951.0750 -14.1884 -37.0866; -8.1808+19.9495i;
13.0375] -0.9030
120 [-19.8067 69.5498 -15.4636 -32.1925; -1.5146
14.2932] -13.4375+19.1722i

Associated with Table 4.1, all four conditions have complex eigenvalues. Apart from the
result with total gain limit is 60, the imaginary parts of complex eigenvalues have high
value. And dominant poles are very close to imaginary axis. Among these result only
condition 2 where the absolute gain is limited with 60 is successful. What is observed in
condition 2 its dominant pole is more away from the imaginary axis with respect to

dominant poles of other conditions.

“* “represents the succesful conditions in each case
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Table 4.2: Gain values and eigenvalues for case 2

Total gain limit | K Eigenvalues

30 [-6.7941 52.5941 -8.5575 8.5723] | -25.6137; -19.6845;
-18.5846;-0.9788

60* [-4.2142 41.0792 -4.0519 5.6020] | -80.9256; -6.6712; -4.6205;
-2.2805

90 [-12.1542 58.2901 -8.6790 8.7829] | -37.2222; -14.7065+1.216i;
-2.0241

120* [-11.1376 70.4842 -7.6880 9.6869] | -113.8569; -8.0871; -4.2462;
-3.8452

According to the Table 4.2 all eigenvalues except the condition where the total absolute
gain limit value equals 90 are real and still in this condition the absolute imaginary part to
absolute real part ratio is low due to cost function 3.43. Except for the first condition where
the gain limit is 30, dominant poles are comparably away from the imaginary axis. Among
these results the second and the fourth conditions are successful, the first and the third

conditions are unsuccessful.

“* “ represents the succesful conditions in each case
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Table 4.3: Gain values and eigenvalues for case 3

Total gain limit | K Eigenvalues

30 [-16.3777 43.4141 -9.9133 9.0397] -27.9306; -2.0194;
-5.4865+19.0225i;

60 [-14.4045 52.7235 -20.3744 21.7687] | 100x(-1.7273; -0.0075;
-0.0205+0.1207i)

90 [-22.3198 50.6343 -13.0103 12.2167] | -50.8915; - 1.9994;
-3.8268+16.7765i;

120 [-16.5060 41.7552 -5.7214 5.5727] -11.0012+8.2449;;

-10.8560+0.18711

Table 4.4: Gain values and eigenvalues for case 4

Total gain limit | K Eigenvalues

30 [-21.0713 86.6592 -14.2016 13.8867] | -47.8376; -2.0007;
-17+2.76331

60* [-13.9091 77.1822 -10.3866 11.2741] | -82.8702; -2.0;
-10.3285+2.57011;

90* [-6.4366 61.7867 -5.6803 8.8923] -150.2543; -4.1609;
-3.8503;-3.6094

120 * [-11.9264 77.7633 -8.6061 10.4792] | -112.3599; -10.7552;

-4.5285;-2.9418

“* “ represents the succesful conditions in each case
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According to the Table 4.3, for condition 1 there is a slightly dominant pole however the
complex conjugate poles have slightly high imaginary parts and that makes the system
prone to oscillatory behavior. For condition 2, the dominant pole is very close to the
imaginary axis. Condition 3 represents similarities with condition 1 and interestingly
condition 4 has no dominant poles with one complex conjugate pair eigenvalues having
imaginary part values being slightly close to the real part values. None of the
corresponding conditions are able to successfully hold the pendulum. None of the
conditions in Table 4.3 are able to hold the pendulum successfully. For that reason, real
time applications of pendulum angle, arm angle and applied voltage don’t be given in this

case.

In Table 4.4, all eigenvalues for each condition are at the left side of s= -2. In real time
application except for the condition where absolute gain limit is 30, all conditions manage
to keep the pendulum in upright position. However, condition will cause of some
oscillation in second component of the gain values in each condition appears to be very
big. In addition, all dominant poles are close to -2. Hence, the effect of dominant poles is
reduced and the pendulum gets into steady state more rapidly. The figures of arm angle
pendulum angle and applied voltage for successful real time applications are given starting

from Figure 4.7 to Figure 4.24.
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For case 1, only total absolute gain value limitation 60 condition is graphed and real time

applications are given Figure 4.7 to Figure 4.9

N S o ~ ®
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Figure 4.7:The arm angle when total gain value=60 for case 1

To observe the oscillation, Figure 4.7 is zoomed out and this area is shown in Figure 4.7.1.

Theta [ deg]

time [sec]
Figure 4.7.1:The oscillation in the arm angle

The oscillation range is between 0 and -1 degrees. This range is smaller than default
condition.
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Figure 4.8: The pendulum angle when total gain value=60 for case 1
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Figure 4.9: The voltage when total gain value=60 for case 1
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For the case 2, total absolute gain value=60 and total absolute gain value=120 conditions

are successful. Therefore, their real time applications are given Figure 4.10 to Figure 4.15
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Figure 4.10: The arm angle when total gain value=60 for case 2
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Figure 4.11: The pendulum angle when total gain value=60 for case 2
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Figure 4.12: The voltage when total gain value=60 for case 2
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Figure 4.13 The arm angle when total gain value=120 for case 2
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Figure 4.14: The pendulum angle when total gain value=120 for case 2
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Figure 4.15: The voltage when total gain value =120 for case 2
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For the case 4, total absolute gain value=60, total absolute gain value=90 and total absolute
gain value=120 conditions are successful. Therefore, their real time applications are given

Figure 4.16 to Figure 4.24
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Figure 4.16: The arm angle when total gain value=60 for case 4
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Figure 4.17: The pendulum angle when total gain value=60 for case 4
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Figure 4.18: The voltage when total gain value=60 for case 4
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Figure 4.19: The arm angle when total gain value=90 for case 4
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Figure 4.20: The pendulum angle when total gain value=90 for case 4
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Figure 4.21: The voltage when total gain value=90 for case 4
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Figure 4.22: The arm angle when total gain value=120 for case 4
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Figure 4.23: The pendulum angle when total gain value=120 for case 4
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Figure 4.24: The voltage when total gain value=120 for case 4

Compared with the results of 4.1.1 and 4.1.2 the genetic algorithm methods provide better
solution even if some oscillation and vibration are also observed in these results. However,

in the genetic algorithm results, these side effects are comparably removed at some extent.

K> gain value is related with pendulum angle. As K> gain value gets higher we generally
observe unsuccessful transition from the swing up mode to hold mode of operation that

produces unsuccessful hold mode of operation.

This can be due to other parameters of the swing up mode of operation such as the epsilon
value which represents the threshold pendulum angle value when the controller passes
from swing up mode to hold mode. Epsilon is nearly + 12 degrees and in the transition
from swing up mode to hold mode that K> is multiplied with + 12 degrees in state feedback
operation and this occasion probably produces very significant applied voltage component
to the system which can make the pendulum move rapidly when it is nearly in upright

position.
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In real time applications, one interesting thing has happened. That is observed in case 4
when the total absolute gain value is limited to 60. The pendulum stayed in upright

position motionless (0=0°) after a transient period and after that no oscillations are

observed. (in Figure 4.16, Figure 4.17 and Figure 4.18)
4.2 Reference input tracking capability

The reference input tracking capabilities of the controllers is a significant test for
concluding whether the controllers are working properly or not. For this reason, some real
time reference signal tracking applications are proposed. The system performance is tested
in the existence of square and sinusoidal reference signals applied to arm angle (0) with
frequencies of 0.1 and 0.5 Hertz and with an amplitude of 1 (1 degrees). When the
frequency is 0.5 Hertz, in of the applications, the amplitude of the reference signal is taken
as 2 degrees. For this purpose, default values, the result in state feedback controller and
some cases in genetic algorithm is tested. All results are shown in graph and in these
graphs, the real time applications present between 10" and 30" seconds. In other words,
only hold positions are graphed. In these graphs reference input signal compares to arm

angle.

60



4.2.1 Default results

5 T T T T T T T

i i

| | |
24 26 28 30

Degree [dig]
-
B

—
<

time [sec]

Figure 4.25:The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.1 Hz
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Figure 4. 26: The reference input(green) in sinusoidal wave, the arm angle of the system
(blue) when f=0.1 Hz
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Figure 4.27: The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.5 Hz
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Figure 4.28: The reference input (green) in sinusoidal wave, the arm angle of the system
(blue) when f=0.5 Hz
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Figure 4.29: The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.5 Hz with amplitude =2

As it can see that, from Figures 4.25 to Figure 4.29, the difference between the reference
signal and degree of the arm angle is high. Hence, default controller cannot track the

reference input signals very well.

4.2.2 State feedback results
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Figure 4.30: The reference signal in square wave (green) and the arm angle of the system (blue)
when f=0.1 Hz
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Figure 4.31: The reference signal in sinusoidal wave (green) and the arm angle of the
system (blue) when f=0.1 Hz

The state feedback is only drawn for reference signals that has 0.1 Hertz frequency and an
amplitude of 1 degree as the other reference signal tracking applications terminated
unsuccessfully. In 0.1 Hertz, in Figure 4.31 the maximum difference in reference input
and arm angle degree is 1.5 degree. This difference is shown in red ellipse. However, in

low frequency and amplitude reference tracking is somehow successful.
4.2.3 Genetic Algorithm’s results

Among genetic algorithm results we only have shown the results for case 1 when the total
absolute gain value is limited to 60 as it has the best performance. The results for reference

tracking are given Figure 4.32 to Figure 4.37.
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Figure 4.32: The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.1 Hz for case 1
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Figure 4.33: The reference signal in sinusoidal wave (green) and the arm angle of the
system (blue) when f=0.1 Hz for case 1
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Figure 4.34: The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.5 Hz for case 1
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Figure 4.35:The reference signal in sinusoidal wave (green) and the arm angle of the
system (blue) when f=0.5 Hz for case 1
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Figure 4.36:The reference signal in square wave (green) and the arm angle of the
system (blue) when f=0.5 Hz amplitude =2 for case 1
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Figure 4.37:The reference signal in sinusoidal wave (green) and the arm angle of the
system (blue) when f=0.5 Hz amplitude=2 for case 1

In these results generally the controller is successful in tracking reference signals with
lower frequencies. However, as the frequency increases the tracking capability decreases
still sustaining the pendulum in upright position. Hence we can conclude that the

controller is successful in reference signal tracking in general.
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4.3 The effects of disturbances

In order to observe effect of disturbances in rotary inverted pendulum, two different extra
masses are putting to the arm when the system is stabilized around the equilibrium point.
For this purpose, two materials are selected and their masses are 216.2 g and 516.2 g.
Then, the arm angle and voltage values are monitored in two conditions: without reference
input signal and with reference input tracking condition. In without reference input signal
condition, reference input is adjusted as a zero. In other condition, reference input signal

is a square wave signal and its frequency 0.1 Hz and its amplitude is 2.

Firstly, real time application is run as in section 4.2, using design controllers, and the
position of set point is set to 0. At the 13" second (after the system is stabilized at the
unstable equilibrium point), light extra mass (216.2 gram) is put on the rotary arm and the
following the arm angle and control voltage signals are observed in. Similar steps are
applied for heavy extra mass. To monitor the effects of disturbances, state feedback

controller’s results and in GA, total value=60 for case 1 are selected.

For the without reference input signal case:
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Figure 4.38:The arm angle in case of a light extra mass disturbance for state feedback
controller
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Figure 4.39:The voltage in case of a light extra mass disturbance for state feedback

controller
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Figure 4.40:The arm angle in case of a heavy extra mass disturbance for state feedback
controller
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Figure 4.41:The voltage in case of a heavy extra mass disturbance for state feedback
controller
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Figure 4.42:The arm angle in case of light extra mass disturbance for case 1

total gain value=60
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Figure 4.43:The voltage in case of light extra mass disturbance for case 1

total gain value=60
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Figure 4.44:The arm angle in case of heavy extra mass disturbance for case 1
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Figure 4.45:The voltage in case of a heavy extra mass disturbance for case 1

total gain value=60

For the with the reference input track condition:
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Figure 4.46: The arm angle (blue) in case of a light extra mass disturbance for state
feedback controller and the reference input signal (green)
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Figure 4.47: The voltage in case of a light extra mass disturbance for state feedback
controller in the reference input signal tracking condition
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Figure 4.48:The arm angle (blue) in case of a heavy extra mass disturbance for state
feedback controller and the reference input signal (green)
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Figure 4.49: The voltage in case of a heavy extra mass disturbance for state feedback
controller in the reference input signal tracking condition
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Figure 4.50:The arm angle (blue) in case of a light extra mass disturbance for case 1
total gain value=60 and the reference input signal (green)
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Figure 4.51:The voltage in case of a light extra mass disturbance for case 1

total gain value=60 in the reference input signal tracking condition

4 T T T T T
oL o~ VAN A JANEEVA\
Al \//\\ \/ \,\ VAV
T |
S
s °r i
2
= T
10 -
12 - -
14 - -
16 1 1 1 1 1
10 15 20 25 30 35 40
time[sec]

Figure 4.52:The arm angle (blue) in case of a heavy extra mass disturbance for case 1
total gain value=60 and the reference input signal (green)
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Figure 4.53: The voltage in case of a light extra mass disturbance for case 1 total gain
value=60 in the reference input signal tracking condition

In all disturbance conditions both the state feedback controller with lower DC motor
efficiency values and the controller obtained by genetic algorithm shows satisfactory
results. According to the Figure 4.44 and Figure 4.52, when the disturbance is added, the
difference between reference input and the arm angle is high. After this time, the arm

angle tracks the reference input.

4.4 Performance index measurement of controller

In control theory, a performance index is a quantitative measurement of the performance
of the system. This index is chosen to meet design specifications of important parameters
of the system. An optimum control system is that the system parameters are arranged so
that the index reaches an extremum value, commonly a minimum value. There are some

common performance indexes such as:
e Integral Square Error (ISE)

ISE =f =ooez(t)dt (4.1)

=0
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e Integral of Absolute Magnitude of Error (IAE)

t=oco
IAE =] le(t)|dt (4.2)
t=0
e Integral Time Absolute Error (ITAE)
t=o00
ITAE=j tle(t)|dt (4.3)
t=0

e Integral Time Square Error (ITSE)

t=0o0

ITSE = f te?(t)dt (4.4)

=0

In all of the above equations e(t) represents error response of the system. Integral defines
between 0 and oo. But, upper and lower limits can be changed depending on system

response duration.

In this thesis, integral square error for the arm angle and power of the applied input signal
(voltage) are defined as the performance index values. As the system signals are (arm
angle and applied voltage) have discrete nature instead of exact computation an
approximation is used. In the integral square error computation (the same is valid for
power calculation), the upper and lower limits of integration are chosen as 15 and 25
seconds of real time applications (as signals seem to be in steady state condition in this

duration).

The sampling rate of the data is 1000 Hz between these two limit values hence there are
10000 data available. So, between each consecutive data there is a time step of 0.001
seconds. Then the approximation for the integral square error for arm angle equation

becomes;

10000

Z (6, — 0)2 x 0.001 (4.5)
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For the input voltage signal, the power can be written as

i=10000

Z Voltage; 2 x 0.001 (4.6)

i=1

For comparison, default setup, state feedback controller with efficiency and in genetic
algorithm case 1 and case 3 when the total absolute gain value is limited to 60 cases are

selected and the results are tabulated.

Table 4.5: The results of performance of measurement controller

Case ISE for arm Angle Power of Voltage Signal
Default (Setup) 119.7017 0.7657
State Feedback Controller 1.7146 0.8070
(with efficiency)
Case 1 total absolute gain 2.1810 0.5166
value is limited to 60
Case 4 total absolute gain 3.8257 2.1044
value is limited to 60

Default (setup) case is the worst case among other cases as it has a high ISE value. In
genetic algorithm cases, especially case 1 power of the applied voltage signal is the least
one hence it can be concluded that the controller balances the system by relatively a small
effort with respect to other controllers as its ISE value for the arm angle is also relatively
small. The state feedback controller is also a good choice as it has the best ISE value with

slightly higher voltage signal power value.
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CHAPTER 5

CONCLUSIONS AND RESULTS

In this thesis, main purpose is to obtain state feedback controllers by genetic algorithm
due to optimization of a multi-criteria cost functions. These controllers are designed for
highly nonlinear, complex and unstable system. In order to complete the design some
procedures are accomplished in an order one by one. Initially, using dynamics of the
system, the nonlinear equations of the system are determined. These equations are
linearized around the unstable equilibrium point. From linear equations, the information
about of this system such as state space matrices, eigenvalues are determined. In the lights
of these information, the system is stabilize using state feedback controllers. While
obtaining state feedback controller by genetic algorithm different cost criteria are set.
These criteria include the general stability criteria of the linearized system (Routh Hurwitz
table) and relative stability criteria that corresponds to replacing closed loop eigenvalues
of the system to suitable locations (they should be to the left of s= -2, their imaginary
part/real part ratio should be smaller than a threshold value) and criteria related with state
feedback gain values. Hence in total genetic algorithm optimization runs turns into a multi
criteria optimization method to produce state feedback controllers. In the real time
applications, the produced controllers as the result of optimization process are tested. For
each real time run, the arm angle, the pendulum angle and applied voltage waveforms are

observed and variables are compared for all cases.

The designed controllers by genetic algorithm are more successful than set-up controller.

In both methods, eigenvalues are non-positive. Hence, the system is stable for all cases.

In reference signal tracking and application of disturbance the sate feedback controller

(obtained for less DC motor efficiency) and the seemingly best controller obtained by
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genetic algorithm are compared. The controller obtained by genetic algorithm has given
better results in reference signal tracking in general. In the presence of mass type of
disturbances, the controllers generally demonstrated similar performances.

In the future works, a deeper analysis should be carried out in order to identify the effects
of swing up mode parameters and gain values of state feedback controller in stability and
transient and steady state responses.
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