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Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

June 2019, 89 pages 

 

 

 

Polar Codes are the first mathematically provable capacity achieving error correcting 

codes which have low complexity encoding and decoding algorithms. For the decoding of 

polar codes, as a preliminary decoding algorithm, the successive cancellation (SC) 

decoding algorithm is used. SC algorithm is a sequential decoding algorithm which suffers 

from error propagation. For this reason, SC algorithm does not show good performance 

for moderate codeword lengths. 

 

Polar codes with SC decoding show worse performance than that of the modern channel 

codes, such as LDPC and turbo codes. To improve the performances of the polar codes 

improved versions of SC algorithm such as SC list (SCL) and SC stack are introduced in 

the literature, and these algorithms show much better performance than that of the classical 

SC decoding algorithm although they have larger complexity compared to SC. Besides, 

cyclic redundancy check codes are concatenated with polar codes which are decoded using 
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the SCL algorithm, and such a concatenated system shows better performance than the 

other modern channel codes. 

 

In this thesis, we first propose a tree structure for the successive cancelation (SC) decoding 

of polar codes. The proposed structure is easy to implement in hardware and suitable for 

parallel processing operations. Next, using the proposed tree structure, we propose a 

technique for the fast decoding of polar codes. With the proposed method, it is possible to 

decode all the information bits simultaneously at the same time, i.e., in parallel. Lastly, 

we introduce and improved version of the proposed high-speed decoding algorithm. The 

proposed high-speed decoding approach and its improved version are simulated on 

computer environment, and their BER performances are compared to the performance of 

the classical successive cancelation method. 

Furthermore, we introduce a new approach to the successive cancelation of polar codes. 

The proposed approach uses the soft likelihood ratios of the predecessor information bits 

for the determination of successor information bits. The proposed method can be 

considered for the construction of joint iterative communication systems exchanging soft 

likelihoods. It is shown that the proposed soft decoding approach shows better 

performance than the classical successive cancelation algorithm introduced in Arikan’s 

original work.  

As we know, polar codes are decoded in a sequential manner using successive cancelation 

algorithm introduced by Arikan. The sequential nature of the decoding process suffers 

from error propagation. We inspect the effects of error propagation on the performance of 

polar codes and propose some methods to alleviate the degrading effects of error 

propagation on the code performance for short and long frame lengths. 

 

Keywords: Polar codes, recursive decoding, fast decoding, successive cancelation 

decoding, successive cancelation algorithm, soft decoding, sequential decoding, 

successive cancelation algorithm, error propagation, BEC. 
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ÖZ 

 

KUTUP KODLARININ VERİMLİ ÇÖZÜMLENMESİ 

ANDI, Alia Ahmed Eletri 

Doktora, Elektronik ve Haberleşme Mühendisliği 

Tez Yöneticisi: Doç. Dr. Orhan GAZİ 

 

Haziran 2019, 89 sayfa 

 

Kapasiteye erişimi ilk defa matematiksel olarak ispatlabilen Polar Kodlar, düşük 

karmaşıklıkta olan ardışık giderim (SC) yöntemi ile ikili ayrık hafızaya sahip olmayan 

simetrik kanallar için sunulmuş hata düzeltme kodlarıdırlar. Her ne kadar SC düşük bir 

karmaşıklığa sahip bir algoritma olsa da, hata yayılması probleminden dolayı iyi 

performans gösterememektedir. 

Ne yazık ki, SC kod çözme işleminin sonlu çerçeve uzunluklarındaki hata düzeltme 

performansı, LDPC kodları gibi diğer modern kodlarınki kadar iyi değildir. Sonlu çerçeve 

uzunluğu performansını iyileştirmek için, SC liste (SCL) kod çözme ve SC yığın kod 

çözme gibi daha gelişmiş algoritmalar yakın zamanda tanıtılmıştır. Bu algoritmalar, temel 

kod çözücü olarak SC'yi kullanır, ancak aynı anda birden çok yolu keşfederek bir aday 

kod kelimesi sonuçlanacak şekilde performansını arttırır. SCL çözücüsünü kod çözme 

işleminin hesaplama ve bellek karmaşıklıkları, basit SC kod çözücüsünden çok daha 

yüksektir. Kod çözme algoritmasının performansını arttırmak için döngüsel artıklık 

kontrolü (CRC) yardımı ile SCL yapısı (CRC-SCL) kullanılabilir. 

Bu tezde, öncelikle kutup kodlarının kod çözme işlemlerini ardışık giderim (SC) 

algoritması ile çözmek için bir ağaç yapısı öneriyoruz. Önerilen yapının donanım üzerinde 

gerçeklenmesi kolaydır ve paralel işleme işlemleri için uygundur. Daha sonra, önerilen 
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ağaç yapısını kullanarak, kutup kodlarının hızlı bir şekilde çözülmesi için bir teknik 

öneriyoruz. Önerilen teknik ile tüm bilgi bitlerinin aynı anda, yani paralel olarak 

çözülmesi mümkündür. Son olarak, önerilen kod çözme algoritması hızını arttıracak bir 

yöntem sunulmuştur. Önerilen yüksek hızlı kod çözme yaklaşımın ve geliştirilmiş 

versiyonun, bilgisayar ortamında benzetimi yapılmış ve bit-hata oranı (BER) 

performansları, klasik ardışık giderim yönteminin performansıyla karşılaştırılmıştır. 

Ayrıca, kutup kodlarının art arda canlandırılmasına yeni bir yaklaşım getiriyoruz. 

Önerilen yaklaşım, ardışık bilgi bitlerinin belirlenmesi için önceki bilgi bitlerinin 

yumuşak olasılık oranlarını kullanmaktadır. Önerilen yöntem, yumuşak olasılıkları 

paylaşan ortak yinelemeli iletişim sistemlerinin kurulabilmesi için düşünülebilir. Önerilen 

yumuşak kod çözme yaklaşımının, Arıkan’ın orijinal eserinde tanıtılan klasik ardışık 

giderim algoritmasından daha iyi performans gösterdiği gösterilmiştir. 

Bildiğimiz gibi, polar kodları Arıkan’ın orijinal eserinde tanıtılan ardışık giderim 

algoritması kullanılarak sıralı bir şekilde çözülür. Kod çözme işleminin sıralı yapısı, hata 

yayılımından mustariptir. Bu çalışmada, hata yayılımının kutupsal kodların performansı 

üzerindeki etkilerini inceliyoruz ve kısa ve uzun veri blokları için hata yayılımının kod 

performansı üzerindeki düşürücü etkilerini azaltmak için yöntemler öneriyoruz. 

 

Anahtar Kelimeler: Kutup kodları, özyinelemeli kod çözme, hızlı kod çözme, ardışık 

giderim kod çözücüsü, ardışık giderim algoritması, yumuşak kod çözme, sıralı kod çözme, 

hata yayılımı, ikili silme kanalı. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

 

Channel coding can be considered as one of the most important topics of digital 

communication. Channel coding is used in every place of the internet and mobile 

communications. Channel coding is used to correct the transmission errors taking pace 

during the data transmission. It is also widely used in optical communication and data 

storage.  

The main topic of information theory is related to transmission of data in a noisy channel. 

Redundancy is added to the data before the transmission operation to make the 

communication reliable in the presence of noise. The recipient has access only to a noisy 

version of the data. If sufficient amount of redundancy is added in a logical manner, then 

it is possible restore the original data in the receiver. Coding is nothing but generating the 

redundancy in an intellectual way. Encoding is performed to generate the required 

redundancy, and the encoded information is passed through a noisy channel. Shannon in 

its paper [1] defined the reliable communication limits and he provided a mathematical 

basis for systematically studying the problems that led to success over the past 50 years. 

The commonality of his approach allows us to study even modern scenarios, such as 

mobile communications. The basic model that Shannon refers to consists of a source that 

generates information, a receiver that receives information, and a channel that models the 

physical transmission of information. 
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Shannon define the entropy related to a random variable, and the entropy indicates the 

average amount of information carried by the random variable and it is demoted by 𝐻 (𝑋). 

The entropy is used to drive the limits of data compression and reliable transmission for a 

given signal to noise ratio (SNR). The communication channel can be indicated by a 

conditional probability distribution. Let 𝑋 and 𝑌 denote the input and output alphabet of 

a communication channel. The channel indicated as 𝑊 ∶  𝑋 →  𝑌 is characterized by the 

conditional probability distribution 𝑊 (𝑦 | 𝑥). When 𝑥 is transmitted through a channel, 

at the receiver the symbol 𝑦 ∈  𝑌  which is an element of another random variable is 

received, and between output and input random variables we can define the conditional 

probability distributed function 𝑊 (𝑦 | 𝑥). Shannon showed that it is possible to decrease 

the transmission error probability to zero asymptotically adding sufficient amount of 

redundancy to the data to be transmitted. He defined the capacity of the channel 𝐼 (𝑊), 

which characterizes the maximum possible speed of the reliable transmission. In other 

words, for any 𝑅 < 𝐼 (𝑊) it is possible to transmit 𝑅 bits through a noisy channel with 

zero error probabilities. It is also possible to deduce that roughly we can say that if the 

source entropy is less than the channel capacity, i.e. if 𝐻 (𝑋)  < 𝐼 (𝑊), then it is possible 

to do reliably communication through a noisy channel. Another critical result of Shannon 

is that if the entropy of the source is greater than the capacity of the channel, then reliable 

communication is impossible.   

The second important part of Shannon’s work is to separate the source and channel coding 

operations, as shown in Figure 1, without loss of performance. The source coding module 

in Figure 1 tries to decrease the redundant information available in the data to be 

transmitted, this is also called as data compression or source coding On the other hand, 

channel coding part increases the redundancy amount for reliable data transfer. At the 

decoder side, first channel decoding operation is performed to recover the original data 

bits transmitted. Next source decoding, i.e., de-compression, operation is performed. To 

achieve the theoretical limits of the source and channel coding operations, we should 

choose the block length of the data to be transmitted large enough. This, in turn, affects 

the complexity. For practical use of the source and channel codes, we need to pay attention 

to the computational complexity of the encoder and decoder units so that that can be 
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implemented in electronic circuits. Otherwise, their use in practical systems will be 

limited.  

 

Channel Encoder 

Channel Decoder 

Channel

 xN

yN

Source Source Encoder Transmitter

ReceiverSource Encoder Sink

 

 

Figure 1 Primary feature of a digital communication system. 

 

 

1.2 Polar Codes 

 

Polar codes, which are invented by Arikan, can be considered as the first class of 

mathematically proven channel codes capable of achieving channel with low complexity 

of encoding and decoding [32]. Polar coding operation is based on the phenomenon of 

polarization, which is the main principle of polar codes, can be used for many problems 

of source and channel coding for both single-user and multi-user communication 

scenarios. 

The computation complexity for the encoding and decoding operations of the polar codes 

can be expressed using 𝑂 (𝑁 𝑙𝑜𝑔𝑁) where 𝑁 is the length of information sequence. The 

polar code logic can be briefly summarized for binary discrete memoryless channels 

(DMCs) as follows: (1) For binary DMC, polar encoding is performed such that virtual 

channels are created between input and output bits and the capacities of these virtually 

created channels approaches either to '1' or '0' as the length of the information sequence 
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goes to infinity, and this phenomenon is called channel polarization. (2) The information 

bits are transmitted through high capacity virtual channels to achieve the limits of 

Shannon.   

 

1.2.1 Successive Cancellation (SC) Decoding 

 

In [32], it was shown that polar codes with SC decoding can achieve the capacity of binary 

discrete memoryless channels. SC decoding operation fully utilize the polar coding 

property and it has much less computational complexity when compared to its counterpart 

belief propagation (BP) decoding algorithm which utilizes the soft information for 

decoding operations. SC and its improved version SC list are the most popular algorithms 

used for the decoding of polar codes.  However, the inherent sequential decoding nature 

of the SC algorithm result in long decoding latencies. For a codeword of length 𝑁, the 

total decoding latency of the SC algorithm equals to 2𝑁 − 2 clock cycles. This huge 

latency created a serious problem for the application of polar codes in real time 

applications. We will look at SC decoding in detail in Chapter 4. 

Currently, researchers are trying to improve the decoding performance of polar codes. 

There are many improved decoding methods for SC like algorithm in the literature, such 

as are SCL, SCS which can be considered as two enhanced versions of traditional SC 

decoding. 

 

1.2.2 Successive Cancellation List (SCL) Decoding 

 

The improved version of the SC algorithm, i.e., SC list algorithm, is proposed to improve 

the performance of the SC decoding for short and moderate block lengths in [36]. In SCL 

decoding operation 𝐿 best decoding paths are simultaneously tracked in contrast to SC 

decoding operation in which only a single path is tracked. If 𝐿 is chosen a large number, 

then significant improvement in performance is achieved when classical SC decoder's 

performance is considered. SCL is a search algorithm which use a code tree structure with 

a search depth 𝐿. At each level of the SCL algorithm, the number of candidate paths are 
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doubled which corresponds to bit 0 or bit 1. Then SCL selects the best 𝐿 paths with the 

highest score metrics and stores them to process for the incoming level. SCL with 𝐿 

decoding paths each having a complexity of 𝑂 (𝑁), has the total complexity 𝑂 (𝐿𝑁).  

 

For the decoding operation at each level, each of the 𝐿 candidates is saved and these 𝐿 

paths are expanded to new paths and 𝐿 of them are saved again; there operations have a 

complexity of 𝑂 (𝐿𝑁) calculations. Besides, considering that the code tree consists of  𝑁 

levels, the direct implementation of the SCL decoder have a complexity of  𝑂(𝐿𝑁2 ) 

calculations. In [50], to reduce the computation complexity of SCL algorithm arising from 

the so-called “lazy copy” technique is alleviated employing memory sharing between 

candidate paths. Therefore, the complexity of the SCL decoder can be reduced to 

𝑂 (𝐿𝑁 𝑙𝑜𝑔 𝑁). 

 

1.2.3 Successive Cancellation Stack (SCS) Decoding 

 

An improved version of SC algorithm called SC stack [51] uses a stack for keeping 

candidate paths and determines the best candidate path via optimal searching. Whenever 

the top path has the metric 𝑁, the decoding operation stops and decision is made about the 

transmitted bits. The difference between SCL and SCS lies on the lengths of the candidate 

paths such that in SCL all the candidate paths have the same lengths, on the other hand in 

SCS algorithm candidate paths may have different lengths.  Let 𝐷 be the largest stack S 

in a SCS decoder. In [63], a modified version of SCS, where the number of expanding 

paths is limited by the parameter 𝐿, is introduced. 

 

Considering the parameters 𝐷 and 𝐿 employed by a SCS decoder, we can denote a SCS 

decoder by SCS (𝐿, 𝐷). The counting vector 𝑐𝑁1 =  (𝑐1,  𝑐2, . . . , 𝑐𝑁 ) is utilized to  save the 

number of pushing paths for a certain length, in 𝑐𝑁1 the parameter 𝑐𝐼 indicates the number 

of matched paths of length-𝑖 in the decoding process.  
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Like in SC and SCL, for the efficient implementation of SCS decoder "lazy copy" method 

can be utilized for reduced complexity. The computational and memory complexity of 

SCS can be indicated by 𝑂 (𝐿𝑁 𝑙𝑜𝑔 𝑁) and 𝑂 (𝐷𝑁). Considering the same search width 

𝐿, we can state that the computational complexity of SCS (𝐿) is smaller than the 

computational complexity of SCL (𝐿) [36]. 

 

1.3 Thesis Contribution 

 

In this thesis work, we consider efficient design of polar decoders.  First, we propose low-

latency high-performance polar decoders considering the decoding tree of the polar codes. 

In the sequel, we inspect the error propagation phenomenon of the SC decoders and 

propose some techniques to alleviate the degrading effects of error propagation. Besides, 

we also consider a new technique for the SC algorithms for which soft information is used 

rather than the hard bits.  

 

1.3.1  High-Speed Decoding of Polar Codes  

 

We have proposed an efficient decoding algorithm for polar codes that simultaneously 

decodes 𝑁 bits. The BER characteristics of polar codes with this proposed high-speed 

decoding on binary erasure channels are obtained using computer simulation. The SC 

decoder needs (2𝑁 − 2) cycles for the completion of decoding operation. It is clear that 

the decoding latency created by a large 𝑁 is not suitable for high-speed real-time 

applications [37]. Therefore, polar codes need low latency and a high-speed decoding 

structures. Our proposed algorithm can decode 𝑁 consecutive bits simultaneously. 

Therefore, the delay can be reduced, and the speed can be increased. 
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1.3.2 The Effect of Error Propagation on Performance of Successive Cancellation 

(SC) Decoder of Polar Codes 

 

Wrong bit decisions in SC decoding can be due to two reasons: channel noise or error 

propagation due to previous error decisions in bits. At the first wrong decision, since there 

are no previous errors, the first erroneous decision must be due to the channel parameters. 

In this thesis, we discuss and analyze the effect of error propagation on the performance 

of successive cancellation (SC) decoder of polar codes. We have also considered 

successive cancellation using decoding for polar codes with CRC. With this concatenated 

structure it is possible to improve the bit error rate performance by estimating the first 

error location. This new algorithm is more complex than original SC at high rate.  

 

1.4 Thesis Organized  

This thesis is outlined as follows. In Chapter 2 Literature Review is introduced.  

In Chapter 3 we will state general preliminaries and we briefly introduce the basic 

concepts of channel polarization and polar codes as well as the main ideas about encoding 

operations. We end the chapter with some words on code construction issues. 

In Chapter 4 We explain the main ideas behind the successive cancellation (SC) decoding 

algorithm. We explain that polar codes utilizing SC decoding algorithm can achieve the 

capacity of symmetric channels. It is shown that the complexity of the encoding and 

decoding algorithms for the polar codes can be indicated by 𝑂(𝑁 𝑙𝑜𝑔𝑁) where 𝑁 is the 

block length. In the sequel, three improved versions of the successive cancellation (SC) 

decoding algorithms, the successive cancellation list (SCL), the successive cancellation 

list with CRC and successive cancellation stack (SCS) which improve the performance of 

polar codes without increasing the code length are explained and some simulation results 

are provided. 

Chapter 5 considers a high-speed decoding method based on successive cancellation (SC) 

decoding of polar codes using tree structure. The proposed high-speed decoding algorithm 

that can decode 𝑁 bits at the same time, i.e., in parallel is discussed in detail in this chapter. 
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The proposed high-speed decoding approach is simulated on computer environment and 

its BER performance is compared to that of the classical successive cancellation method. 

Chapter 6 deals with error propagation issue. In chapter 6, we discuss and analyze the 

effect of error propagation on the performance of successive cancellation (SC) decoder of 

polar codes and we introduce a concatenated structure involving successive cancellation 

and CRC algorithms. This combined structure improves the bit error rate and frame error 

rate performance by estimating first error location. Chapter 7 presents the conclusion and 

future work. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

The amount of memory needed for storing the computational parameters of the decoder's 

algorithm and the amount of memory needed for the encoding operation are critical factors 

for good code design. A code consists of 2𝑁𝑅codewords, where 𝑅 and 𝑁 are the rate of 

the code and block length respectively. In [2], Shannon also characterized the  rate-

distortion trade-off 𝑅(𝐷) which is used to determine the lowest rate for a targeted average 

distortion 𝐷. A typical code requires a memory amount of 𝑂(𝑁2𝑁𝑅)  bits which is 

inappropriate for practical applications.  Dobrushin and Elias in [3], [4], [5], initiated the 

researches on the channel code development, and they showed that linear codes can be 

used to approach the capacity limits drawn by the Shannon. 

 

Linear codes are nothing but subspaces of vector spaces. A linear code can be specified in 

terms of the basis of a subspace. The number of codewords that can be generated is 

2𝑅𝑁where 𝑁 is the length of the information stream, and for the designed code, the 

memory requirement can be indicated as 𝑂(𝑁2) bits. In [6], [7] Goblick has shown that 

the same formulas also hold in the case of source coding. The second problem is the 

computational complexity of the encoding and decoding operations. A code may not have 

large memory requirements, but, it may have large amount of encoding and decoding 

complexity. In the following, we will give a short background of some important 

developments of channel coding theory. In [8] deep and comprehensive details about 

channel coding can be found for further reference. 

2.1 Channel Coding 
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Channel codes are usually designed algebraically since the beginning of coding theory. 

Minimum distance of a code has a large impact on its performance. For this reason, 

researches focused on the design of codes with large minimum distances and good 

spectrums. Besides, tolerable encoding and decoding complexity was another factor for 

the good code design. As we stated before channel codes are used correct the transmission 

errors at the received data stream. The decoding operation can be divided into two main 

categories. One is called hard decoding, and the other is called soft decoding. In hard 

decision decoding, first the received signal is demodulated and then it is passed through 

the hard decoder which deals with the bits 0 and 1 to recover the transmitted data bits. On 

the other hand, in soft decoding operations demodulation is not performed, instead, bit 

probabilities are computed and further processed for the calculation of the bit probabilities 

of the data bits. Decision on the value of bits is made at the final stage of the soft decoding 

operation. 

Hard decoding tries to find the codeword closest to the demodulated bit stream in terms 

of Hamming distance. Codes with large minimum distances show better performance, 

since as long as the number of errors occurred is smaller than half of the minimum distance 

of the code, the bit error can be corrected and correct transmitted codeword can be 

determined. Hamming codes, which are single error correction codes, are considered to 

the first algebraic codes developed. Some other algebraic codes can be listed as Golay 

codes, BCH codes [9], [10], Reed-Muller codes [11], [12] and Reed-Solomon codes [13]. 

Over several decades many efficient decoding algorithms are developed for these linear 

codes. Combined codes or product codes are first studied by Elias in [14] where large 

codes are constructed using two or more shorter codes. Two codes 𝐶1 and 𝐶2 of length 

𝑛1 and 𝑛2 are combined is such a way resulting in a product code placed into a matrix of 

size 𝑛1 ×  𝑛2 matrix such that each column is a codeword of 𝐶1 and each row is a 

codeword of 𝐶2. The rows and columns of the product code are decoded separately using 

a low complexity decoding algorithm. However, the performance of the product code 

proposed in [14] is much far away the capacity limit. Code concatenation is also studied 

by Forney in [15] where the information frame is encoded by the code C1 and the resulting 

stream is again encoder by the code C2. Forney in its work showed that using code 
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concatenation, it is possible to decrease the probability of decoding error in an exponential 

manner using decoding algorithms having polynomial complexity. 

Convolutional codes which are another class of error correcting codes have a vital place 

in communication world. The Viterbi algorithm, which minimizes the block error 

probability rather, is used in [16]. An improved version of Viterbi algorithm which is the 

BCJR algorithm, which minimized the bit error probability rather than the block error 

probability, is introduced in [17]. Studies show that using convolutional codes reliable 

transmission, which is related to the exponential decrease of the error probability, can be 

achieved for code rates lower than the channel capacity. However, to achieve the capacity 

limit frame length should be chosen large enough and this created a significant load for 

the complexity of decoding algorithms. 

For practical implementation purposes, a decoding algorithm called Fano sequential 

decoding algorithm, which has linear complexity for rates less than the cutoff rate in block 

length independent of the constrained length, is proposed in [18]. The cutoff rate of the 

code is algebraically calculated and it is less than the channel capacity. 

Another modern type of codes introduces in the 1960s are low density parity check 

(LDPC) codes [19]. The parity check matrices of the LDPC codes have a sparse structure. 

In fact the total number of  '1's along each row and column is a constant number. Gallager 

proposed a decoding algorithm for LDPC codes. However, due to large computational 

requirements of the LDPC decoders, the LDPC codes did not get sufficient attention by 

researchers at the time of its introduction due to the low computational capability of the 

electronic devices. 

Turbo codes which are introduced in [20] by Berrou, Glavieux and Thitimajshima [20] 

was a breakthrough among coding society. Turbo codes approached to the capacity limits 

the most when all the other codes till the introduction of turbo codes are considered. Turbo 

codes are constructed using two convolutional codes concatenated in parallel and an 

interleaver is used between convolutional codes. Turbo codes are decoded in an iterative 

manner using the BCJR algorithm. The BCJT algorithm is employed for each components 

codes, and at each iteration component codes exchange soft information. The complexity 
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of the BCJR algorithm changes in a linear manner considering the length of codewords. 

The reason behind the astonishing performance of the turbo codes lies on the use of 

interlaver between the component codes and the exchange of the soft information between 

component codes. 

Making use of the sparse matrices McKay and Neil introduced new codes in [21] and they 

showed that the proposed codes show good performance with belief propagation 

algorithm having low complexity. The codes introduced by McKay and Neil can be 

considered as special case of LDPC codes and the decoding algorithm they considered 

was an equivalent version of the decoding algorithm introduced by Gallager. In sequel, 

about at the same time Sipser and Spilman [22] constructed extender codes and proposed 

a simple decoding algorithm for the proposed codes. In [23], [24] Wiberg, Loeliger and 

Kotter designed a joint structure involving turbo and LDPC codes. It can be concluded 

that different approaches to the channel coding problem sometimes invents different 

versions of the same algorithms as in the case of MacKay and Neal and the probabilistic 

decoding of Gallager. The superior performance of turbo codes which lead to the 

subsequent re-discovery of LDPC codes aroused interest in LDPC codes and messaging 

algorithms.  

A number of papers about the analysis of message passing algorithm were released by 

Lubi, Mitzenmacher, Shokrollahi, Spilman and Steman in [25], [26], [27], [28]. In [25], 

[27], the authors introduced the “peeling decoder” which is suboptimal decoder used for 

binary erasure channels (BECs).  

They designed capacity achieving codes peeling decoders for the BEC. In sequel, the 

structure of the peeling decoder is explained as a process on a tree.  This new structure 

was simpler than the ones in [25], [27].  Richardson and Urbanke introduced the density 

evaluation approach in [30] for the analysis of BEC [29] for discrete memoryless 

symmetric channels and introduced a class of algorithms falling into the category of 

message-passing algorithms. Joint use of combined density technique and a number of 

optimization techniques for the analysis of belief propagation is introduced in [31]. A 

variety of turbo like and LDPC like codes are also introduced empirically by the 
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researchers to achieve the capacity for various type of communication channels. However, 

none of these codes allocate bandwidths for certain channels and guarantee the 

transmission of a data bit. 

 In this thesis, we work on the polar codes. The polar codes are introduced by Arikan in 

[32]. Polar codes achieve the capacity of communication channels and they have low 

complexity encoding and decoding algorithms. Polar codes can be considered as the most 

serious development in channel coding history. Polar codes are designed mathematically 

and their capacity achieving properties can be algebraically proven which was not the case 

for all the codes invented up to date. In fact, Arikan published a number of papers which 

prepares necessary background for the invention before the introduction of polar coding 

and channel polarization papers appearing in [33] and [34]. Shortly after the introduction 

of polarization, a number of articles and papers were published about its performance and 

the expansion of its areas of application.  In [35], the authors compared polar codes to that 

of the Reed-Muller codes under belief-propagation decoding.  

In [37]-[51], the successive cancellation (SC) decoding algorithm, and its improved 

versions called successive cancellation list (SCL) and the successive cancellation stack 

(SCS) decoding algorithms showing improved performances are introduced considering 

the use of the same parameter sets for all the codes.  

In [50] the fundamental logic of channel polarization, construction of polar codes and the 

decoding algorithm (SC) are presented. In sequel, successive cancellation list (SCL) 

decoding algorithm achieving the performance of maximum likelihood (ML) decoder with 

an acceptable complexity in [50] is introduced. Following the introduction of the SCL 

algorithms, another improved version of the SC algorithm called successive cancelation 

stack (SCS) is proposed in [51], and SCS algorithm shows good performance at high SNR 

values with tolerable computational complexity. Another modified architecture of SC 

decoder is presented in [53].  In [54], authors utilized the semi-parallel method and making 

use of the advantage of the recursive structure of polar codes, they designed a unified 

scheme having a single encoder and decoder unit that can be used over the multi-channel. 

The efficient design of polar codes for BMS channels is studied in [56]. The BER 
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performance of polar codes over different type of channels such as AWGN and BSC is 

studied in [57] for different codeword lengths.  Speed-up techniques have been proposed 

in [58]- [61], and in [58] an algorithm is proposed which increases the throughput of the 

modified SC algorithm three times.  In [58], list decoder is modified in such a way that 

the decoding latency is reduced, and the proposed method is implemented in software. 

In [60], the speed of the polar decoder is increased at least 8 times compared to the 

classical SC decoder. Polar decoding using SCFlip is studied in [62] where the authors 

employ the use of an optimized metric for the determination of the flipping positions in a 

SCFlip decoder, and this approach improves SCFlip ability to locate the first bit error 

position. In [63], choice of CRC polynomials for embedded network applications is 

described and a set of good general-purpose polynomials are suggested and the suggested 

polynomials include a set of 35 new polynomials in addition to the 13 previously known 

polynomials which provide good performance for 3 and 6-bit CRC with a data word length 

ranging up to 2048 bits. 

2.2 Turkish Literature Review Search  

According to YOK eight thesis have been done on polar codes, Table 1. Lists Turkish 

thesis literature search. 
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Table 1 Turkish thesis literature search. 

Author Year Title Thesis Type University 

AHMET 

GÖKHAN PEKER 

2018 Belief propagation decoding of 

polar codes under factor graph 

permutations 

Master Orta Doğu 

Teknik 

Üniversitesi 

ŞÜKRÜ CAN 

AKDOĞAN 

2018 A study on the set choice of multiple 

factor graph belief propagation 

decoders for polar codes 

Master Orta Doğu 

Teknik 

Üniversitesi 

ONUR DİZDAR 2017 High throughput decoding methods 

and architectures for polar codes 

with high energy-efficiency and low 

latency 

Doctorate İhsan 

Doğramacı 

Bilkent 

Üniversitesi 

ALTUĞ SÜRAL 2016 An FPGA implementation of 

successive cancellation list 

decoding for polar codes 

Master Bilkent 

Üniversitesi 

TUFAIL AHMAD 2016 Polar codes for optical 

communications 

Master Bilkent 

Üniversitesi 

ALİ 

ALİBRAHEEMİ 

2015 Performance analysis of polar codes Master Cankaya 

Üniversitesi 

SİNAN 

KAHRAMAN 

2014 Efficient maximum likelihood 

decoding: From space-time block 

codes to polar codes 

Doctorate Istanbul 

technical 

Üniversitesi 

SAYGUN ÖNAY 2014 Polar codes for distributed source 

coding 

Doctorate Bilkent 

Üniversitesi 

SEMİH ÇAYCI 2013 Lossless data compression with 

polar codes 

Master Bilkent 

Üniversitesi 

BERKSAN 

ŞERBETCİ 

2012 Generator matrix selection for 

finite-length polar codes 

Master Bogazici 

university 

ÜSTÜN ÖZGÜR 2009 A performance comparison of polar 

codes with convolution turbo codes 

Master Bilkent 

Üniversitesi 
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CHAPTER 3 

 

 POLAR CODING 

 

Channel coding has been an ever-growing field since Shannon’s seminal work in 1948 

[1]. Since then, the goal of achieving capacity with relatively low complexity has been a 

major issue for coding society. Arıkan has reached this goal for the class of binary input 

discrete memoryless channels (B-DMC) [32]. He discovered the method of “channel 

polarization” for constructing capacity achieving codes for B-DMC. 

In this chapter, we briefly introduce the basic concepts of channel polarization and polar 

codes as well as the main ideas about encoding operation. We end the chapter with some 

words on code construction issues. Throughout this chapter we will restate the main results 

of [32]. 

 

3.1 Preliminaries 

 

We start with presenting the notation that is going to be used throughout this thesis. 

Afterwards, we introduce the main parameters which capture the notion of channel rate 

and reliability, namely symmetric capacity and Bhattacharyya parameter, as well as their 

main properties. The expression  𝑊: 𝑋– 𝑌 denotes a B-DMC having input alphabet 𝑋, 

output alphabet 𝑌, and transition probabilities 𝑊(𝑦|𝑥), 𝑥𝜖𝑋, 𝑦𝜖𝑌. The input alphabet 𝑋 

consists of  {0,1}, on the other hand, the output alphabet may have more symbols. We 

write 𝑊𝑁 to denote 𝑁 use of the channel 𝑊; thus, we have 

 

𝑊𝑁 = 𝑋𝑁 → 𝑌𝑁 

with 
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𝑊𝑁(𝑦1
𝑁|𝑥1

𝑁) = ∏ 𝑊(𝑦𝑖 |𝑥𝑖)
𝑁

𝑖=1
 

. 

For a B-DMC 𝑊 , we can define two channel parameters which are the symmetric 

capacity 

 

𝐼(𝑊) ≜ ∑ ∑
1

2
𝑥𝜖𝑋𝑦𝜖𝑌

𝑊(𝑦|𝑥)𝑙𝑜𝑔
𝑊(𝑦|𝑥)

1
2 𝑊(𝑦|0) +

1
2 𝑊(𝑦|1)

. 
  

  

(3.1) 

and the Bhattacharyya parameter 

𝑍(𝑊) ≜ ∑ √𝑊(𝑦|0) + 𝑊(𝑦|1).

𝑦𝜖𝑌

   

(3.2) 

 

These parameters indicate the transmission rate and reliability. 𝐼(𝑊) is the highest 

transmission rate through the channel 𝑊 for which inputs have uniform distribution. 

𝑍(𝑊) is considered to be an upper bound on the probability of maximum-likelihood (𝑀𝐿) 

decision error for the transmission through 𝑊. The range set of 𝑍(𝑊) consists of [0,1]. 

The base of the logarithm in 𝐼(𝑊) is chosen as  2 which indicates that the unit of 𝐼(𝑊) is 

bits/sample. In a similar manner, we can conclude that the unit for code rates and channel 

capacities will be bits. 

Intuitively, one would expect that 𝐼(𝑊) ≈ 1 iff 𝑍(𝑊) ≈ 0, and 𝐼(𝑊) ≈ 0 iff 𝑍(𝑊) ≈ 1. 

For any B-DMC 𝑊, the upper and lower bounds for 𝐼(𝑊) can be calculates as 

𝐼(𝑊) ≥ 𝑙𝑜𝑔
2

1 + 𝑍(𝑊)
 

  

(3.3) 

𝐼(𝑊) ≤ √1 − 𝑍(𝑊)2. (3.4) 

  

Two well-known examples of the discrete memoryless channels are the binary symmetric 

channel (BSC) and the binary erasure channel (BEC). A BSC is a B-DMC 𝑊 with output 

alphabet 𝑌 = {0,1}, and transition probabilities 𝑊(0|0) = 𝑊(1|1), and 𝑊(1|0) =

𝑊(0|1). For BEC for each received bit 𝑦𝜖𝑌, we have the transition probabilities 



  

18  
 
 

𝑊(𝑦|0)𝑊(𝑦|1) = 0, 𝑊(𝑦|0) = 𝑊(𝑦|1), and 𝑦 = 𝑒 is said to be an erasure symbol with 

the transition probability defined as 𝑊(𝑒|0) = 𝑊(1|𝑒) = 𝛼 where 𝑒 denotes the erased 

output. 

The notation 𝑎1
𝑁 is used as shorthand for the row vector (𝑎1, … , 𝑎𝑁). For row vector 𝑎1

𝑁, 

the expression 𝑎𝑖
𝑗
 1 ≤ 𝑖, 𝑗 ≤ 𝑁 is used to denote the subvector (𝑎𝑖 , … , 𝑎𝑗). Given 𝑎1

𝑁 and 

𝒜 ⊂ {1, … , 𝑁}, the expression 𝑎𝒜  is utilized to denote the subvector (𝑎𝑖: 𝑖𝜖𝒜).In 

addition, 𝑎1,𝑜
𝑗

 is used for the subvector with odd indices (𝑎𝑘: 1 ≤ 𝑘 ≤ 𝑗; 𝑘 𝑜𝑑𝑑). 𝑎1,𝑒
𝑗

 

denotes the subvector having even indices (𝑎𝑘: 1 ≤ 𝑘 ≤ 𝑗; 𝑘 𝑒𝑣𝑒𝑛) . 

We will use GF(2) for the construction of codes, i.e., vector spaces thought the thesis. All 

vectors, matrices, will be constructed using the elements of GF(2), and mod-2 addition 

and multiplication operations will be performed between the elements of vectors and 

matrices. For  𝑎1
𝑁 ,𝑏1

𝑁 vectors over GF (2), the expression 𝑎1
𝑁 ⊕ 𝑏1

𝑁 indicates element by 

element mod-2 summation of two vectors. The Kronecker product for an m-by-n matrix 

𝐴 = [𝐴𝑖𝑗] and an r-by-s matrix 𝐵 = [𝐵𝑖𝑗]  is defined in (3.5)  

 

𝐴 ⊗ 𝐵 = [
𝐴11𝐵 ⋯ 𝐴1𝑛𝐵

⋮ ⋱ ⋮
𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵

] 
  

 (3.5) 

 

which is an mr-by-ns matrix. The Kronecker power 𝐴⊗𝑛 is calculated in a recursive 

manner as 𝐴 ⊗ 𝐴⨂(𝑛−1) for all 𝑛 ≥ 1. The standard Landau notation 𝑂(𝑁) is used to 

denote the asymptotic behavior of functions. 

3.2 Channel Polarization  

We start by briefly giving the main notion of channel polarization. Let us have a B-

DMC 𝑊 with symmetric capacity 𝐼(𝑊). Now let us get two independent copies of this 

channel 𝑊. If we use these channels as they are, we have two symmetric capacities of 

𝐼(𝑊). Channel polarization is an operation that allows us to combine those two channels, 

creating a vector “super channel”. Afterwards, we split this vector channel back into two 
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new channels with unequal symmetric capacities; the worse channel will have 𝐼(𝑊−)  ≤

 𝐼(𝑊), while the better one will have 𝐼(𝑊+)  ≥  𝐼(𝑊). 

The same procedure can be applied for 𝑁 >  2; as we make 𝑁 larger and larger, the 

symmetric capacity terms of the new channels tend more and more towards 0 or 1. Also, 

for infinitely large 𝑁, the fraction of extremely good channels, with symmetric capacity 

arbitrarily close to 1, goes to 𝐼(𝑊), while the fraction of extremely bad channels, with 

symmetric capacity arbitrarily close to 0, goes to (𝐼(𝑊) − 1). 

So, out of 𝑁 independent copies of a given B-DMC 𝑊, we have created a second set of 

𝑁 polarized channels. This polarization phenomenon gives us the opportunity to pass 

information only through the extreme good channels with 𝐼(𝑊) close to 1. 

 

3.2.1 Channel Combining 

Channel combining is the procedure of using 𝑁 (where 𝑁 =  2𝑛;  𝑛 ≥  0) independent 

copies of a given B-DMC 𝑊 in order to recursively create a vector channel 𝑊𝑁 ∶  𝑋𝑁 →

𝑌𝑁. 

The first channel is formed as 𝑊1 = 𝑊(𝑛 = 0). In the next recursion two channels are 

combined such that 𝑊2: 𝑋2 → 𝑌2 (𝑛 = 1), as indicated in Figure 2 where the channel 

transition probabilities are given as: 

𝑊2(𝑦1, 𝑦2|𝑢1, 𝑢2) = 𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2).   (3.6) 
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Figure 2 The 𝑊2 channel. 
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Similarly, for 𝑁 = 4, we combine two independent copies of 𝑊2 and construct 𝑊4: 𝑋4 →

𝑌4 , construct 𝑊4: 𝑋4 → 𝑌4, as shown in Figure 3.  
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Figure 3 The relation between channel 𝑊4 and 𝑊2 and 𝑊. 

 

The mapping 𝑢1
4 → 𝑥1

4 from the input of 𝑊4  to the output of 𝑊4 can be expressed as 

𝑥1
4 = 𝑢1

4𝐺4 where we have 

G4 = [

1
1
1

  
0 0 0
0 1 0
1 0 0

 

1 1 1 1

] 

  

  

(3.7) 
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and W4(y1
4│u1

4) =  W4(y1
4│u1

4G4) [32]. 

After analyzing the whole mechanism for 𝑁 =  2, we will generalize the procedure for 𝑁 =  2𝑛
 

at the end of this chapter. 

 

3.2.2 Channel Splitting 

We have synthesized the vector channel 𝑊𝑁   from independent copies of B-DMC 𝑊, the 

next step of channel polarization is to split 𝑊𝑁  back into a set of channels 𝑊𝑁
(𝑖)

: 𝑋 →

𝑌𝑁  ×  𝑋𝑖−1, 0 ≤  𝐼 ≤  𝑁, the transition probabilities of these channels are given as: 

 

𝑊𝑁
(𝑖)

(𝑦1
𝑁, 𝑢1

𝑖−1|𝑢𝑖) ≜ ∑
1

2𝑁−𝑖
𝑊(𝑦1

𝑁|𝑢1
𝑁)

𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖

   

(3.8) 

 

We combined two independent copies of 𝑊 (i.e. 𝑊2) to create the vector channel, 

𝑊2: 𝑋2 → 𝑌2 and we can polarization these channels by splitting resulting in two B-

DMCs, 𝑊−: 𝑋 → 𝑌2and 𝑊−: 𝑋 → 𝑌2 × 𝑋, defined as 

 

𝑊−(𝑦1, 𝑦2|𝑢1) = ∑
1

2
𝑊2(𝑦1, 𝑦2|𝑢1, 𝑢2)

𝑢2
𝑁∈𝑋

 (3.9) 

𝑊+(𝑦1, 𝑦2, 𝑢1|𝑢2) = 𝑊2(𝑦1, 𝑦2|𝑢1, 𝑢2). (3.10) 

 

We will see in the next section that the channel seen from 𝑢1 to (𝑦1, 𝑦2) is worse than 

the parent one in terms of symmetric capacity (that is the reason of the 𝑊− notation). 

Similarly, the channel seen from 𝑢2 to (𝑢1, 𝑦1, 𝑦2) is better than the parent one in terms 

of symmetric capacity (𝑊+notation). 

 

 

 

 



  

22  
 
 

3.2.3 Channel Transformation 

In this section, explain the calculation of the 𝐼(𝑊𝑁
(𝑖)

) and 𝑍(𝑊𝑁
(𝑖)

) in a recursive manner 

for a given channel. At the end of the recursion we will have the splitted channel 

expression 𝑊𝑁 which denotes the channel vector (𝑊𝑁
(1)

, … , 𝑊𝑁
(𝑁)

). 

When the single-step polar transform is applied  (𝑊, 𝑊) → (𝑊−, 𝑊+) on a two DMCs 

𝑊, we get 

 

𝐼(𝑊+) + 𝐼(𝑊−) = 2𝐼(𝑊) (3.11) 

𝐼(𝑊+) ≤ 𝐼(𝑊−) (3.12) 

 

where we have equality if and only if  𝐼(𝑊)  =  1 or 0. 

It is clear from (3.11) that the single-step channel transformation does not change the total 

capacity. The inequality (3.12) with (3.11) implies that although the total capacity does 

not change under a single-step transformation, individual channel capacities tend to get 

far away from each other. In case that the channels are independent of each other, than we 

have 𝐼(𝑊+) = 𝐼(𝑊−) = 𝐼(𝑊). The separation splitted channel capacities from each 

other in such a manner  𝐼(𝑊+) > 𝐼(𝑊) > 𝐼(𝑊−) is named as channel polarization. For 

single-step polar transform (𝑊, 𝑊) → (𝑊−, 𝑊+) the Bhattacharyya parameters of the 

splitted channels can be calculated and bounded as in 

𝑍(𝑊+) = 𝑍(𝑊)2,       𝑍(𝑊−) = 1 − 𝑍(𝑊)2 (3.13) 

𝑍(𝑊−) ≤ 2𝑍(𝑊) − 𝑍(𝑊)2 (3.14) 

𝑍(𝑊−) ≥ 𝑍(𝑊) ≥ 𝑍(𝑊+) (3.15) 

 

We have the equality for (3.14) if 𝑊 is a BEC. If 𝑍(𝑊) equals 0 or 1, or equivalently, if 

𝐼(𝑊) equals 1 or 0, in this case we have 𝑍(𝑊+) = 𝑍(𝑊−) 

As in the polarization of the channel capacities, the it can be shown that the reliability 

parameters also polarized and preserving the bound 
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𝑍(𝑊+) + 𝑍(𝑊−) ≤ 2𝑍(𝑊) (3.16) 

 

with equality if 𝑊is BEC. 

For channel transformation (𝑊, 𝑊) → (𝑊−, 𝑊+), if we have BEC with erasure 

probability 𝜖, then the splitted channels 𝑊− and 𝑊+ are also BECs with erasure 

probabilities 2𝜖 − 𝜖2and 𝜖2. Similarly, if 𝑊− or  𝑊+ is a BEC, then it can be shown that 

𝑊 is also a BEC (for proof see  [32]). 

If we have single-step polar transformation (𝑊, 𝑊) → (𝑊−, 𝑊+) and 𝑊 is BEC with 

erasure probability ϵ, then 

𝐼(𝑊−) = 𝐼(𝑊)2 (3.17) 

𝐼(𝑊+) = 2𝐼(𝑊) − 𝐼(𝑊)2 (3.18) 

and 

𝑍(𝑊−) = 2𝑍(𝑊) − 𝑍(𝑊)2 (3.19) 

𝑍(𝑊+) = 𝑍(𝑊)2 (3.20) 

 

where 𝐼(𝑊) = 1 − 𝜖 and 𝑍(𝑊) = 𝜖 . 

A. General Case of Channel Transformation 

In this section, we describe the general recursive procedure of constructing 𝑊𝑁  out of two 

independent copies of 𝑊𝑁/2,  and we show that this procedure can be performed for 𝑁 =

2𝑛 for BECs in a recursive manner. Generalized procedure is shown in Figure 3.3 where 

we can see that for the input vector 𝑢1
𝑁, the channel 𝑊𝑁  is first transformed into vector 𝑠1

𝑁 

in such a way that 𝑠2𝑖−1 = 𝑢2𝑖−1 ⊕ 𝑢2𝑖 and 𝑠2𝑖 = 𝑢2𝑖, for  1 ≤ 𝑖 ≤ 𝑁/2, 𝑅𝑁 is called the 

reverse shuffle operation.  𝑅𝑁 maps its input 𝑠1
𝑁 = (𝑠1, 𝑠2, … , 𝑠𝑁) to the output 𝑣1

𝑁 =

(𝑠1, 𝑠3, … , 𝑠𝑁−1, 𝑠2, 𝑠4, … , 𝑠𝑁) which is the input to the two independent copies of 𝑊𝑁/2. 
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As in the previous cases, the overall mapping from the input of the vector channel 𝑊𝑁  to 

the input of the raw channels 𝑊𝑁 can be written as 𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁, and the relationship 

between the transition probabilities of the vector channel and the raw channels can be 

written as 𝑊𝑁(𝑦1
𝑁│𝑢1

𝑁) =  𝑊𝑁(𝑦1
𝑁│𝑢1

𝑁𝐺4) where 𝐺𝑁 is the generator matrix of size 𝑁. 

Later, when we examine the encoding procedure more thoroughly, we will show that 

𝐺𝑁 = 𝐵𝑁𝐹⊗𝑛, for 𝑁 =  2𝑛 and 𝑛 ≥  0, where 𝐵𝑁 is the bit-reversal matrix, and 𝐹 is 

defined as 

 

𝐹 ≜ [
1 0
1 1

]. 
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Figure 4 The channel 𝑊𝑁  and its relation to 𝑊𝑁/2. 



  

25  
 
 

 

Applying the single-step polar transformation to the channels of the previous step we 

obtain 

 

(𝑊𝑁
2

(𝑖)
, 𝑊𝑁

2

(𝑖)
) → (𝑊𝑁

(2𝑖−1)
, 𝑊𝑁

(2𝑖)
). 

(3.21) 

 

The splitted channels  for any 𝑁 =  2𝑛 , 𝑛 ≥  0 and 1 ≤ 𝑖 ≤ 𝑁 can be written in terms 

of the previously splitted channels as 

 

𝑊2𝑁
(2𝑖−1)

(𝑦1
2𝑁 , 𝑢1

2𝑖−2|𝑢2𝑖−1)

= ∑
1

2
𝑢2𝑖

𝑊𝑁
(𝑖)

(𝑦1
𝑁 , 𝑢1,𝑜

2𝑖−2 ⊕ 𝑢1,𝑒
2𝑖−2|𝑢2𝑖−1 ⊕ 𝑢2𝑖). 𝑊𝑁

(𝑖)
(𝑦𝑁+1

2𝑁 , 𝑢1,𝑒
2𝑖−2|𝑢2𝑖) 

(3.22) 

𝑊2𝑁
(2𝑖)

(𝑦1
2𝑁 , 𝑢1

2𝑖−2|𝑢2𝑖) =
1

2
𝑊𝑁

(𝑖)
(𝑦1

𝑁 , 𝑢1,𝑜
2𝑖−2 ⊕ 𝑢1,𝑒

2𝑖−2|𝑢2𝑖−1 ⊕ 𝑢2𝑖). 𝑊𝑁
(𝑖)

(𝑦𝑁
2𝑁, 𝑢1,𝑒

2𝑖−2|𝑢2𝑖). (3.23) 

 

If we investigate the effect of general transformations on the rate and reliability 

parameters, we see that for the transformation  (𝑊𝑁

2

(𝑖)
, 𝑊𝑁

2

(𝑖)
) → (𝑊𝑁

(2𝑖−1)
, 𝑊𝑁

(2𝑖)
), 𝑁 =

 2𝑛 , 𝑛 ≥  0 and 1 ≤ 𝑖 ≤ 𝑁, we have the relations 

  

𝐼(𝑊2𝑁
(2𝑖−1)

) + 𝐼(𝑊2𝑁
(2𝑖)

) = 2𝐼(𝑊𝑁
(𝑖)

) (3.24) 

𝑍(𝑊2𝑁
(2𝑖−1)

) + 𝑍(𝑊2𝑁
(2𝑖)

) ≤ 2𝑍(𝑊𝑁
(𝑖)

). (3.25) 

 

Equality in (3.25) occurs if 𝑊 is a BEC. For general transformation, we also have 

 

𝐼(𝑊2𝑁
(2𝑖−1)

) ≤ 𝐼(𝑊𝑁
(𝑖)

) ≤ 𝐼(𝑊2𝑁
(2𝑖)

) (3.26) 

𝑍(𝑊2𝑁
(2𝑖−1)

) ≥ 𝑍(𝑊𝑁
(𝑖)

) ≥ 𝑍(𝑊2𝑁
(2𝑖)

). (3.27) 
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∑ 𝐼(𝑊𝑁
(𝑖)

)

𝑁

𝑖=1

= 𝑁𝐼(𝑊) 
 

(3.28) 

∑ 𝑍(𝑊𝑁
(𝑖)

)

𝑁

𝑖=1

≤ 𝑁𝑍(𝑊) 
 

(3.29) 

 

If 𝑊 is a BEC with erasure probability ϵ, we have 

   

𝐼(𝑊𝑁
(2𝑖−1)

) = 𝐼 (𝑊𝑁
2

(𝑖)
)

2

 
(3.30) 

𝐼(𝑊𝑁
(2𝑖)

) = 2𝐼 (𝑊𝑁/2
(𝑖)

) − 𝐼 (𝑊𝑁
2

(𝑖)
)

2

 
(3.31) 

and 

𝑍(𝑊𝑁
(2𝑖−1)

) = 2𝑍 (𝑊𝑁/2
(𝑖)

) − 𝑍 (𝑊𝑁
2

(𝑖)
)

2

 
(3.32) 

𝑍(𝑊𝑁
(2𝑖)

) = 𝑍(𝑊𝑁/2
(𝑖)

)2 (3.33) 

 

where 𝐼(𝑊1
(1)

) = 1 − 𝜖 and 𝑍(𝑊1
(1)

) = 𝜖 . 

We can see the effect of polarization of the recursive methods in  (3.32) and (3.33) in 

Figure 5 where BEC with 𝜖 = 0.5 is employed. 
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Figure 5 Plot of 𝐼(𝑊𝑁
(𝑖)

), 𝑖 = 1, … , 𝑁 = 210for BEC with 𝜖 = 0.5. 

3.3 Polar Codes 

Polar codes can be considered a new type of forward error-correcting codes achieving the 

capacity of binary-input memoryless symmetric (BMS) channels. This implies that 

transmission through such channels at the highest possible rate is possible using polar 

codes. Besides, polar codes have low encoding and decoding complexities. 

A polar code can be defined via 4-parametrs (𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐) where: 

• 𝑁 is the codeword length, i.e. block length. 

• 𝐾 is number of information bits, ratio 𝑘/𝑁 is called the code rate. 

• 𝐴 is the index set, 𝐴 ⊂ {1, . . . , 𝑁}, i.e., which indicates the positions of the   

            information bits. 
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• 𝑢𝐴𝑐  are the frozen bits, i.e., parity bits having 0 values all and their locations are  

 known by the encoder and the decoder. 

As mentioned in the previous section, the encoder maps the input data word 𝑢1
𝑁 into the 

codeword 𝑥1
𝑁   which is transmitted through the channels 𝑊𝑁 ,  and 𝑦1

𝑁 is the received 

vector. The decoder estimates the information bits �̂�1
𝑁 of 𝑢1

𝑁 using the received vector 𝑦1
𝑁 
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Figure 6 Polar encoding, decoding operations. 

𝑢1
𝑁 is encoded into 𝑥1

𝑁 using the recursive polar encoding. The codeword can be obtained 

using  𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁 where 𝐺𝑁 is the generator matrix of order 𝑁. We can write encoding 

equation as: 

𝑥1
𝑁 = 𝑢𝐴𝐺𝑁(𝐴)⨂𝑢𝐴𝑐𝐺𝑁(𝐴𝑐) (3.34) 

  

where 𝐺𝑁(𝐴) is nothing bit the submatrix of 𝐺𝑁 constructed using the rows whose indices 

appear 𝐴. 

The idea of polar coding is to create virtually splitted channels   𝑊𝑁
(𝑖)

 and send data through 

those channels for which 𝑍(𝑊𝑁
(𝑖)

) is near 0 or 𝐼(𝑊𝑁
(𝑖)

) is near 1, i.e., pass the data through 

the high capacity channels and froze the other channels  [35]. 

 

3.4 Encoding 

 

In this section, we will discuss and analyze the algebraic expressions for the generator 

matrix 𝐺𝑁. Figure 4 describes the encoding operation. Encoding complexity of polar codes 

will also be discussed. 
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3.4.1 Non -Systematic Encoding  

Let 𝑁 =  2𝑛 , 𝑛 ≥  0 and 𝐼𝑘  denote the 𝑘-dimensional identity matrix for 𝑘 ≥ 1. The 

recursive encoding operation shown in Figure 4 can be algebraically expressed as 

𝐺𝑁 = (𝐼𝑁

2

⊗ 𝐹) 𝑅𝑁 (𝐼2⨂𝐺𝑁

2

), for 𝑁 ≥ 2 and 𝐺1 = 𝐼1 
(3.35) 

 

Figure 7 is an alternative realization of 𝐺𝑁.  Algebraic formula of Figure 7 is given as 

 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝐼𝑁

2

) (𝐼2⨂𝐺𝑁

2

), for 𝑁 ≥ 2.  (3.36) 

 

We can see that (3.35) and (3.36) are equivalent to each other. From formulas (3.35) and 

(3.36), we notice that (𝐼𝑁/2 ⊗ 𝐹)𝑅𝑁 = 𝑅𝑁(𝐹 ⊗ 𝐼𝑁/2) . Hence, we can write formula 

(3.36) as 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝐺𝑁
2

). (3.37) 

For 𝑁/2, we get 

𝐺𝑁/2 = 𝑅𝑁 (𝐹 ⊗ 𝐺𝑁
4

) 
(3.38) 

leading to 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝑅𝑁 (𝐹 ⊗ 𝐺𝑁
4

)) 
(3.39) 

 

By using the identity (𝐴𝐶) ⊗ (𝐵𝐷) = (𝐴⨂𝐵)(𝐶⨂𝐷) with 𝐴 = 𝐼2, 𝐵 = 𝑅𝑁/2, 𝐶 =

𝐹, 𝐷 = 𝐹 ⊗ 𝐺𝑁/2, (3.39) takes the form 

𝐺𝑁 = 𝑅𝑁 (𝐼2 ⊗ 𝑅𝑁
2

) (𝐹⊗2 ⊗ 𝐺𝑁
4

). (3.40) 

where we have 
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𝐺𝑁/2 = 𝐵𝑁𝐹⨂𝑛 (3.41) 

 

𝐵𝑁 = 𝑅𝑁 (𝐼2 ⊗ 𝐵𝑁
2

). (3.42) 

 

𝐵𝑁 represents permutation matrix also known as bit-reversal which is calculated as in 

(3.42) where 𝐼2 is the 2-D identity matrix, 𝐵2 is initialized as 𝐵2 = 𝐼2 . ⊗ is the Kronecker 

product, 𝑅𝑁 is the permutation operation which maps the input sequence {1,2,3,4, … . . , 𝑁} 

to {1,3, … . , 𝑁 − 1,2,4, … , 𝑁} and 𝑛 = log2 𝑁. 

For example, the (4,2, {2.4} , (0,0)) code has the encoder operation describes as  

 

x1
4 = u1

4G4 → 𝑥1
4 = 𝑢𝐴𝐺4(𝐴)⨂𝑢𝐴𝑐𝐺4(𝐴𝑐) → 

𝑥1
4 = (𝑢2, 𝑢4) [

1 0
1 1

1 0
1 1

] + (0,0) [
1 0
1 1

0 0
0 0

]. 

 

For information word (𝑢2, 𝑢4) = (1,1) , codeword is obtained as x1
4 = (0, 1, 0, 1). 

 

http://en.wikipedia.org/wiki/Kronecker_product
http://en.wikipedia.org/wiki/Kronecker_product
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Figure 7 An alternative realization of the recursive construction for 𝑊𝑁 . 
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Figure 8 Polar code example: BEC with 𝜖 = 0.5, 𝑁 = 8 and 𝑟𝑎𝑡𝑒 = 0.5. 
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3.4.2 Encoding Complexity 

For any B-DMC W 𝑃𝑒(𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐) denotes the probability of block error under SC 

decoding for an (𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐 ) code. The 𝑃𝑒(𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐 ) is upper bounded as 

 

𝑃𝑒(𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐 ) ≤ 𝑁 max
𝑖𝜖𝐴𝑁

{𝑍(𝑊𝑁
𝑖 )} = 𝑂 (𝑁

−1
4 ). 

(3.34) 

 

The most important issue about polar coding is the complexity of encoding, decoding and 

code construction. Due to the recursive structure of  𝐺𝑁, the encoding complexity of polar 

codes can be reduced from 𝑂(𝑁2), which is the complexity of vector-matrix 

multiplication, to 𝑂(𝑁 𝑙𝑜𝑔𝑁). The encoding is done layer by layer for 𝑛 =  𝑙𝑜𝑔𝑁 layers 

and within each layer the computational complexity is 𝑂(𝑁). Figure 8 illustrates how the 

encoding is done for an (𝑁, 𝐾)  =  (8, 4) polar code designed for a BEC with erasure 

probability 𝜖 =  
1

2
. 
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CHAPTER 4 

 

SC DECODING FOR POLAR CODES WITH TREE STRUCTURE AND 

PROPOSED SOFT SUCCESSIVE CANCELATION ALGORITHM 

 

 

When Arikan introduced polar codes, he used SC algorithm for the decoding of polar 

codes. SC algorithm is SC suitable considering the structure of polar codes and it has much 

lower computation complexity than its counterpart algorithms such as BP, and we can say 

that SC algorithm is the most popular decoding algorithm utilized for polar codes. On the 

other hand, the serial decoding property causes the long latency problems for SC decoders 

which is a main drawback for their use in practical communication systems.  

In this chapter, we first propose a tree structure for the successive cancelation (SC) 

decoding of polar codes. The proposed structure is easy to implement in hardware and 

suitable for parallel processing operations. Next, using the proposed tree structure. We 

introduce a new approach to the successive cancelation of polar codes. The proposed 

approach uses the soft likelihood ratios of the predecessor information bits for the 

determination of successor information bits. The proposed method can be considered for 

the construction of joint iterative communication systems exchanging soft likelihoods. 

The performance of the SC algorithm can be improved by using SCL decoding algorithm. 

A successive cancellation list (SCL) decoding algorithm to improve the performance of 

polar codes is discussed. Compared with classical successive cancellation decoding 

algorithms, SCL concurrently produces at most 𝐿 best candidates during the decoding 

process to reduce the chance of missing the correct code word. However, the SCL will 

increase hardware complexity, which prevents the efficient implementation. This chapter, 

investigates polar codes with a suggested combination of list decoding and CRC to 

improve the performance of the system further. 
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The outline of the chapter is as follows. In Section 4.1, we provide SC decoding of polar 

codes. A tree structure for the successive cancelation decoding of polar codes is proposed 

in Section 4.2. In Section 4.3, we introduce soft successive cancelation algorithm in 

details. A tree structure for the successive cancelation decoding of polar codes is 

introduced in Section 4.4 and concepts of SCL decoding are analyzed. Successive 

cancellation list decoding algorithm with CRC over BEC channel is introduced in Section 

4.5. In Section 4.6, concepts of SCS decoding is discussed in brief. Simulation results are 

presented in Section 4.7.  

4.1 SC Decoding  

 

The encoder maps the input bits 𝑢1
𝑁 into the codeword 𝑥1

𝑁  , which is transmitted through 

the channels 𝑊𝑁  and 𝑦1
𝑁is received signal. Figure 9 shows a polar encoder for 𝑁 =  4. 

The task of the decoder is to estimate information bits �̂�1
𝑁 from the received signal 𝑦1

𝑁. 

Actually, the duty of the decoder is to estimate the data bits using 

 

�̂�𝑖 ≜ {
𝑢𝑖 ,                  𝑖𝑓 𝑖 ∈  𝐴𝑐  

ℎ𝑖(𝑦1
𝑁, 𝑢1

𝑖−1), 𝑖𝑓 𝑖 ∈ 𝐴           
 

 

(4.1) 

where ℎ𝑖(𝑦1
𝑁, �̂�1

𝑖−1) is decision function defined as: 

 

ℎ𝑖(𝑦1
𝑁, �̂�1

𝑖−1) ≜ {
0, 𝑖𝑓 

𝑊𝑁
(𝑖)(𝑦1

𝑁, �̂�1
𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁, �̂�1
𝑖−1|1)

≥ 1  

 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                         

 

 

(4.2) 

 

In (4.2) the rational term can be defined as 
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𝐿𝑁
(𝑖)(𝑦1

𝑁, �̂�1
𝑖−1) ≜

𝑊𝑁
(𝑖)(𝑦1

𝑁, �̂�1
𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁, �̂�1
𝑖−1|1)

 
 

(4.3) 

 

where 𝐿𝑁
(𝑖)

 is named as likelihood ratio (𝐿𝑅) [32]. 

The 𝐿𝑅𝑠 can be computed recursively using recursive formulas (4.15) and (4.16). 
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Figure 9 Polar Encoder for 𝑁 =  4. 
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Figure 10 The calculation diagram of the SC decoder for 𝑁 = 8. 

The computation graph of the SC decoder for 𝑁 = 8 is shown in Figure 10.  This graph 

contains two types of nodes, namely 𝑓 nodes and 𝑔 nodes. Both types of nodes have one 

output LR and two inputs LRs. The 𝑔 nodes have an extra input called the partial sum. The 

partial sums form the decision feedback part of the SC decoder. To calculate LRs, we use 

formula (4.15) at 𝑓 nodes and formula (4.16) at 𝑔 nodes. 

In [32], a graphical butterfly structure is suggested for the calculation of the likelihood 

ratios. However, the structure is complex and not suitable for parallel processing 

operations. For this reason, we propose a tree structure for the successive cancelation 

decoding of polar codes in the following sub-section. 

 

4.2 Tree Structure for the Decoding of Polar Codes 

 

The kernel units that are repeatedly used in encoder and decoder structures of polar codes 

are depicted in Figure 11. The kernel unit can also be considered as the smallest polar 

encoder and decoder units. 
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Figure 11 Kernel encoding and decoding units of polar codes. 

 

Considering the decoder unit in Figure 11 where 𝑎, 𝑏, 𝑐, 𝑑 and �̂�, �̂�, 𝑐̂, �̂�  are binary 

variables. Using the decoder unit, we can calculate the likelihood ratios as [64] 

 

�̂� = 𝑐̂⨁�̂� and �̂� = �̂� (4.4) 

𝑃(�̂� = 0) =  𝑃(𝑐̂ = 0)𝑃(�̂� = 0) + 𝑃(𝑐̂ = 1)𝑃(�̂� = 1) (4.5) 

𝑃(�̂� = 1) =  𝑃(𝑐̂ = 0)𝑃(�̂� = 1) + 𝑃(𝑐̂ = 1)𝑃(�̂� = 0) (4.6) 

𝐿𝑅(�̂�) =
𝑃(�̂� = 0)

𝑃(�̂� = 1)
→  

𝐿𝑅(�̂�) =
𝑃(𝑐̂ = 0)𝑃(�̂� = 0) + 𝑃(𝑐̂ = 1)𝑃(�̂� = 1)

𝑃(𝑐̂ = 0)𝑃(�̂� = 1) + 𝑃(𝑐̂ = 1)𝑃(�̂� = 0)
→ 

𝐿𝑅(�̂�) =
1 + 𝐿𝑅(𝑐̂)𝐿𝑅(�̂�)

𝐿𝑅(𝑐̂) + 𝐿𝑅(�̂�)
 

 

 

(4.7) 

 

The value of �̂� can be decided using (4.7). After deciding the value of �̂�, we can start to 

decoding of b. If �̂� is decided to be 0, i.e., �̂�  =  0, then using (4.4), we get 
 

 

𝑃(�̂� = 0) = 𝑃(𝑐̂ = 0)𝑃(�̂� = 0) (4.8) 

𝑃(�̂� = 1) = 𝑃(𝑐̂ = 1)𝑃(�̂� = 1) (4.9) 

𝐿𝑅(�̂�) =
𝑃(�̂� = 0)

𝑃(�̂� = 1)
 =

𝑃(𝑐̂ = 0)𝑃(�̂� = 0)

𝑃(𝑐̂ = 1)𝑃(�̂� = 1)
→ 𝐿𝑅(�̂�) = 𝐿𝑅(𝑐̂)𝐿𝑅(�̂�) 

 

(4.10) 

 

On the other hand, if �̂� is decided to be 1, i.e., �̂�  =  1, then using (4.4), we get 
 
 

𝑃(�̂� = 0) = 𝑃(𝑐̂ = 1)𝑃(�̂� = 0) (4.11) 
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𝑃(�̂� = 1) = 𝑃(𝑐̂ = 0)𝑃(�̂� = 1) (4.12) 

𝐿𝑅(�̂�) =
𝑃(�̂� = 0)

𝑃(�̂� = 1)
  =

𝑃(𝑐̂ = 1)𝑃(�̂� = 0)

𝑃(𝑐̂ = 0)𝑃(�̂� = 1)
→ 𝐿𝑅(�̂�) = 𝐿𝑅(𝑐̂)−1𝐿𝑅(�̂�) 

 

(4.13) 

 

The formulas in (4.10) and (4.13) can be combined as 

 

𝐿𝑅(�̂�) = [𝐿𝑅( 𝑐̂)]1−2�̂� × 𝐿𝑅(�̂�) (4.14) 

 

The formulas in (4.7) and (4.14) are expressed in a recursive manner in [32] as 

 

 

𝐿𝑁
(2𝑖−1)

(𝑦1
𝑁, �̂�1

2𝑖−2) =
𝐿𝑁/2

(𝑖)
(𝑦1

𝑁/2
,𝑢1,𝑜

2𝑖−2⨁𝑢1,𝑒
2𝑖−2)𝐿𝑁/2

(𝑖)
(𝑦𝑁

2
+1

𝑁 ,𝑢1,𝑒
2𝑖−2)+1

𝐿𝑁/2
(𝑖)

(𝑦1
𝑁/2

,𝑢1,𝑜
2𝑖−2⨁𝑢1,𝑒

2𝑖−2)+𝐿𝑁/2
(𝑖)

(𝑦𝑁
2

+1

𝑁 ,𝑢1,𝑒
2𝑖−2)

 

 

(4.15) 

 

and 

𝐿𝑁
(2𝑖)

(𝑦1
𝑁, �̂�1

2𝑖−1) = [𝐿𝑁
2

(𝑖)
(𝑦1

𝑁
2 , �̂�1,𝑜

2𝑖−2⨁�̂�1,𝑒
2𝑖−2)]1−𝑢2𝑖−1 . 𝐿𝑁

2

(𝑖)
(𝑦𝑁

2
+1

𝑁 , �̂�1,𝑒
2𝑖−2) 

(4.16) 

 

 

Finally, decision is made using, 

𝑢𝑖 = {
0, 𝑖𝑓  𝐿𝑅(𝑢𝑖) > 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

. 

It is obvious that the recursive formulas given in (4.15) and (4.16) are similar to those 

given in (4.7) and (4.14). 

Now, let’s explain the proposed tree structure for the decoding of polar codes. To 

understand the derivation of the proposed algorithm, first let’s give some information 

about the formation of tree structure used in decoding operation. 

In Figure 9, the encoding structure of the polar codes for 𝑁 =  4 is illustrated. In decoding 

operation, the flow of the signals is reversed. For 𝑁 =  4, the decoding structure with 

reversed signal flow is shown in Figure 12. 
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Figure 12 Decoding operation for 𝑁 =  4. 

 

The decoding path for information bit 𝑢1 and its tree equivalent is shown in Figure 13 

where the likelihoods are calculated as 

 

𝐿𝑅(𝑔1) =
(1 + 𝐿𝑅(𝑥1)𝐿𝑅(𝑥2))

𝐿𝑅(𝑥1) + 𝐿𝑅(𝑥2)
 

𝐿𝑅(𝑔2) =
(1 + 𝐿𝑅(𝑥3)𝐿𝑅(𝑥4))

𝐿𝑅(𝑥3) + 𝐿𝑅(𝑥4)
 

𝐿𝑅(𝑢1) =
(1 + 𝐿𝑅(𝑔1)𝐿𝑅(𝑔2))

𝐿𝑅(𝑔1) + 𝐿𝑅(𝑔2)
 

 

 

 

(4.17) 
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Figure 13 Decoding path for 𝑢1 and its equivalent tree structure. 

 

For better comprehension, let’s give one more example. The decoding path for 𝑢3  and its 

tree equivalent tree structure is depicted in Figure 14 where the likelihoods are calculated 

as 

 

𝐿𝑅(𝑔1) = [𝐿𝑅( 𝑥1)]1−2(𝑢1⊕𝑢2) × 𝐿𝑅(𝑥2) 

𝐿𝑅(𝑔2) = [𝐿𝑅( 𝑥3)]1−2𝑢2 × 𝐿𝑅(𝑥4) 

𝐿𝑅(𝑢3) =
(1 + 𝐿𝑅(𝑔1)𝐿𝑅(𝑔2))

𝐿𝑅(𝑔1) + 𝐿𝑅(𝑔2)
 

 

 

(4.18) 

 

When the tree structure in Figure 14 is inspected in details, we see that some of the nodes 

have assigned bits, for instance in the tree structure of Figure 14, 𝑢1 ⊕ 𝑢2 is assigned to 

the lower left node 
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Figure 14 Decoding path for 𝑢3 and its equivalent tree structure. 

 

and 𝑢2  is assigned to the lower right node. And if a bit is assigned to a node, we call these 

nodes as 𝑔 nodes, on the other hand, if a node does not have any bit assignment, we call 

such nodes 𝑓 nodes. In addition, we employ (4.15) for the likelihood ratio calculation for 

outputs of the 𝑓 nodes, and we employ (4.16) for the likelihood ratio calculation for the 

outputs of the 𝑔 nodes. 
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Now, let’s generalize the decoding logic illustrated for 𝑁 =  4 in Figures 14 and 15. The 

decoding operation consists of two stages. The first stage is the distribution of previously 

decoded bits to the nodes, i.e., deciding on the value of node bits. The second stage 

involves the calculation of the likelihood values. The decoding operation goes in a 

recursive manner as, distribution, likelihood calculation, distribution, likelihood 

calculation and so on. In likelihood calculation stage, node 𝐿 values are computed for each 

layer starting from the basement layer and top-most node L-value is used for decision. In 

distribution stage, decided bits are distributed to the nodes and these bits are called node 

bits. If there is a bit assigned to a node, then (4.15) is used to compute the node-L value 

otherwise (4.16) is used. The bit distribution process is performed according to the 

Algorithm-1. 

A numerical example for the distribution operation is depicted in Figure 16 where it is 

seen that after the distribution 5 decoded bits to the nodes, we see that the node at the top-

most level, i.e., level- 0, and the nodes at level-2 have bits, i.e., 𝑔 nodes are available at 

level-0 and level-2, since we have 5 =  22  + 20. Once the bits are distributed to the 

nodes, the decoding operation starts which involves the calculation of likelihoods from 

bottom to top layer. 
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Algorithm 1: Distribution of decoded bits to the nodes 

Input 𝑁 frame length and received bits. 

1: If 𝑅 is odd, then node-check-bit = 𝑑𝑅𝑡ℎ𝑒𝑛 

2:   Left child-node input-bits: 𝐿𝑏 = 𝑑1,𝑜
𝑅−1 ⊕ 𝑑1,𝑒

𝑅−1 

3:   Right child-node input-bits: 𝑅𝑏 = 𝑑1,𝑒
𝑅−1 

4: else  

5:   Left child-node input-bits: 𝐿𝑏 = 𝑑1,𝑜
𝑅 ⊕ 𝑑1,𝑒

𝑅  

6:    Right child-node input-bits: 𝑅𝑏 = 𝑑1,𝑒
𝑅  

7:  end       

8:  If 𝑅 = 1 then 

9:     𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 

10: else 

11:  𝑅 = 𝑅/2 

12: Go to step-1 and repeat 1 − 6 for the left-child and right-child nodes 

13: end 
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Figure 15 Distribution of the decided bits to the node. 

 

4.3 Proposed Method and Soft Successive Cancelation Algorithm 

 

In this section, we introduce our proposed approach for the soft decoding of polar codes 

using the proposed soft successive cancelation algorithm. 
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4.3.1 Using Soft Values for the Calculation of Likelihoods 

 

If the formulas (4.14) or (4.16) are inspected, we see that the previously decoded bit value 

is used in exponential term, and this means that the previous hard decision is used for the 

decoding of current bit. From (4.8), (4.9), (4.11) and (4.12), we can write 

 

 

𝑝(�̂� = 0) = 𝑝(�̂� = 0, 𝑐̂ = 0, �̂� = 0) + 𝑝(�̂� = 1, 𝑐̂ = 1, �̂� = 1) (4.19) 

 

𝑝(�̂� = 1) = 𝑝(�̂� = 0, 𝑐̂ = 1, �̂� = 1) + 𝑝(�̂� = 1, 𝑐̂ = 0, �̂� = 1) (4.20) 

 

from which, we obtain 

 

𝐿𝑅𝑠(�̂�) =
𝑝(�̂� = 0)

𝑝(�̂� = 1)
→ 𝐿𝑅𝑠(�̂�) ≈

𝐿𝑅(�̂�)𝐿𝑅(𝑐̂)𝐿𝑅(�̂�) + 𝐿𝑅(�̂�)

𝐿𝑅(�̂�) + 𝐿𝑅(𝑐̂)
 

(4.21) 

 

where it is seen that instead of the hard value of �̂� as in (4.14) and (4.16), soft value of �̂�, 

i.e., 𝐿𝑅(�̂�), appears in the calculation of 𝐿𝑅𝑠(�̂�). Since employment of hard values results 

in the lose of information, employment of soft values may result in more reliable 

likelihood calculation for 

 

𝐿𝑅𝑠(�̂�) =
𝑝(�̂� = 0)

𝑝(�̂� = 1)
 

 

(4.22) 

 

With the proposed approach, the recursive equation in (4.16) can be modified as in (4.23).  

 

𝐿𝑁
(2𝑖)

(𝑦1
𝑁, �̂�1

2𝑖−1)

=
𝐿𝑁

(2𝑖−1)
(𝑦1

𝑁,𝑢1
2𝑖−2)𝐿𝑁/2

(𝑖)
(𝑦1

𝑁/2
,𝐿𝑅(𝑢1,𝑜

2𝑖−2)⨁𝐿𝑅(𝑢1,𝑒
2𝑖−2))𝐿𝑁/2

(𝑖)
(𝑦𝑁

2
+1

𝑁 ,𝑢1,𝑒
2𝑖−2)+𝐿𝑁

(𝑖)
(𝑦𝑁

2
+1

𝑁 ,𝑢1,𝑒
2𝑖−2)

𝐿𝑁
(2𝑖−1)

(𝑦1
𝑁,𝑢1

2𝑖−2)+𝐿𝑁/2
(𝑖)

(𝑦1
𝑁/2

,𝐿𝑅(𝑢1,𝑜
2𝑖−2)⨁𝐿𝑅(𝑢1,𝑒

2𝑖−2))
 

 

 

(4.23) 
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When (4.10), (4.13), (4.14) and (4.21) are inspected together, we see that (4.10), (4.13) 

are nothing but limiting cases of (4.21), that is: 

 

lim
𝐿𝑅(�̂�)→∞

𝐿𝑅𝑠(�̂�) = 𝐿𝑅(𝑐̂)𝐿𝑅(�̂�) (4.24) 

 

lim
𝐿𝑅(�̂�)→0

𝐿𝑅𝑠(�̂�) = 𝐿𝑅−1(𝑐̂)𝐿𝑅(�̂�) (4.25) 

 

To the best of authors knowledge, the formulas given in (4.21), (4.23), and (4.25) are 

new in the literature. 

 

4.3.2 Likelihood Combination for 𝑿𝑶𝑹 Functions 

 

In classical successive cancelation decoding of polar codes, the previously decoded bits, 

i.e., hard values, are used for the decoding of successor bit. For this purpose, the previously 

decoded bits are used in the decoder structure of the successive cancelation algorithm. 

And some of the 𝑋𝑂𝑅 node outputs are decided if there are bit values available at the 𝑋𝑂𝑅 

node inputs. Since in our approach we do not use the hard values but soft values only, we 

have soft values also at the inputs of the 𝑋𝑂𝑅 gate, and soft values at the inputs of 𝑋𝑂𝑅 

gate should be combined producing a soft output value at 𝑋𝑂𝑅 gate output. If 𝑥1  =

 (𝑢1)𝑋𝑂𝑅(𝑢2), then we have 

 

𝑝(𝑥1 = 0) = 𝑝(𝑢1 = 0)𝑝(𝑢2 = 0) + 𝑝(𝑢1 = 1)𝑝(𝑢2 = 1) 

𝑝(𝑥1 = 0) = 𝑝(𝑢1 = 0)𝑝(𝑢2 = 1) + 𝑝(𝑢1 = 1)𝑝(𝑢2 = 0) 

 

 

(4.26) 

from which, we get 

 

𝐿𝑅(𝑥1) =
1 + 𝐿𝑅(𝑢1)𝐿𝑅(𝑢2)

𝐿𝑅(𝑢1) + 𝐿𝑅(𝑢2)
 

 

(4.27) 
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which is the likelihood value at 𝑋𝑂𝑅 gate output if likelihood values instead of the bit 

values at the inputs of the 𝑋𝑂𝑅 gates are considered. The decisions on the value of 

information bits are done at the end of the decoding operation. That is, once we get the 

likelihood values for all the information bits, then the decoding logic is performed 

according to 

𝑢𝑖 = {
0, if  LR(ui) > 1
1, otherwise      

. 

 

4.4 Successive Cancellation List (SCL) Decoding Algorithm 

SCL decoding algorithm is developed to improve the performance of SC decoding for 

short and moderate length codewords in [50]. In SCL decoding algorithm, L high 

probability decoding paths are tracked simultaneously, on the other hand, in SC decoding 

operation only one decoding path is tracked. If 𝐿 is chosen sufficiently large, SCL 

algorithm can achieve the performance of  𝑀𝐿 decoding , and this is due to the 

computation of more accurate probability values for the information bits. The performance 

of the sequential decoding algorithms is sensitive to early decision errors, since it affects 

the rest of the decoding process. In SC decoding operation, in correct decision nof one 

information bit cannot be corrected in sequel and this could affect the decoder to make 

more bit errors. 

In SC decoding operation the most likely path after is saved after every decision level (SC 

case), on the other hand, in SCL list decoding all possible paths are saved including their 

calculated likelihood. At the final stage of the decoding operation, the probabilities of all 

paths in the list are compared to each other, and the most likely path is chosen as the 

winner path. The complexity of the SCL algorithm depends on list size 𝐿, and time 

complexity is 𝑂(𝐿𝑁𝑙𝑜𝑔 𝑁) and space complexity is 𝑂(𝐿𝑁). 

 

For efficient use of SCL decoders, we can consider a trade-off between complexity and 

performance, and we can trace a fixed number of most likely in the list instead of 

considering every possible path. A list decoder with list size L=4 is depicted in Figure 16 

where in the first level all possible paths are saved, and the same thing is done in the 
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second level as well. From level 3 and forward, truncation is performed, and for this 

purpose, the probabilities of all different paths are computed for each level, but only the 

four most likely paths survives to be used in the next list step. The least likely paths that 

are not considered in Figure 15 are represented by the dotted lines, and the full lines are 

used for the paths saved in the list for that level. Children of a node represent the 

continuation of a path with either a decided zero or one. Recursive formulas (4.15) and 

(4.16) are used to compute 𝐿𝑅𝑠.  SCL decoding algorithm was given in details in [50]. 

 

 

u1=1 u1=0

u2=1 u2=0 u2=1 u2=0

u3=1 u3=0 u3=0 u3=1 u3=0 u3=0u3=1u3=1

u4=1 u4=0 u4=1 u4=0 u4=1 u4=0 u4=1 u4=0  

 

Figure 16 Example of List decoding for L = 4. The paths with low probabilities that are 

erased are represent by dotted lines. 

. 

4.5 Successive Cancellation List with CRC 

Cyclic Redundancy Check (CRC) codes are a type of channel codes besides the most 

broadly utilized ones. Excess bits, found through the polynomial division of the code word 

with a predefined generator polynomial, are concatenated to the transmission frame. The 

decoder gets the codeword including excess bits.  In this study we utilized four bits CRC 

and the generator polynomial used is  𝑥4 + 𝑥3 + 1 in case of BEC, and eight bits Primitive 
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generator polynomials is used in case of AWGN channel, the generator polynomial used 

is 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 and 𝑁 = 128. 

In polar codes with list decoding, CRC comes in the last step of decoding as shown in 

Figure 17. The 𝐿 most likely paths are saved in a list during decoding, and in the last 

decoding stage, the most likely path out of those 𝐿 paths is chosen as the decoded code 

word. It was found in [52] that when errors occur in polar codes the correct code word 

was often in the final list, but that it was not the code word with the highest likelihood and 

subsequently is not selected in the last stage of the decoder. In case of CRC concatenated 

codeword, the CRC check could be used to make the decoder to choose the correct code 

word out of the list. If a word in the list at the end of decoding has higher probability than 

the real code word but is not a valid code word according to the CRC check, it is discarded, 

and the most likely codeword that is valid with its CRC is selected instead. This improves 

the error rates for polar codes. It should be noted that adding CRCs to polar codes changes 

the polar code rate slightly. 

 

 

CRC WPolar Encoder SCL DeCRC
N+m

bits

SCL+CRC decoder

 

 

Figure 17 Polar coding and CRC decoding schemes. 

 

4.6 Successive Cancellation Stack (SCS) Decoding 

 

In SCS decoding [51] operation an ordered stack S for storing candidate paths is used and 

the optimal estimates searching along with the best candidate on the stack is determined. 
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The decoding process halts and decision is made whenever the top path on the stack having 

the largest path metric reaches length 𝑁 . Candidate paths in the SCL decoding operation 

always have the same length, on the other hand, the candidates in the SCS stack may have 

different lengths. A modified version of  the original SCS is proposed in [63] where an 

additional parameter 𝐿 is introduced to control the number of increasing paths of a definite 

length in the decoding operation.  

 

4.7 Simulation Results 

Figure 18 shown the performance of polar codes under SC decoder at block length 210 

and 211 in terms of bit error rate (BER) when the communication takes place over the 

binary erasure channel (BEC) with erasure probability 0.5. 

In Figure 19, we compare the performance of polar codes under classical successive 

cancellation decoder and performance of successive cancellation list using CRC. These 

results were received when the communication takes place over the binary erasure channel 

with erasure probability 0.5 and block length 64 bits. Figure 20 compares the performance 

of polar codes under classical successive cancellation decoder and performance of 

successive cancellation list using CRC. These results were received when the 

communication takes place over the AWGN channel with rate 0.5 and block length 128 

bits. 
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Figure 18 BER performance of polar codes with SC decoding at 𝑁 = 210 and 𝑁 = 211 

on a BEC with 𝜖 = 0.5. 

 

Figure 19 BER performance of SCL using CRC decoder compared to the SC decoder 

over BEC for 𝑁 = 64 and 𝜖 = 0.5. 
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Figure 20 BLER performance of SCL using CRC decoder compared to the SC decoder 

over AWGN for 𝑁 = 128 and rate 0.5. 

 

Using the proposed approach, we simulated the polar codes with codeword lengths 𝑁 =

 32 and 𝑁 =  128 in binary erasure and AWGN channels. For the binary erasure 

channels, the erasure probability is chosen as 𝜖 =  0.5. The simulation results for binary 

erasure channel are depicted in Figure 21 where it is seen that the proposed approach 

shows better performance than that of the classical successive cancelation algorithm 

proposed in [32] for short code-word lengths and performances gets closer each other as 

the code-word length increases. This is the expected result, since (4.20) converges to 

(4.10) as the code-word length goes to infinity. The simulation results for AWGN 

channels are depicted in Figure 22. The code rate is takes as 0.5. From the simulation 

results it is seen that the proposed method shows better performance at small 
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Figure 21 Polar code performance for BEC channel, 𝑁 = 32 and 128, 𝜖 = 0.5. 

 

 

Figure 22 Polar code performance for AWGN channel, 𝑁 = 32 and 128, 𝑟𝑎𝑡𝑒 = 0.5. 
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CHAPTER 5 

 

  FAST DECODING FOR POLAR CODES  

 

In this chapter, we propose a technique for the fast decoding of polar codes and with the 

proposed method, it is possible to decode all the information bits simultaneously at the 

same time, i.e., in parallel. In the sequel, we introduce and improved version of the 

proposed high-speed decoding algorithm. The proposed high-speed decoding approach 

and its improved version are simulated on computer environment and their BER 

performances are compared to the performance of the classical successive cancelation 

method. 

The outline of the chapter is as follows. In Section 5.1, we introduce our proposed high 

speed polar decoding approach. In Section 5.2, improved version of proposed high-speed 

polar decoding is introduced. Simulation results are provided in Section 5.3. 

 

5.1 Fast Decoding of Polar Codes 

 

In this section, we propose a novel high-speed decoding technique for successive 

cancelation polar decoding. The proposed high-speed decoder is based on the introduced 

tree structure. Our proposed algorithm can decode 𝑁 successive bits at the same time. 

Therefore, the latency can be reduced and speed can be increased. The presented 𝑁-bit-

decoding algorithm is able to decode 𝑁 bits at the same time (in parallel), i.e., it can decode 

𝑛𝑡ℎ bit without the need of (𝑛 − 1) previously decoded bits. 

As mentioned before, using the tree structure, we can divide the decoding operation into 

two parts, distribution of the previously decided bits to the nodes, and calculation of node 

𝐿𝑅𝑠 for the decoding of current bit. In the bit distribution stage, the tree is divided into 
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𝑙𝑜𝑔2(𝑁) + 1 levels, where 𝑁 is frame length a power of 2. The index of the top level is 0, 

and the index of the bottom level is𝑙𝑜𝑔2(𝑁). When the previously decoded information 

bits are distributed to the nodes, we see that nodes at certain levels receive the distributed 

bits, i.e., 𝑔-nodes appears at certain levels. Let us call the levels where 𝑔-nodes appear as 

active levels. In fact, for the distribution of 𝑙 previously decoded bits, the active levels can 

be determined using 

 

𝑙 = ∑ 2𝑖

𝑖

 
(5.1) 

 

where 𝑖 denotes the active level index. The 𝑔-nodes in active levels have labels 0 or 1. As 

an example: 

 Assume that 𝑁 =  8, and the first 5 bits are decoded. To start the decoding of 6𝑡ℎ bit, the 

previously decoded 5 bits are distributed into the nodes, and the number 5 can be written 

as 

 

5 = ∑ 2𝑖 → 20 + 22

𝑖

 
(5.2) 

 

where powers of 2 indicates the locations of 𝑔 nodes. i.e., they indicate the active levels 

and the levels with indices 0 and 2 are active levels, and the nodes in these levels are all g 

nodes, i.e., nodes have bit-labels; the bit-labels either include zero or one. All the other 

nodes in the tree structure are 𝑓 nodes which do not have bit-labels. After the first stage 

of the decoding operation, i.e., distribution of previously decoded bits to the nodes, the 

second stage of the decoding operation starts. In the second stage of the decoding 

operation, 𝐿𝑅𝑠 of the nodes in each level starting from bottom level to top level are 

calculated. 
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5.1.1 High-Speed Decoding 

 

For an 𝑁-bit information sequence, after channel splitting operation, we have 𝑁 new 

channels. For these 𝑁 channels it is seen that most of the low capacity channels occurs in 

the first half, i.e., low capacity channels have indices 1, … , 𝑁/2. And most of the frozen 

bits are assigned to these low capacity channels. This is the main motivation of our study. 

Although some of the channels in the second half have low capacities, their number is few 

considering the total number of channels. For this reason, we dedicate the first group 

containing 𝑁/2 channels to the frozen bits, and use the second group containing the rest 

of the 𝑁/2 channels for the data bits. This means that the decoding operation starts for the 

data bits transmitted through the second part of the communication channels. The number 

of frozen bits and their percentage considering different code rate is tabulated in Table 1 

where it is seen that for code rate 0.5, there is no frozen bit in second half of the 

information frame. 

When 𝑁/2 frozen bits are distributed on the tree, it is seen that 𝑁/2 nodes get ’0’ as node-

bit. Besides, these 𝑁/2 nodes exist on the same level which we call as frozen level. When 

the bit distribution is performed for the decoding of consecutive data bits, it is seen that 

these 𝑁/2 nodes always contain ’0’s as node-bits, i.e., frozen level stay the same. And 

some levels depending on the order of the data bit to be decoded become active levels, 

and the nodes in these active levels either contain ’0’ or ’1’, and these nodes are nothing 

but 𝑔 nodes. The likelihood ratio at these nodes can be calculated separately for node-bit 

’0’ and node-bit ’1’ and the larger can be selected to be used for the nodes at upper levels. 

And this logic can be carried till the top level. In this way, we do not need to know the 

previously decoded bits, but just need to know the active and frozen levels. 
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Table 2 Percentage of frozen bits in second half vs code rate. 

Rate Number of frozen bits Percentage of frozen bits 

0.5 0 0 

0.434 67 0.13 

0.41 91 0.177 

0.37 130 0.2539 

0.359 144 0.281 

0.33 168 0.328 

0.32 179 0.349 

 

Example: 

Let’s illustrate the idea with an example. Assume that 𝑁 = 1024. In this case, the indices 

of most of the low capacity channels appears in [1 2 3 …  𝑁/2]. For this reason, we can 

freeze the first 512 channels and start decoding the bits with indices greater than 512. 

Assume that we want to decode the bit with index number 517. Then, we distribute the 

first 516 decoded bits, 512 of them are frozen bits, to the tree nodes. When the first 516 

decoded bits are distributed to the nodes, we get a graph like in Figure 23 where it is seen 

that level-2 and level-9 active levels, i.e., 𝑔. nodes appear in these levels. This is expected 

since 517 =  22 + 29, i.e., powers of 2 indicate the active level indices. The nodes in 

level-9 contain only 0s. This level can be called as frozen level, since it is filled by zeros 

via the distribution of frozen bits. On the other hand, the nodes at level-2 may either 

contain 0 or 1. Since the node bits of level-2 are determined by the distribution of 4 data 

bits other than the frozen bits, but, we do not need to know the exact values of the node 

bits at level-2. We can try both 0 and 1 for the calculation of the likelihood for the node 

output and choose the larger one for the upper nodes. The advantage of the mentioned 

method is that, we can determine the active levels for the decoding of data bits and data 

bits can be decoded in a parallel manner without needing the previously decoded bits. 

Hence, if sufficient place can be found in an electronic device like FPGA, it is possible to 

decode all the data bits in a concurrent manner. The fast decoding operation can be 

outlined as in the Algorithm-2. 



  

58  
 
 

 

Algorithm 2: High speed decoding of polar codes. 

Input 𝑁 frame length and received symbols.  

1: Determine active frozen level. 

2:   Let 𝑟 =  
𝑁

2
+ 1. 

3: Determine active levels for 𝑟. 

4: Use 𝑔-nodes for active levels.  

5: Use 𝑓-nodes for inactive levels. 

6: For 𝑔-nodes appearing in the active levels other than the frozen 

    level, use 0 and 1 as bit nodes separately. 

7: Calculate 𝐿𝑅 from the bottom of the tree to the top, use maximum of 

    the two likelihood values for 𝑔-nodes.      

8: Determine the bit 𝑢𝑟. 

9: Increment 𝑟, i.e., 𝑟 =  𝑟 +  1. 

10: Go to step-3. 

11: When 𝑟 =  𝑁 stop. 
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Figure 23 Active and frozen levels for the decoding of data bit 𝑢517. 

 

5.1.2 Computation Complexity of The Proposed Approach 

 

The total number of 𝑓 nodes and 𝑔 nodes appearing during the decoding operation is the 

same and it is equal to 

 

𝐾𝑁 = ∑ 2𝑖

𝑛

𝑖=0

 
 

 

where 𝑛 = log2 𝑁. For 𝑔 type nodes, we calculate the probabilities for both 𝑢 = 0 and 

𝑢 = 1 separately and choose the one containing more information. For this reason, in our 

approach, the computation complexity for 𝑔 type of nodes doubles.  However, it stays the 

same for 𝑓 type nodes. If we indicate the total computational complexity of the SC 

decoding approach by 𝑂(2𝐾𝑁) where 𝑂(∙) is the big-𝑂 notation, then the computational 

complexity of the proposed method can be expressed by 𝑂(3𝐾𝑁). On the other hand, if 
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we indicate the latency of the SC decoding algorithm by 𝑂(𝑁) where 𝑁 is the number of 

data bits to be decoded, then the latency of our proposed technique can expressed by 𝑂(1). 

 

5.2 Improved High-Speed Decoding 

 

In order to improve the performance of proposed high-speed decoder, we introduce a new 

decoding scheme called improved high-speed decoding technique. In this new approach, 

some percent of the information bits are decoded using the classical successive cancelation 

method and the rest of the bits are decoded using the proposed parallel decoding approach. 

With this approach, we aim to increase the BER performance of the communication 

system. An example of the new approach for 𝑁 =  1024 is depicted in Figure 24 where 

we froze the first 𝑁/2 bits which corresponding to low capacity channels, and we 

employed successive cancelation decoding approach to decode the 50% of the rest of the 

information bits, finally, the remaining information bits are decoded in parallel at the same 

time using the proposed approach. 

 

Frozen part
Use classical SC 

decoding for 50% of 
the information bits

Use the proposed high 
speed decoding for the rest 
of 50% of information bits 

512 Frozen bits
Decode 256 bits 
using classical SC 

decoder

Decod 256 bits using the 
proposed high speed 
decoding technique

 

 

 

Figure 24 Improved high-speed decoding approach. 

 

With this new proposed method, the latency of the previously proposed parallel decoding 

technique is increased, however, we obtain better performance considering all parallel 
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decoding approach. In addition, the total latency is still much less than the latency of 

successive cancelation method. Since the low capacity channels occurs in the first half of 

the data frame, by freezing the first half of the transmission frame we prevent the error 

propagation which affects the decoding of the second half, and by successively decoding 

some of the bits in the second half, we provide more robust bit decisions which will be 

used for the decoding of the rest of the bits, and for this reason we obtain better results. 

We performed computer simulation using the improved high decoding method employing 

the frame structure in Figure 24. And performance results are depicted in Figures 25 and 

Figures 26. In case of using AWGN channel, we decreased the part of proposed high-

speed decoding to 128 and 64 bits. 

 

5.3 Simulation Results 

 

In Figure 25, we compare the performance of polar codes using the proposed high-speed 

decoding approach and SC decoding at block length 210 for BECs with erasure 

probabilities 0.1, 0.2, 0.3, 0.4 and 0.5 in terms of bit error rate BER. From simulation 

results, we can see that proposed high-speed decoding algorithm gives good performance 

at low rates, especially for the rates between 0.35 and 0.5. We also performed computer 

simulations using the improved high decoding method employing the frame structure in 

Figure 24. And performance results are depicted in Figure 26. It is seen from Figure 26 

that at block-length 1024 bits, the improved highspeed decoding method gives better 

performance with reduced latency over the binary erasure channel BEC with erasure 

probability 0.5, especially for the rates between 0.35 and 0.5. Figure 27 and 28 shows the 

performance of improved high speed decoding method and high speed decoding over 

AWGN channel. 
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Figure 25 BER vs rate performance comparison. 

 

 

Figure 26 Performance of improved high-speed decoding vs high speed 

decoding. 
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Figure 27 BER vs rate performance comparison for improved high-speed decoder and 

original SC over AWGN channel. 

 

 

 
 

 

 

Figure 28 BER vs rate performance comparison for high-speed decoder and original SC 

over AWGN channel. 
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CHAPTER  6 

 

 EFFECT OF ERROR PROPAGATION ON PERFORMANCE OF SUCCESSIVE 

CANCELLATION DECODER 

 

 

Polar codes are decoded in a sequential manner using successive cancelation algorithm 

introduced in Arikan’s original work [32]. The sequential nature of the decoding process 

suffers from error propagation. In this chapter, we inspect the effects of error propagation 

on the performance of polar codes and propose some methods to alleviate the degrading 

effects of error propagation on the code performance for short and long frame lengths. 

The outline of this chapter is as follows. In Section 6.1, we propose a short method to 

determine the values of node-bits in the decoder tree. discussed and analysis the effect of 

error propagation on the performance of SC decoding in Section 6.2. In order to improve 

performance of SC decoder we introduce a new approach in Section 6.3. We have 

introduced training based approach decoding for polar codes in Section 6.4. Simulation 

results are presented in Section 6.5.   

6.1 Determination of Node-Bits 

 

In this section, we propose a short method to determine the values of node-bits in the 

decoder tree used for the decoding of bit 𝑢𝑘+1 where 𝑘 𝜖 [0 · · · 𝑁 − 1]. For this purpose, 

we first determine the node bits, then calculate the likelihoods of the nodes starting from 

the bottom ones till the top-most node. For the determination of the node bits, we first 

write the integer 𝑘 as sum of powers of 2, i.e., 

 

𝑘 = ∑ 2𝑖

𝑖

 
(6.1) 

 



  

65  
 
 

where 𝑖 refers to the levels whose nodes have assigned bits. Once we determine the level 

indices 𝑖, we partition the previously decoded bit stream starting from the last bit into 

consecutive sub-streams �̅�𝑖 containing 2𝑖 bits, and the node bits are determined using: 

 

�̅�𝑖 = �̅�𝑖 × 𝐺𝑖 (6.2) 

 

where 𝐺𝑖 is the sub-generator matrix of size 2𝑖 × 2𝑖. 

Example:  

Assume that 𝑁 =  16 and we want to decode 𝑢13 and the previous 12 decoded bits are 

�̅�  =  [100101110011]. We can write 12 as 12 =  22 + 23, and obtain the sub-streams 

as   �̅�2 = [1001] and   �̅�3 = [01110011]. Then the node bits are calculated as 

 

�̅�2 = �̅�2 × 𝐺2 → �̅�2 = [1001] × 𝐺2 

�̅�3 = �̅�3 × 𝐺3 → �̅�3 = [01110011] × 𝐺3 

 

6.2 Sequential Decoding and Error Propagation 

 

In successive cancelation decoding of polar codes, for the decoding of (𝑘 +  1)𝑡ℎ −bit 

we benefit from two kinds of information sources. One is the soft information obtained 

from the received 𝑁 −signal, i.e., soft information obtained from the output of the 

𝑁 −channel. The other is the 𝑘 decision results obtained from the decoding of the previous 

𝑘 bits. This means that the wrong decisions made for the decoding of previous bits affect 

the decoding of current bit, i.e., bit error propagates throughout the decoding operation. 

 

6.2.1 Bit Errors in Even and Odd Locations 

 

Decoding tree can help us to visualize the distribution of the previously decoded bits to 

the nodes. For instance, for the decoding of 𝑢8, the distribution of 7 decoded bits 𝑢1, 𝑢2,·

 · · , 𝑢7 can be achieved using the sub-generator matrices 𝐺1, 𝐺2, 𝐺4, and we get the 

decoding tree as in Figure 29. 
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Figure 29 Decoding of bit 𝑢8 for polar codes when 𝑁 =  8. 
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Figure 30 Diffusion of erroneous even bit. 
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Figure 31 Diffusion of erroneous odd bit. 

 

When Figure 29 is inspected in details, we see that even indexed bits appears at every 

node-bit combination, on the other hand, odd indexed bits appear only in some of the 

node-bit combinations. In addition, the bit 𝑢4 appears in every node bit combination at 

level-2. It is obvious that a wrong decision on the value of bit 𝑢4 affects the probability 

calculation of the all the nodes of level-2, and nodes at upper levels receive wrong 

probability values. To test the effects of even and odd indexed bit errors, we introduced 

single bit errors without BEC, and obtained BER graphs via computer simulations. The 

obtained graph is depicted in Figure 32. It is clear from Figure 32 that the even indexed 

bit errors have more degrading effects on code performance. In Figure 32 we compare the 

performance of SC in two cases, the first case when the first error occurs in odd bits' 

locations and second case when the first error occurs in odd bits' locations. For more 

details, see Algorithm 3. For instance, the distribution of the even and odd indexed 

previously decoded data bits to the nodes of the decoding three for the decoding of current 

bit is depicted in Figures 30 and 31 where it is seen that even indexed data bits appear in 

nodes labels more than the odd indexed data bits.  
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Figure 32 Error propagation vs error location, 𝑅𝑎𝑡𝑒 =  0.5, 𝑁 =  1024. 

Algorithm 3: Determining the effect of error propagation in SC decoding 

input 𝑁 frame length, received bits and  first error location 𝑙.  

1: Let  𝑖 = 1 𝑡𝑜 𝑁. 

2:   If 𝑖 ∈ 𝐴𝑐, 𝑢𝑖 = 𝑢𝑖 . 

3: If 𝑖 ∉ 𝐴𝑐, calculate 𝐿𝑅 from the bottom of the tree to the top. 

4: Use (4.16) for 𝑔-nodes. 

5: Use (4.15) for 𝑓-nodes. 

6: Determine the bit 𝑢𝑖 . 

7: If 𝑖 = 𝑙, 𝑢𝑖 = 𝑢𝑖⨁1, 𝑖. 𝑒., create an error. 

8: Increment 𝑖, i.e., 𝑖 = 𝑖 + 1. 

9: Go to step 2. 

10: When 𝑖 = 𝑁 stop. 
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6.3 Successive Cancellation Decoding Improvement  

In previous section, we demonstrated that, the performance of successive cancellation 

decoder of polar codes is affected from the first error locations. We can see that polar 

codes under SC have better performance when the error occurs in bits which have odd 

locations.  In order to improve performance of SC decoder we propose a new approach. 

In this new method, after creating an error in one of decoded bit, we distribute the 

previously  decoded bits on the code tree, 𝑔-nodes at the top of the tree carries two possible 

choices 0 and 1, we note the two inputs 𝐿𝑅𝑠 of every node (𝛼, 𝛽) as shown in Figure 33. 

By using the recursive formula (6.3) for 𝑔- nodes and selecting the significant likelihood 

ratio of 𝐿0 and 𝐿1, we can find 𝑢𝑖. For the better understanding of the proposed approach 

see Algorithm 4.  

 

𝐿𝑅 = {

𝐿0 = (𝛼 × 𝛽) 𝑓𝑜𝑟 0

𝐿1 =
𝛽

𝛼
            𝑓𝑜𝑟 1

 

 

   

(6.3) 

α 

(0*,1*) (0*,1*) (0*,1*) (0*,1*)

(0*,1*)

g

gggg

f f

 

 

Figure 33 Bits distribution stage of a new approach. 

 

 



  

70  
 
 

 

 

 

Algorithm 4: Effect of error propagation  using proposed improved SC 

Decoding 

Input 𝑁 frame length, received bits and  first error location 𝑙.  

1: Let  𝑖 = 1 𝑡𝑜 𝑁. 

2: If 𝑖 ∈ 𝐴𝑐, 𝑢𝑖 = 𝑢𝑖 . 

3: If 𝑖 ∉ 𝐴𝑐, calculate 𝐿𝑅 from the bottom of the tree to the top. 

4: Use (6.3) for 𝑔-nodes. 

5: Calculate 𝐿𝑅 from the bottom of the tree to the top, use maximum of 

    the two likelihood values for 𝑔-nodes at the top.      

6: Determine the bit 𝑢𝑖 . 

7: If 𝑖 = 𝑙, 𝑢𝑖 = 𝑢𝑖⨁1, 𝑖. 𝑒., create an error. 

8: Increment 𝑖, i.e., 𝑖 = 𝑖 + 1. 

9: Go to step 2. 

10: When 𝑖 = 𝑁 stop. 

 

6.4 Alleviation of Error Propagation via Training Based Approach 

 

In this section, we introduce a training-based approach for the alleviation of error 

propagation problem. In our proposed approach, we first extract some statistical 

information for the most probable error locations. For this purpose, we transmit 50 frames 

and record the index of first erroneous bit. The statistical data for 𝑁 =

 32, 64,128 and 1024 and rate 𝑅 =  0.5 are plotted as histogram as in Figure 34 and 35 

from which we see that the first erroneous bits usually appear at the small capacity 

channels, and they correspond, in general, to the first half of the data block. For different 

rates the statistical information is extracted via training approach. Since erroneous bits 

occurring at even indexes have more degrading effects than the erroneous bits at odd 

indexes, for 𝑁 =  32 for the first 4 data bits, and for 𝑁 =  64 for the first 6 data bits, 
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which are most probably to 50 the errors, we employ cyclic codes with generator 

polynomials 𝑔1(𝑥)  =  𝑥6  +  1,  𝑔2(𝑥)  =  𝑥4 +  1. The rate of the cyclic codes are 𝑅 =

 0.5. The parity bits obtained from the cyclic codes are concatenated to the end of the polar 

codes as side information.  

 

Figure 34 Histogram showing the reputation of fist error location for SC decoder at 

block length 32, 64, 128, 1024 over a BEC with erasure probability 0.5 and rate 0.5. 

 
 

Figure 35 Histogram showing the reputation of fist error location for SC decoder at 

block length 210 over a BEC with erasure probability 0.5 and rate 0.43. 
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Figure 36 Communication system with CRC. 

 

6.4.1 Cyclic Redundancy Checking (CRC)  

 

Cyclic Redundancy Checking (CRC) is employed for error detection operation. In CRC 

techniques, a few number of bits calculated from the information stream is appended to 

the end of the data stream and at the receiver side a computation is performed to detect 

the presence of any errors occurred on the transmitted bits.  

Binary polynomial division method is used in cyclic redundancy checks to detect the 

errors. For the computation of CRC, first generator polynomial G is chosen. In literature, 

a number of well-known polynomials are available with good error detecting ability. [63] 

As an example the generator polynomial 𝐺 =  (𝑥3 + 𝑥2 + 1) which can be represented 

with a binary string as 𝐺 = 1101 can be utilized for error detection purposed for the 

formation of CRC bits. We also know that the first bit of 𝐺 must always be a 1, so we only 

need to store 𝑛 = 3 bits, 101. Now assume our original data 𝑆 =  100110. To compute 
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the checksum of 𝑆, we must first append 𝑛 bits to the end to create 𝐷 = 100110000. This 

is simply binary polynomial division of G into D. 

 

𝐷

𝐺
=

(100110000)

1101
= 111001, remainder = 101 

 

 So, the 𝐶𝑅𝐶𝐺(100110000) is 101 in binary (5 in decimal). Then our transmitted message 

𝑆’ consists of 𝑆 concatenated with its CRC, or 100110101. The receiver takes the CRC 

of what it receives. If there is no corruption, this CRC will be zero, otherwise, an error is 

detected. In our example, we take 𝐶𝑅𝐶𝐺  (100110101) = 0, but if the last bit is corrupted 

𝐶𝑅𝐶𝐺  (101110101) = 1. 

 

6.4.2 Complexity of Proposed SC 

 

The original SC decoding has complexity of 𝑂(𝑁 𝑙𝑜𝑔 𝑁). In this proposed algorithm we 

repeated SC decoding to times in order to find out first error location. Therefore, the 

complexity will be   𝑂(2𝑁 𝑙𝑜𝑔 𝑁). However, this complexity decreases with decreasing 

of the rate, in low rate the complexity of proposed algorithm proximately equal  

𝑂(𝑁 𝑙𝑜𝑔 𝑁). 

6.5 Simulation Results 

In Figure 37, simulation results show the effect of error propagation on the performance 

of polar codes under a new approach decoder at block length 210 over a BEC with erasure 

probability zero and rate 0.5. Figure 38 and Figure 39 show the effect of first error location 

(odd index and even index) on performance of polar codes under SC decoder and under 

the new approach at block length 210 over a BEC with erasure probability 0.5 and rate 0.5. 

We did our simulations for BEC with erasure probability 𝛼 = 0.5 . The even indices for 

the data bits for rate 𝑅 = 0.5 and 𝑁 =  32 are chosen as [12, 14, 20, 22], and they are 

chosen for rates 0.43, 0.37, 0.32 as [14, 16, 20, 22], [16, 22, 26, 28], [16, 24, 26, 28] 

respectively. In a similar manner using a training based approach, the even indices for rate 
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𝑅 =  0.5 and 𝑁 = 64 are chosen as [16, 24, 28, 40, 50, 58], and they are chosen for rates 

0.4, 0.37, 0.32 as [24, 28, 30, 40, 50, 52], [28, 30, 40, 46, 50, 52], [30, 40, 44, 46, 50, 52] 

respectively. For the chosen data bits at the even indices, we employed cyclic code with 

rate 𝑅 =  0.5, and the parity bits are concatenated to the end of the polar codeword. At 

the received side, SC algorithm is run, and when the decoding of the chosen data bits at 

even indices are complete, a check is performed for the cyclic parity bits. If any error in 

the chosen bits are detected, syndrome decoding is performed for the chosen data bits and 

decoding operation is continued for the rest of the bits. The proposed system is depicted 

in Figure 37. 

We also considered the effects of double errors. In Figure 40, the effect of double errors 

on even locations only, on odd locations only, and one-bit error on even and one-bit error 

on location are considered. It is clear from Figure 40 that double error at even locations 

have the most degrading effect, and double errors at odd locations have less degrading 

effect on the code performance. 

In Figure 41, we compare the effects of single and double errors at even and odd locations. 

It is clear from Figure 42 that the occurrence of a single error at an odd location almost 

has the same effect as the occurrence of double errors at odd locations. However, this is 

not the case for errors occurring at even locations. Double errors occurring at even 

locations have more degrading effect than a single error occurring at an even location. 

We also inspected the effects error propagation for SC list decoding of polar codes. The 

simulation results are depicted in Figure 42 where it is clear that for SC list decoders, 

errors occurring at even location have more degrading effects than the errors occurring at 

odd locations.  

The simulation results for binary erasure channel are depicted in Figures from 43 to 46 

where they are seen that the Training Based Approach shows better performance than that 

of the classical successive cancelation algorithm proposed in [32]. This is the expected 

result, since employing cyclic codes for the most probable even error locations, we 

alleviate the degrading effect of error propagation, and even for very frame lengths we 

obtain significant performance improvement for short sizes. 
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Figure 37 Performance of a new approach decoder compared to the SC decoder 

block at length 210 over a BEC with erasure probability zero and rate 0.5. 

 

 

Figure 38 The effect of first error location (odd index) on performance of polar 

codes under SC decoder and under the new approach at block length 210 over a BEC 

with erasure probability 0.5 and rate 0.5. 

 



  

76  
 
 

 

Figure 39 The effect of first error location (even index) on performance of polar 

codes under SC decoder and under the new approach at block length 210 over a BEC 

with erasure probability 0.5 and rate 0.5. 

 

 

 

Figure 40 The effect of double errors on even location only, on odd locations only, 

and one at even and one at odd locations.  
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Figure 41 Comparison of the effects of single and double errors on even and odd 

locations.  

 

 

Figure 42 Single error propagation in SCL, 𝑅𝑎𝑡𝑒 =  0.5, 𝑁 =  64. 
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Figure 43 BER and BLER performance of proposed SC using CRC decoder compared 

to the SC decoder for 𝑁 = 1024 and 𝑟𝑎𝑡𝑒 = 0.5. 

 

 

Figure 44 BER and BLER performance of proposed SC using CRC decoder compared to 

the SC decoder for 𝑁 = 128 and 𝑟𝑎𝑡𝑒 = 0.5. 
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Figure 45 BER and BLER performance of proposed SC using CRC decoder compared to 

the SC decoder for 𝑁 = 64 and 𝑟𝑎𝑡𝑒 = 0.5. 

 

 

Figure 46 BER and BLER performance of proposed SC using CRC decoder compared to 

the SC decoder for 𝑁 = 32 and 𝑟𝑎𝑡𝑒 = 0.5. 
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CHAPTER 7 

 

 CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

 

 

This thesis considers several parts and algorithms for polar codes decoder, including SC 

decoder, SCL decoder and proposed high-speed decoder. Furthermore, the effects of error 

propagation on performance of SC decoder are discussed aiming to achieve significant 

improvement on performance of polar codes. 

In this thesis study, we propose a tree structure for the successive cancelation (SC) 

decoding of polar codes. The proposed structure is easy to implement in hardware and 

suitable for parallel processing operations. From simulation results in chapter 4, we can 

see that polar codes give better performance when the block length rises from 210 to 211.  

The performance of the SC algorithm can be improved by using SCL decoding algorithm. 

In this thesis, we proposed a new approach for the calculation of likelihoods used in 

successive cancelation decoding of polar codes. The proposed approach uses only the soft 

likelihood values during the decoding process. It is shown via computer simulations that 

the proposed approach shows better performance than that of the classical successive 

cancelation algorithm for small code-word lengths. The suggested technique can be used 

to construct joint communication systems utilizing exchange of soft information rather 

than hard one. The classical successive cancelation formula in (4.16) can be considered as 

the limiting case of our proposed formula in (4.23). 

A successive cancellation list (SCL) decoding algorithm to improve the performance of 

polar codes is discussed. Compared with classical successive cancellation decoding 

algorithms, SCL concurrently produces at most 𝐿 best candidates during the decoding 

process to reduce the chance of missing the correct code word. However, the SCL will 
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increase hardware complexity, which prevents the efficient implementation. This 

algorithm can reduce the latency significantly without any performance loss. 

Combination of list decoding and CRC algorithm is discussed to improve the performance 

of polar codes further. From simulation results, we can see that SCL does not provide a 

significant improvement in case of 𝐿 = 2 and 𝐿 = 4. However, simulation results of SCL 

decoding with CRC over the binary erasure channel show a significant performance 

improvement, especially at the low rate.  

According to simulation results, it is seen than the code length of the polar code 𝑁 should 

be chosen large enough to achieve the desired error-correcting performance for practical 

applications. The decoding of a codeword using SC requires (2𝑁 − 2) cycles which make 

a large latency with large 𝑁 and it is not suitable for real-time high-speed applications. 

Therefore, the design of low-latency and high-speed polar decoder is a critical issue 

especially for practical applications.  

In this thesis, we proposed a tree structure for the successive cancelation decoding of polar 

codes. Using the introduced tree structure, we proposed a high-speed low latency decoding 

algorithm for polar codes, such that, using the proposed algorithm it is possible to decode 

all the information bits simultaneously in parallel. BER performance of polar codes using 

the proposed high-speed decoding method over binary-erasure channels is obtained via 

computer simulations. From simulation results, we see that proposed high-speed decoding 

algorithm good performance at high code rates, especially for the rates between 0.35 and 

0.5. The proposed high-speed decoding algorithm gives a great improvement in polar 

codes decoding speed. For frame length 𝑁 =  1024 and 𝑟𝑎𝑡𝑒 =  0.5, while original SC 

decoder can decode only one bit for a decoding stage, the proposed high-speed decoder 

can decode 512 bits all together at the same decoding stage and since in the proposed high-

speed decoding algorithm, we do not need to know the previously decoded bits. Next, we 

suggested an improved version of the proposed high speed decoding technique. The 

proposed improved high-speed decoding method shows better performance than that of 

the classical successive cancelation decoding method at high rates with much lower 

decoding latency. In case of using AWGN channel, proposed high-speed decoder gives 

better performance at low SNR. 
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We also proposed a new approach for the alleviation of error propagation that occurs in 

successive cancelation decoding of polar codes. We discovered that single errors 

occurring at even indexed bits has more degrading effects than the single errors occurring 

at odd indexed bit locations. The proposed approach uses a training-based approach to 

determine the most likely first erroneous bit locations, and employ cyclic codes for the 

mostly likely even erroneous bit locations. Syndrome decoding is performed at the 

receiver side in case of error occurs at determined most likely erroneous bits. It is shown 

via computer simulations that the proposed approach shows much better performance than 

that of the classical successive cancelation algorithm with a negligible extra overhead, and 

significant improvements is observed in performance for short frames sizes which are 

used in practical communication systems. 

In Chapter six, we focused on design efficient decoder that reduces the effects of error 

propagation on performance of SC decoder of polar codes. The results demonstrated that.    

The performance of SC decoder of polar codes affected by error locations. We see that 

polar codes under SC have better performance when the first error occurs in bits which 

have odd indexes. Also, we have introduced a new decoding for polar codes. This 

algorithm avoids error propagation in the two cases (artificial error in odd and even bits 

indexes) without erasure channel and improves the BER performance only when first error 

occurs in odd bits indexes. Furthermore, we have introduced a new decoding using CRC 

for polar codes. This algorithm improves the bit error rate and block error rate performance 

by estimating the first error location.  

 

 

7.2 Future Work  

 

Since their introduction in 2008, numerous improvements have been achievements on the 

performance of polar codes and improved SC algorithms such as systematic SC and SC 

list are proposed. However, there are still some problems for the use of polar codes in 

practical communication systems. Efficient construction of polar codes is an important 

issue for practical use of them in communication systems. The accurate determination of 

the frozen bit positions for non-BEC channel is still an open problem. The investigation 
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of efficient selection of frozen bit positions over many practical channel models is an open 

issue for future works. Second, to overcome the performance of LDPC codes, the list size 

of SCL decoders should be chosen very large and this leads to a huge cost on silicon area 

and power consumption. Future research will include the low complexity efficient 

algorithms and architecture designs employing polar codes with small list sizes showing 

outstanding error-correcting performances. Third, the performance of the BP algorithm is 

not comparable to SCL algorithm. However, BP algorithm makes use of the soft 

information and it is suitable to design joint communication system that can be iteratively 

processed. For this reason, improved design of BP decoders and joint communication 

systems involving BP decoders is an open challenge for future studies. 

In the following, we motivate some important problems as extensions of our work. 

 

• In Chapter 5, we proposed a technique for the fast decoding of polar codes, we have 

faced significant problem in this technique. This problem occurs when lost bits comes 

neighbors to each other, in this case, 𝐿𝑅 𝑜𝑓 1 =  𝐿𝑅 𝑜𝑓 0 =  1 in next level. So, we could 

not decide if the bit in this node is 0 or 1.  According to previous analysis, we have to find 

the efficient solution of neighbors lost bits' problem to improve polar codes under high-

speed decoder performance. 

• In Chapter 6, considering most probably error locations. We can increase the number of 

most probably error locations that checked by CRC to improve the performance of SC by 

reducing error propagation. 
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