

USING DIJKSTRA ALGORITHM IN CALCULATING ALTERNATIVE

SHORTEST PATHS FOR PUBLIC TRANSPORTATION WITH TRANSFERS

AND WALKING

CASE STUDY: ANKARA

HAITHAM LATIF HASSAN AL-TAMEEMI

JUNE 2014

USING DIJKSTRA ALGORITHM IN CALCULATING ALTERNATIVE

SHORTEST PATHS FOR PUBLIC TRANSPORTATION WITH TRANSFERS

AND WALKING

CASE STUDY: ANKARA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

HAITHAM LATIF HASSAN AL-TAMEEMI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

MATHEMATICS AND COMPUTER SCIENCE

INFORMATION TECHNOLOGY PROGRAM

JUNE 2014

iv

ABSTRACT

USING DIJKSTRA ALGORITHM IN CALCULATING ALTERNATIVE

SHORTEST PATHS FOR PUBLIC TRANSPORTATION WITH TRANSFERS

AND WALKING

CASE STUDY: ANKARA

AL-TAMEEMI, Haitham Latif Hassan

M.Sc., Department of Mathematics and Computer Science

Information Technology Program

Supervisor: Assist. Prof. Dr. Ö. Tolga PUSATLI

June 2014, 72 pages

In this study, the possibility of using the Dijkstra algorithm in calculate shortest paths

and using GIS to connect transport lines for increasing efficiency in the accessibility

to shortest paths was studied. The results are presented as spatial maps. Basically, the

research question this thesis addresses is: “Can Iraqi authorities use graph theory and

shortest path algorithm to build a system to develop a public transit system including

exchanging lines and walking, based on the experiences of transport systems in

Turkey?"

v

As a research methodology, Ankara’s mass transportation has been examined as

considerable similarities are found between Ankara and Baghdad in terms of

population in number and in density. Hence, an introduction is given on both cities.

Additionally, information technologies to investigate and promote public transport

systems in the literature are visited. As gathering spatial data has required

considerable time and resources, sample datasets of Ankara’s mass transport system

are used to run demonstrative applications to highlight potential problems in the

technical side.

The surveyed literature also includes graph theory, transportation network, shortest

path problems and GIS usage in the public transportation.

The used MapInfo Professional and MapBasic software tools are available on the

market. Specific application programs are developed in MapBasic to ease analyses

and implementation in MapInfo. Additionally, programs are coded in C++ to apply

Dijkstra algorithm to feed data to GIS software. Limitations are also reported to open

further research avenues including other algorithms for path optimization.

The results show that Dijkstra algorithm can be successfully applied to reform and

design mass transportation systems. An unfortunate finding underlined that it is too

early to jump to application design as the primary problem is to collect reliable and

up to date spatial data of Baghdad.

Keywords: Ankara, Baghdad, Dijkstra Algorithm, GIS, Graph Theory, Shortest Path,

Public Transportation System.

vi

ÖZ

YÜRÜME DAHİL AKTARMALI TOPLU TAŞIMADA ALTERNATİF

KISAYOL HESAPLAMASI İÇİN DİJKSTRA ALGORİTMASI KULLANIMI

 ÇALIŞMA KONUSU: ANKARA

AL-TAMEEMI, Haitham Latif Hassan

Matematik-Bilgisayar Anabilim Dalı

Bilgi Teknolojileri Yüksek Lisans Programı

Yrd. Doç. Dr. Ö. Tolga PUSATLI

Haziran 2014, 72 Sayfa

Bu çalışmada, Dijkstra algoritması kullanılarak kısa yol hesaplanmasının ve ulaşım

hatlarının bağlanmasında CBS kullanımının etkinliği arttırması işlenmistir. Sonuçlar

mekansal veri haritaları şeklinde sunulmuştur. Temel olarak, tezin hedef aldığı

araştırma sorusu: "Irak, çizge kuramı ve kısa yol algoritması ve Türkiye'deki yürüme

dahil aktarmalı hat değiştirme deneyimlerini kullanarak toplu taşımacılık sistemi

kurabilir mi?"

Bağdat'la Ankara arasında nüfus yoğunluğu ve çokluğu bakımından önemli

benzerlikler görüldüğünden, araştırma yöntemi olarak, Ankara'nın toplu taşıması

incelenmiştir. Bu sebebten, her iki şehir hakkında tanıtıcı bilgi verilmiştir. Ek olarak,

vii

literatürde toplu taşım sistemlerini incelemek ve iyileştirmek için kullanılan bilgi

teknolojileri taranmıştır. Bağdat'ın mekansal verisini almak önemli miktarda zaman

ve kaynak gerektirdiğinden, Ankara toplu taşıma sistemin örnek verisi toplanmış ve

bu veriler, olası teknik sorunları açığa çıkarmak için örnek uygulamalarda

kullanılmıştır.

Taranan literatür çizge kuramı, taşıma ağları, kısa yol ve toplu taşımacılıkta CBS

kullanımını da içermektedir.

Kullanılan MapInfo Professional ve MapBasic programları piyasada olan

uygulamalardır. MapInfo'da uygulamaları kolaylaştırabilmek için, MapBasic'de

konuya yönelik uygulamalar geliştirilmiştir. Ek olarak, Dijkstra algoritmasını

uygulamak ve CBS yazılımına girdi oluşturmak için C++ programlama dilinde

uygulama yazılmıştır. Tezdeki sınırlamalar, örneğin başka algoritmalar, olası devam

projeleri için rapor edilmiştir.

Sonuçlar gösteriyor ki Dijkstra algoritması, toplu taşıma sistemlerinin

iyileştirilmesinde ve tasarımında kullanılabilir. Bir talihsiz bulgu da gösteriyor ki

doğrudan uygulama tasarımına geçmek için çok erken çünkü birincil sorun Bağdat'ın

doğru ve güncel mekansal verisinin toplanmasıdır.

Anahtar Sözcükler: Ankara, Bağdat, Dijkstra Algoritması, CBS, Çizge Kuramı,

Kısayol, Toplu Taşımacılık Sistemi.

viii

ACKNOWLEDGEMENT

First of all, praise to GOD "ALLAH" on all the blessings, one of these blessings was

the help in achieving this research to its end.

I would like to express my sincere gratitude to my thesis advisor Assist. Prof. Dr. Ö.

Tolga PUSATLI for his continuous support of my Master of Science studies and

research, for his patience, motivation, enthusiasm, and immense knowledge. His

guidance helped me all the time of my research and writing of this thesis. I could not

have imagined having a better advisor and mentor for my Master of Science studies.

Sincere thanks are also extended to Başarsoft staff especially Mr. Ahmet DABANLI

for his valuable support throughout my thesis and project.

Finally, my special thanks to my family for their endless and continuous encourage

and support throughout the years.

ix

TABLE OF CONTENTS

 STATEMENT OF NON PLAGIARISM…….. iii

 ABSTRACT.. iv

 ÖZ………………………………………………………………………………….. vi

 ACKNOWLEDGEMENTS………………………………………………………... viii

 TABLE OF CONTENTS………………………………………………………….. ix

 LIST OF FIGURES………………………………………………………………... xi

 LIST OF TABLES………………………………………………………………… xiv

 LIST OF ABBREVIATIONS……………………………………………………... xv

 CHAPTERS:

 1. INTRODUCTION... 1

 1.1. Baghdad - Iraq... 1

 1.2. Ankara-Turkey.……………... 4

 1.3. Purpose and Scope…………….. 8

 1.4. Motivation……………... 8

 1.5. Research Question…………….. 9

 1.6. Software Used……………... 9

 1.7. Obtaining Data……………….. 10

 1.8. Research Methods….…….. 14

 2. BACKGROUND AND LITERATURE REVIEW...................................... 15

 2.1. Graph Theory.. 15

x

 2.2. Transportation Networks.. 16

 2.3. Shortest Path... 16

 2.4. Dijkstra Algorithm............................….………….…….……….. 17

 2.5. Geographic Information System (GIS)……................................... 21

 2.6. Literature Review... 24

 2.7. Problems... 32

 3. SAMPLE APPLICATION OF MASS TRANSPORT SYSTEM IN

ANKARA...

37

 3.1. Data Analyses... 37

 3.2. Implementation and Addressing the Problems............................... 49

 4. CONCLUSION... 67

 4.1. Findings and Results... 67

 4.2. Limitations.. 68

 4.3. Future Studies... 70

 4.4. Conclusion……………………………………………………….. 72

 REFERENCES.. R1

 APPENDICES...

A. MapBasic Code........…...……………..….......…………………………….

B. C++ Code…………………………………………………………………..

C. CURRICULUM VITAE…………………………………………………

A1

A1

B1

C1

xi

LIST OF FIGURES

FIGURES

Figure 1 Iraq borders [1] ... 1

Figure 2 Cary in Baghdad ... 2

Figure 3 Baghdad roads... 4

Figure 4 Turkey ... 5

Figure 5 Ankara ... 5

Figure 6 Underground rail system lines .. 6

Figure 7 Construction in progress rail system lines .. 7

Figure 8 MapInfo, MapBasic, and Bloodshed websites.. 9

Figure 9 Transport lines of Ankara ... 10

Figure 10 Sample bus stops data ... 11

Figure 11 MapInfo and select datasets to open ... 11

Figure 12 Ankara bus stops ... 12

Figure 13 Connected among bus stops (bus line) ... 13

Figure 14 ank_stops and ank_lines layers ... 13

Figure 15 Dijkstra algorithm example .. 18

Figure 16 Routes to covered all nodes .. 20

Figure 17 Geometry types ... 22

Figure 18 Non-spatial data for bus sops .. 23

Figure 19 An example on accessibility method implementation steps [23] 25

file:///C:/Users/MasCan/Desktop/FINAL%20FINAL/haitham_ego_bus/write%20thesis/Final%20Thesis/Haitham%20Thesis%20تغيير%20كوكان.docx%23_Toc393100819

xii

FIGURES

Figure 20 Homonymous stops and different types of public transport 30

Figure 21 Source and destination points as bus stops ... 32

Figure 22 Destination and source are free points .. 33

Figure 23 Destination, source points and the path .. 34

Figure 24 Connections among bus stops ... 35

Figure 25 Bus stops relationship by walking .. 37

Figure 26 Create new table and add to the current mapper 38

Figure 27 Modify Table Structure text box ... 39

Figure 28 Open MapBasic window from MapInfo ... 40

Figure 29 Query implementation to achieve the relationship by walking 40

Figure 30 Choose Update Column .. 41

Figure 31 Requirement to update .. 41

Figure 32 Update Column text box ... 41

Figure 33 Relationship table ... 42

Figure 34 Represent relationship as a layer .. 42

Figure 35 Another relationship as a layer ... 43

Figure 36 Choose Buffer from Table menu .. 43

Figure 37 Detect buffer object and store the result ... 44

Figure 38 Creating new table .. 44

Figure 39 Complete creating the new table ... 45

file:///C:/Users/MasCan/Desktop/FINAL%20FINAL/haitham_ego_bus/write%20thesis/Final%20Thesis/Haitham%20Thesis%20تغيير%20كوكان.docx%23_Toc393100825

xiii

FIGURES

Figure 40 Detect the buffer criteria ... 46

Figure 41 Data aggregation ... 46

Figure 42 SQL Select text box .. 47

Figure 43 Buffer table layer .. 48

Figure 44 Buffer table result ... 49

Figure 45 SetBusStops button pad .. 50

Figure 46 Several nearest bus stop .. 51

Figure 47 Choose another nearest bus stop ... 51

Figure 48 Example for choose a bus stop ... 52

Figure 49 Push first button .. 53

Figure 50 NearestStationStart text file .. 54

Figure 51 Content of NearestStationStart text file .. 55

Figure 52 Push second button ... 56

Figure 53 NearestStationFinal text file ... 57

Figure 54 Content of NearestStationFinal text file ... 57

Figure 55 Create new project and choose windows application 59

Figure 56 FinalResult text file ... 63

Figure 57 Push Third button in SetBuStops pad ... 64

Figure 58 Shortest path ... 66

Figure 59 Longest path .. 66

file:///C:/Users/MasCan/Desktop/FINAL%20FINAL/haitham_ego_bus/write%20thesis/Final%20Thesis/Haitham%20Thesis%20تغيير%20كوكان.docx%23_Toc393100850

xiv

LIST OF TABLE

TABLES

Table 1 Implementation Dijkstra algorithm .. 19

Table 2 Shortest path and path from node A to all nodes 20

xv

LIST OF ABBREVIATIONS

APSP All Pair's Shortest Path

ASCII American Standard Code for Information Interchange

CE Cross-Entropy

CPM Critical Path Method

CPU Central Processing Unit

CSP Circular Shortest Path

DBMS Database Management System

EGO The Electricity Gas Bus General Directorate of Ankara

ESRI Environmental Systems Research Institute

GIS Geographic Information System

GPS Global Positioning System

GUI Graphical User Interface

IDE Integrated Development Environment

ISM Interpretive Structural Modeling

LTCM Least Transfer Cost Model

MBTA Multiple Backtracking Algorithms

MILP Mixed Integer Linear Programming

RAM Random Access Memory

SQL Structured Query Language

SSSP Single Source Shortest Path

TNS Transfer Between a Pair of Neighbor Stops

TSS Transfer at the Same Stop

TUS Transfer Between a Pair of Up-down Stop

http://en.wikipedia.org/wiki/Integrated_development_environment

1

CHAPTER I

1. INTRODUCTION

In this thesis, the technical possibilities of optimizing mass transport systems in Iraq

are investigated. First, a short background information regarding Iraq is given to

make the reader familiar to the country.

1.1 Baghdad - Iraq

Figure 1 Iraq borders [1]

2

Iraq is one of the countries in the West of Asia, and overlooks the Arabian Gulf, and

has borders with both Turkey, Iran, Kuwait, Saudi Arabia, Jordan and Syria [1]

(Figure 1).

Baghdad is the capital of Iraq, and the official language in Iraq is Arabic.

The one of the important feature in Iraq are rivers, and it has two rivers Euphrates and

the Tigris. In addition, we can see mountains distribution in the north, as well as the

desert can find it in the west [1].

The first attempts to create public transport system in Iraq were in 1889 by the

Ottoman governor Midhat Pasha. However, this system depends on the establishment

of a railway called Tram, and used the double dick wooden carts pulled by horses

called Cary (Figure 2) [2].

Figure 2 Cary in Baghdad

Following this attempt, the real milestone to build public transport was at the

beginning of 1938 when Al-Amana was established as a mass transport company by

the decree of the Baghdad mayor; the route was called "Cary" or as known publicly

“Al-Amana”. Today, this company is called "State Company for Travellers and

Delegates Transportation" [3].

After many consecutive wars, the infrastructure of this company including bus stops,

and most buses were destroyed in 2003 during American invasion. These series of

3

devastation have made Iraq one of the countries in the need to rebuild its

infrastructure of mass transport [4].

The population of the capital Baghdad, as of 2009, statistics is approximately

7,180,889, making it the largest city in Iraq [5].

When we have a look at the geography of Baghdad, we see flat lands not so

problematic for a variety of mass transport. In addition, Tigris river divides the city

into two parts, making it easier to establish water transportation system as well

(Figure 3).

Unfortunately, we could not find any reliable spatial/nonspatial data regarding the

transportation system of Baghdad hence we choose Ankara as a possible case study

for this thesis.

Briefly, we have used Dijkstra algorithm to optimize routes in public transportation to

promote the system. Before we get into the detail, it is beneficial to mention the

following requirements for any viable transport project in Iraq.

The important infrastructures needed in Iraq are [6]:

1. Rehabilitation of the main roads and building new bus stations.

2. Acquiring modern buses suitable to the Iraqi streets.

3. Creating a modern and easy network of routes covering all the areas of

Baghdad.

4. Scheduling the time of buses based on the people's needs, especially at peak

time of the day.

5. Study the traffic congestion in Iraqi streets which is useful to plan optimal

routes in addition to the usage for transport scheduling.

6. Use information technology to monitor/promote the public transport system.

7. Allocating resources for all of the above.

When we want to develop the public transport, we must think of redistributing the

bus stops in a way that fit to the needs of passengers. One of the most important parts

in the infrastructure construction is to focus on the use of information technology to

develop this field.

http://en.wikipedia.org/wiki/Baghdad#cite_note-largestcities-2

4

Figure 3 Baghdad roads

1.2 Ankara-Turkey

Ankara one of the largest cities located it in the central of Anatolia, and it is a capital

of Turkey (Figure 4, 5). The modern planning of Ankara was produced by a German

city planner named Carl Christoph Lörcher in 1924. Ankara is a center of Turkish

government, as well as it considered one of the most important commercial and

industrial city. In addition, the foreign embassies and diplomatic staff are located in

the city. The population of Ankara in 2013 was about 5,045,083 [7].

5

Figure 4 Turkey

Figure 5 Ankara

6

The population growth and increasing demands for transportation lead to the

development of the modern transportation system to cover all points in the city. For

this reason we can see in Ankara several transportation system used to meet all

people’s needs. The city’s public transportation system is inexpensive and easy to

use. Municipality buses, public buses, Dolmuş (mini buses), and subway are among

Ankara's public transportation alternatives.

The Electricity Gas Bus General Directorate (EGO) [8] is the company that directs

the public transportation in Turkey such as subway system and public buses. The

Ankara Metro is the rapid transit system and consists of several lines.

The current operating rail system lines (Figure 6) are:

 Ankara (A1): from Dikimevi to Aşti; it is about 8.52 km line, and contains 11

stations.

 Ankara Metro (M1): from Kizilay to Batikent; it is about 14.66 km line, and

contains 12 stations.

 Ankara Metro (M2): from Kizilay to Çayyolu; it is about 16.59 km line, and

contains 11 stations.

 Ankara Metro (M3): from Batikent to Sincan/Torekent; it is about 15.36 km

line, and contains 11 stations.

Figure 6 Underground rail system lines

http://www.ego.gov.tr/EN/newsreadEN.asp?id=3240
http://www.ego.gov.tr/EN/newsreadEN.asp?id=3242

7

Another rail system line is currently being constructed (Figure 7):

 Ankara Metro (M4): from Tandogan to Kecioren; it is about 10.58 km line,

and contains 11 stations.

Figure 7 Construction in progress rail system lines

In addition there is planned a new rail system line from Kizilay to Esenboga called

Ankara Metro (M5).

In addition to the subway, the buses working to serve the transportation system in

Ankara are operated by EGO company. The buses first started to be used in Ankara in

1930, when 100 buses were purchased from the Soviet Union. In 2001, the subway

and city bus systems were integrated to use a single type of fare ticket.

In 2005, 50 diesel and 400 natural gas buses were purchased. In 2006, vehicle

tracking and automation system was activated. In the present, EGO company contains

1.829 buses with several vehicle types [8].

http://www.ego.gov.tr/EN/newsreadEN.asp?id=3244

8

1.3 Purpose and Scope

This dissertation is about the possibility of the use of geographical information

systems to develop a system for finding alternative routes from one location to the

target destination with the shortest alternative path in the public transportation

systems.

In addition to MapInfo, an application developed in C++ language was used to find

the shortest path between any two points in the transport network, to extract more

than one path between these points, and to recognize the difference between the

shortest and longest paths. Related to the content, we have employed the graph

theory, more specifically the algorithm of shortest path to detect the shortest path, so

we can use it to reduce the time and the cost to reach the destination point.

In this thesis, firstly we provided basic information of GIS, graph theory, shortest

path problem and algorithms in chapter 2. The survey of some of the reports covering

the use of geographic information, graph theories and the development the public

transport systems is provided in section 2.6.

The case study of this dissertation is about 11 public lines in Ankara (section 1.7).

We used the Dijkstra algorithm to find the longest and shortest paths between any

specific points (section 3.2), and the problems faced are listed in section 2.7.

1.4 Motivation

The researcher is a teacher in Iraq, always interested about student’s lives and their

problems. One of the most important and biggest problems is student's access to

school in short time with minimal effort and cost.

As seen above, Iraq and Turkey have more than one type of transportation system in

addition to increasing demand for transport in both of them. Additionally, the

researcher attends Cankaya University in Ankara which gives the opportunity to

study local transportation system. Given these, the researcher decided to choose

Ankara as a case study.

9

1.5 Research Question

As a purpose of this thesis, the researchers try to answer this question:

Can Iraq authorities use graph theory and shortest path algorithm to build a system to

develop the public transit system including exchanging lines and walking, based on

the experiences of transport system in Turkey?

1.6 Software Used

MapInfo Professional Version 11.5 and MapBasic version 11.5 were used to

represent the bus stops and lines and to write codes respectively [9]. In addition, C++

IDE by Bloodshed Software [10] was used to calculate the shortest paths based on

Dijkstra Algorithm, and to create text files which used throughout the thesis (Figure

8).

Figure 8 MapInfo, MapBasic, and Bloodshed websites

11

1.7 Obtaining Data

The sample data were obtained from Başarsoft company; these datasets may not be

up-to-date as they are used only as sample. These datasets present:

1- Transport lines of Ankara (ank_lines): 11 routes were used in this research,

and they are (Figure 9):

a. 117-1

b. 131

c. 136

d. 139

e. 141

f. 145-1

g. 146

h. 202-1

i. 202-1

j. 212

k. 105-1

Figure 9 Transport lines of Ankara

11

2- As a sample set of Ankara bus stops (ank_stops) we have selected 608 stops

in this thesis (Figure 10).

Figure 10 Sample bus stops data

The previous data are the main data obtained from Başarsoft company, and they are

presented as layers by using MapInfo software. Figure 11 shows how to open

MapInfo and select the data.

Figure 11 MapInfo and select datasets to open

12

Figures 12 and 13 show two layers. First layer represents bus stops; second layer

represents connection among the bus stops in the same route (bus line). Figure 14

represents these layers as overlaid.

Figure 12 Ankara bus stops

13

Figure 13 Connected among bus stops (bus line)

Figure 14 ank_stops and ank_lines layers

14

1.8 Research Methods

In this thesis, the researcher has spent extra care to avoid plagiarism from the

literature. However, there may be some unwanted similarities just by coincidence; to

minimize such cases, similarity check online software, iThenticate has been used

before the final submission of the text. The organization of the thesis is as follows:

Firstly, the researcher obtained the sample datasets, then studied these dataset to

understand how to use them in this thesis.

Secondly, we studied the graph theory especially the shortest path problem and

algorithms to solve this problem, and decided to choose Dijkstra algorithm.

Data analyze is an important part in this thesis, and that is the third stage. The

researcher by using MapBasic analyzes datasets for implementation.

After analyzing the data, the researcher used C++ application to find the paths among

origin and destination points, and sent this result as a text file.

Finally, by using MapInfo the researcher can represent the result in a map to find the

difference between shortest and longest paths.

15

CHAPTER II

2. BACKGROUND AND LITERATURE REVIEW

As was explained in chapter 1, this dissertation is about the GIS and graph theory, for

that reason we will provide a basic concept for them, in addition to the literature

review and the problems addressed.

2.1 Graph Theory

Before explaining the graph theory, we will introduce some definitions:

Vertices (V) or Nodes: are a set of points where two or more straight lines meet [11].

We always use it to represent a specific point in the map such as bus stop. Note that

vertex is not exactly same as node however, we use these terms interchangeably in

this thesis as the difference does not affect our analyses. This distinction is underlined

in section 4.2 while discussing limitations.

Edge (E): is a line segment which connects two vertices [11]. In this thesis the edges

represented a distance between the bus stops.

Path (P): in a graph, the path is a traversing sequence of vertices connected by edges.

A simple path is one in which all vertices are different from one another. A cycle is a

path with at least one edge whose first and last vertices are the same. The length of a

path or a cycle is its number of edges [11].

Graph theory: is a mathematical theory which concerned with to analyze and measure

he networks. it consist of edges and vertices [12].

16

For example the bus network can be represented as a graph where the bus stations are

the graph vertices and links between stations are the graph edges.

Another important characteristic of a graph for the transportation network is that a

graph can be weighted. Liu defines the weighted graph as the graph whose numerical

label (value) or weight is assigned to each of its edges. In case of transport modeling,

this weight is the way of representing the cost of travelling from one point (vertex) to

another [12].

2.2 Transportation Networks

Is a set of lines to represent network of roads, streets, or any connections type

between nodes, used to provide the flexibility to movement of passengers and

vehicular movement or flow of some commodity. it usually use a graph theory to

analyze it, for example, in this thesis use the graph theory to analyze the network

roads to solve the shortest path problem and find alternative shortest path [11].

2.3 Shortest Path

Shortest path is a fundamental problem in graph theory [13]; then we can define the

shortest path problem as the problem of finding a path between two vertices (source

and destination).

For example to find the shortest way from capital city to another city, in this case the

cities are represented as vertices in the map [14].

Another definition of Liu [12], "The path(s) through the network from a known

starting point to an optional ending point that minimizes distance, or some other

measure based on distance, such as travel time".

17

This problem solved by using different algorithms [15] depending on the structure of

the graph. In this section we classify the shortest path algorithms into:

 Single source shortest path (SSSP) algorithms: in this type of problem, we

want to find the shortest path from the specific source node to specific

destination node or all nodes. Dijkstra algorithm is more efficient to solve this

type of shortest path problem especially when we do not have negative edge

weight, however if we have it, the Bellman-Ford's algorithm is more efficient

than Dijkstra [12] [13].

 All pair's shortest path (APSP) algorithms: if we want to find the shortest path

from all nodes to all nodes, then the Floyd-Warshall algorithm is more

efficient to solve this type of shortest path problem. Another algorithm to

solve this type of problem is called Johnson's algorithm, and this type may be

faster than Floyd–Warshall on sparse graphs [12] [13].

Another algorithms are available to solve shortest path algorithms, such as A* search

algorithms, Viterbi algorithm, and others. In this thesis we are focusing on Dijkstra

algorithm.

2.4 Dijkstra Algorithm

Dijkstra algorithm was designed in 1956 by Dutch computer scientist Edsger Dijkstra

[16], and it is one of the most popular algorithms to find the shortest paths to our

knowledge.

When the nonnegative edge path is considered, then we can use this algorithm to

solve the single-source shortest path problem for a graph. This algorithm is often used

in routing and as a subroutine in other graph algorithms. By using this algorithm, we

can find the shortest path between the specific vertex to all vertices in the graph [17]

[18].

18

For example, in Iraq we can represent all cities as vertices, and the edge path costs

represent driving distances between all pair cities connected by a direct road. The

Dijkstra's algorithm can be used to find the shortest route between the capital city,

Baghdad, and all other cities.

Methodology: We can define the algorithm methodology as follow [13] [17]:

1. Choose the source node as a first permanent node, and assign it 0 costs.

2. Check all neighbor nodes from the previous permanent node.

3. Calculate the cumulative cost of each neighbor nodes and make them

temporary.

4. Check the temporary nodes as follows:

a. Choose a node with the smallest cumulative cost, and make it as a

permanent node. Keep in mind; do not check the permanent again

because this is a final cost for this node.

b. If we have more path to reach to the nodes, then the shortest cumulative

cost paths was chosen.

5. Repeat steps 2 to 4 to make all nodes as a permanent.

Example: In Figure 15 below, we have 8 nodes connecting together through a

weights path, and we want to calculate the shortest path between node A to all other

nodes.

Figure 15 Dijkstra algorithm example

A

D B

C

E H

F

G

5

15

12

9

3
4

8

9

5

6

4

20

13

1

7

11

19

Notes:

 From node to itself we refer (-----), because in road networks we do not have a

weight from point to itself.

 Register the weight between nodes according to others.

 Use (∞) sign if we do not have a direct path.

 Use black block to refer this node as visited.

We can use Table 1 to implement the algorithm: so the visited node column refers to

which nodes was visited, current node column refer which node we can use now, and

other column refer to the nodes:

Table 1 Implementation Dijkstra algorithm

Visited node
Current

node
A B C D E F G H

A A ----- 5,A ∞ ∞ 9,A ∞ 8,A ∞

A,B B ----- 17,B 20,B 9,A ∞ 8,A ∞

A,B,G G 15,G 20,B 9,A 14,G ----- ∞

A,B,G,E E 15,G 20,B ----- 13,E ∞

A,B,G,E,F F 14,F 20,B ----- 26,F

A,B,G,E,F,C C ----- 17,C 25,C

A,B,G,E,F,C,D D ----- 25,C

A,B,G,E,F,C,D,H H -----

Then by using the Table 1, we can find the shortest path by choosing the least value

for the node column, and find the path by tracing the shortest of those valuesand the

node related to it, Table 2 represent path and shortest path between A to all nodes.

21

Figure 16 Routes to covered all nodes

Table 2 Shortest path and path from node A to all nodes

From node A to node A:

Shortest path = 0

Path = A

From node A to node B:

Shortest path = 5

Path = A,B

From node A to node C:

Shortest path = 14

Path = A,E,F,C

From node A to node D:

Shortest path = 17

Path = A,E,F,C,D

From node A to node E:

Shortest path = 9

Path = A,E

From node A to node F:

Shortest path = 13

Path = A,E,F

From node A to node G:

Shortest path = 8

Path = A,G

From node A to node H:

Shortest path = 25

Path = A,E,F,C,H

By using the previous results we can find the routes to cover all nodes as shown in

Figure 16.

A

D B

C

E H

F

G

5

15

12

9

3
4

8

9

5

6

4

20

13

1

7

11

21

2.5 Geographic Information System (GIS)

What is GIS?

Geographic Information System (GIS) is an integrated system of hardware, software

and data which can be dealing with geographically referenced information such as

capture, manage, analyze and display this information [19] [20].

We can use GIS to understand, analyze and visualize all information in several ways

to discover the relationships, patterns, and trends in the maps. In addition, it is used to

solve all problems related with geographically information.

Components of GIS

From the above definition we can divide the GIS components in [20]:

 Hardware: are all computer physical devices which connecting as a system to

used operating the GIS such as computer servers.

 Software: Are all functions and operations in computer systems which used

to store, analyze, and display geographic information. the following represent

some key software components:

• Database management system (DBMS).

• Input and manipulation tools.

• Tools that support geographic query, analysis, and visualization.

• Graphical user interface (GUI) which used to easy to use software.

 Data: is one of the most important components in GIS. This data consist of

geographical features and their attribute information.

Digitizing the data is an operation used to enter this data to the GIS system, by

digitally encoding geographic features such as building, roads or country

boundaries.

 People: people represent all technical specialists working in this system as

well as end users who used this technology.

 Method: it is a unique system plans which consider to modeling and

operating the GIS system.

22

GIS data: GIS Systems work with many different types of data [20]:

1. Spatial data: All data which related with geographic earth or spatial

component called spatial data. We can dealing with these data by using GIS,

We can classify the spatial data into:

 Vector data: in this type, the data are stored as a series of X, Y coordinate

pairs inside the computer's memory. Vector data provide a way to represent

real world features in GIS application; in the following Figure we can see

houses, trees, rivers, and roads. All of them are features and we can represent

it in GIS application. Vector features have attributes which describe them, for

example we describe the weight of the roads. Vector data have geometry,

which defines the position and the shape of this feature. In vector data we

have three types of geometry called points, polylines, and polygons, (Figure

17).

Figure 17 Geometry types

Line

Polygons

Point

23

 Raster data represented as a grid matrix , i.e. consist of series of rows and

columns, and we can store the information in matrix cells, such as road

number.

2. Non-spatial data: are all data which not have any related to the location,

these data can recognize as a simple form, and also called attribute data.

However, we can use linked these data to the GIS features by using a unique

identifier. Such as, attributes of bus stops include its station no., line no., line

name, etc. (Figure 18).

Figure 18 Non-spatial data for bus sops

24

2.6 Literature Review

In [21], the authors present their work in China. They report on the traffic

consultation system of Guangzhou designed by an algorithm to find N shortest paths

successfully and they analyze the complexity of the system.

In this paper the authors discuss the issue of consultation system. The users always

need a good choice for decision-making (shortest path is one of the best choices in

public transport). In addition, these users need an alternative choice to get more

flexibility in decision-making (more paths to the destination). The authors found

more than one path to reach to destination point which is called as "N shortest path

problem". The researcher see the authors thinking to find more than one shortest path

to support the consultation system, and based on this idea, we aims to find more than

one bus stop locations to solve problem 3 which will be explain in section 2.7.

Fuhao and Jiping [22] present a new algorithm based on the topological relation of

the vector data to meet the network analysis for huge data in practice. Firstly, the

authors present the principle of Dijkstra algorithm, then propose an improved shortest

path algorithm. Finally, they present the disadvantages of using Dijkstra algorithm.

They present the problem that comes with huge data: this huge datasets of numerous

are used to present the adjacent and distance matrices. It means that if we have a lot

of nodes, then we will need a lot of memory capacity in the implementation.

This algorithm helps the authors to use the connections between the arcs to save

memory and avoid the correlation matrix. in addition, by applying it to the network

with huge nodes, helps them to support the network analysis of numerous maps after

the pre-processing phase.

Conventional forecasting transit demand requires detailed data such as dwelling unit

and census blocks [23]. Huang et al. studied transit demand forecasting using GIS-

based accessibility modeling approach which is based on a distance decay concept.

The process of accessibility method implementation is given in details in Figure 19.

25

Figure 19 An example on accessibility method implementation steps [23]

This GIS process is tested on Wuhan in 2009, a city in China with over 4.5 million

residents. The bus trip routes were drawn based on two models: negative exponential

model and negative logistic model. The study showed that both models

underestimated the bus transit share by comparing them with transit survey for

Wuhan in 1993. In this paper, it was concluded that using one accessibility model to

model the transit production is not suitable for large cities due to the population

complexity.

Ma et al., [24], conducted a study to create an areal model for the city of

Nanjing/China. In their study, MapInfo was used to create the topological road

network of the city. The shortest paths were computed using Floyd algorithm.

Accessibility factor planar distribution model is created for the entire region. This

model was crucial to conduct a regional accessibility analysis that has an impact on

the transportation systems and urban planning. The authors claim that if the

accessibility factor planar distribution model of the whole region is established, then

it would be suitable to use for any area to choose. Finally, they can make a further

expand in their model by: taking into account the complexity of the city’s

transportation system, and using other indicators of the accessibility such as time

index.

26

In an earlier work [25], Benjamin claim that shortest path can often be used as a

benchmark or a starting point for solving more complicated problems in

transportation analyses. About 10 years ago he submitted a useful paper for

researchers and practitioners in transportation, GIS, operations research and

management science. This paper identified three shortest path algorithms on a real

road network. The transportation analysis concerning large geographic regions has

done in real time, then it need a high performance shortest path algorithms that run

faster in real time network.

Hala and Ossman use the GIS tools to develop a least-cost path to link three cities in

Sinai peninsula in Egypt [26]. They model three visions: an engineering vision,

environment vision and hybrid vision, and finally use the definite software

multicriteria evaluation to compare these visions and recommend using the hybrid

vision model to develop a least-cost path. They concluded in their study to use the

GIS and shortest path algorithm in the early planning system. It proves to be well

suited, economic and time-saving for a sustainable corridor location design. The

advantage of their study is to avoid many location problems such as sand dunes,

faults, high slopes and zones of ecological or cultural values, in addition, the ability

of the technique to provide several alternatives and to compare such alternatives is a

benefit for designers.

In [27], Alazab et al. studied the traffic system in Zarqa city in Jordan; they proposed

an optimal transportation routing algorithm to cater the dynamic changes in the traffic

flow, and solve a routing problem in a stochastic transportation network. The authors

use a systematic approach to use it in their implement the proposed algorithm for an

efficient road transportation routing system integrated within a GIS to provide real-

time traffic flow information. In their study, they considered a stochastic shortest path

problem on a road network, which is composed of links with nonstationary travel

times where subsets of these links are observed for traffic flow in real-time with the

aid of GIS. An assumption was made that each observed link can be in either in a

congested or uncongested state based on the travel time distribution used in their

algorithm. “The authors concluded that real-time traffic information from GIS

incorporated within an interactive Web application can significantly reduce expected

27

total costs, vehicle usage and driver productivity during times of heavy congestion. In

addition the use of good implementation attributes such as network representation,

node labeling method, selection rules and data structures have also facilitated in

developing a real-time performance algorithm within a web-based application” [27].

Al-Mumaiz [28] did a thorough study on the city of Al-Ramadi in Iraq to find the

shortest time between predefined zones through a GIS network analysis. The work

was done by creating 5 zones in the city of Al-Ramadi, then trying to find the shortest

distances between the centers of these zones. An Origon-destination matrix was

presented in this study which includes the trips within the city.

In [29], Sahar and Moosavi were to modify the cross-entropy (CE) algorithm to find

high quality solutions and fairly quickly for shortest path problem the shortest path in

static network.

In [30], Al-Joboory et al. employed GIS to select optimum road path between two

cities depending on the facility of ArcView software with its extensions of spatial

analysis and 3D analysis to solve the problem. The authors reported that GIS is used

to give the geometric design that contains types of curves and the geographic

coordinates necessary to set out the optimum road, as well as to select the optimum

path.

Kadry, Abdallah, and Joumaa [31] modified Dijkstra algorithm to reduce the

iterations used in the traditional algorithm. The main idea in this research was to deal

with the second stage of the traditional version of this algorithm where the shortest

routes from a node to its successors are many and to reduce the number of iterations.

The results showed that iteration can be reduced by 37% of the traditional way.

Critical path method (CPM) is a project management technique containing a sequence

of scheduled activities that analyze the projects and in addition determines the

duration of a project plan or an iteration plan [32]. Shankar and Sireesha presented a

new approach to determine a CPM network by using Dijkstra algorithms [33]. They

showed the applicability to use Dijkstra to find a CPM, and easily applied to more

complicated application in network analysis. They modified this algorithm by using a

forward pass algorithm to calculate the earliest time (Ei 's), a backward pass

28

algorithm to calculate the latest time (Lj 's), the slack time (Tij's) by using the

following formula.

Tij = Lj-Ei -tij for each activity using the activity times tij.

The researcher found the effectiveness the Dijkstra algorithm for several applications

in network analysis, and this is the main reason to use that algorithm. This is an

example to show the variety of Dijkstra algorithms.

In Beijing, the public transportation system faced multiple choice routes problem,

because the bus lines become smooth and convenient, and reached more than 800

lines. Besides there are many complex algorithms used to solve a shortest path

problem. On these bases, Yong and Hongping [34] used the relationship of shortest

path algorithms, direct matrix, and transfer matrix to develop a mathematical model,

for improvement. The new method reduces the complexity of the algorithm, then

stores the sparse matrix used in the calculation in the nonzero elements in order to

save storage space, reduce cycle times, and improve set operation thoughts in the line

of the query operation. These speeds are up the operations and check out the path in

less than 20 seconds. As can be seen, this paper main focus is to reduce the

implementation time, and the memory space needed. Based on these, we aimed to

compare all these features in terms of applicability in Iraq, as we explain more in

section 4.3.

Tracking mass transport vehicles via mobile devices is not a new technology.

Examples include Bus-Net [35], a mobile application open to public use in Japan.

However, the system cannot bear the increasing expectations of the public, especially

children of school age and senior citizens. For example, the system cannot update

arrival times to the bus stops when there is a change in the service, such as a delay.

To avoid such misinformation, a new update is proposed to be patched to Bus-Net;

the vehicles are now equipped with GPS devices and send real-time spatial

information to Bus-Net. Furthermore, the mathematical model has been updated. It

demanded the smart phones to develop this system by using the GPS function and an

algorithm to estimate the delay of the bus based on location information. This is

instead of setting up telecommunication equipment on bus stops, which needs a

29

higher investment. The new system describes the bus location system, estimates the

bus delay, and effectiveness of the bus location system.

From this paper we can observe the effectiveness of information technology and the

modern techniques in developing the transportation system and assist in reducing the

time and cost.

The travelling needs and human habits during travel, in addition to the features

obtained from the public transport networks which differ from other non-public

networks are important factors to success and promote public transport systems. The

obstacles faced by public transport systems such as traffic congestion and the cost of

unexpected transportation are the most important impediments to networks

transportation. Yuewen and Zhong [36] combined factors of Shanghai residents on

travel habits, and verified and analyzed the constraints of passengers travel decision-

making factors. Through comparative analysis, based on the ISM (interpretive

structural modeling) analysis method [37], they could effectively analyze the

psychology and the principle of optimal choice of traveling passengers. They use the

time cost for waiting and transportation by bus and walking, fee paid for the

transportation, and the distention for all points as factors. Then, they represented the

basic binary relations or the direct connection between these factors in a matrix called

"adjacency matrix". They employed this matrix to create a new matrix called

"reachability" to show the transitive binary relations between the systematic elements

or any reachable path between two nodes. After that, they classified the reachability

matrix elements into reachability set (collection of all the reachable elements),

common set (common parts of both reachability set), and advanced set (intersection

between reachability and common sets), and divided the structure obtained it into

several layers of factors.

In [36], we observed that the travel cost was one of the important factors to verify and

analyze the constraints of passengers travel decision-making factors. In addition, the

complexities of public transport network in many cities (such as Qingdao, Wuhan,

Hangzhou, etc.) have homonymous stops at different places, and some of them are far

away from each other. In those years, Li et al. [38] presented a paper to find the Least

Transfer Cost Model (LTCM) for optimizing public transport travel routes. They

31

classified the homonymous stops into up-down stops, neighbor stops, and different

stops with same name. In addition, they classified the bus stops into transfer at the

same stop (TSS - has the least cost as travelers do not need to walk when they change

buses), transfer between a pair of up-down stop (TUS - has a little more cost as

travelers and should have a short walk), and transfer between a pair of neighbor stops

(TNS) based on the place where the transfer happens, public transport transfers

between homonymous stops (Figure 20). “They proposed to measure the convenience

of different types of transfers. LTCM is on the basis of least-transfer optimal travel

route model, and transfer cost is supposed to be another standard to find out which

route is better. When two or more routes have the same transfer time, choose the

least transfer cost route to be the optimal travel route”. Compared with other least-

transfer optimal travel route models, LTCM can not only choose the optimal travel

route without GPS information however also can identify homonymous stops. Thus

LTCM can be used in public transport network based on both geography and path-

stop relationship” [38].

Figure 20 Homonymous stops and different types of public transport

In [39] Martinez et al. proposed and tested a new formulation to determine the time

interval between subsequent busses for small and large scale transportation systems.

The new method is called Mixed Integer Linear Programming (MILP). The method

was tested on 13 line and 130 line transportation systems (real test case on

Montevideo-Uruguay). The researchers have also proposed a metaheuristic approach,

31

which is a high level procedure to provide solution for optimization problems; this

approach is based on Tabu Search for solving frequency optimization problems for

large systems, with more than 100 lines.

Martinez et al showed that even for small size transportation systems, improvement is

possible by reporting a 3% system improvement using their model for a case with 13

lines.

Shortest path algorithms used to find paths between physical locations, in addition

have several applications such as crack detection, and road or linear feature extraction

in images. There are applications where the starting and ending positions of the

shortest path need to be constrained; then Sun and Pallottino [40] presented new

modern algorithm for the extraction of a circular shortest path (CSP) in an image such

that the starting and ending positions coincide. These algorithms are:

1. Multiple search algorithms.

2. Image patching algorithm.

3. Multiple backtracking algorithms (MBTA).

4. The combination of image patching and multiple back-tracking algorithms.

5. Approximate algorithm.

After that, the authors compared these algorithms, and concluded that the image

patching algorithm is faster although a solution is not guaranteed. The MBTA is also

fast and guaranteed to a circular path, however may not be the optimal one. The

combination of image patching algorithm and the MBTA achieves a much higher

probability and speed in finding the optimum CSP.

Hadas et al. [41] studied the public transit system with respect to attributes related to

the connectivity and coordination. They developed a model to calculate transit

connectivity measures based on time and transfer quality. They used three sources of

information in their model:

a) Google transit.

b) Local-transport agency.

c) GIS-based road network.

Their analysis was based on three main attributes; the type of transfers made, waiting

time and walking time. The researchers applied their model in Auckland city and

32

North Shore city in New Zealand and compared the outputs from both cities. Using

their model, they concluded that the Auckland’s trips are shorter however the quality

of the North Shore city transfer is better.

2.7 Problems

The problems covered in this thesis are as follows:

1. Calculating the shortest path between origin and destination.

In section 3.2 step 3, the researcher used an application of his development in C++ to

calculate the shortest path between the origin and destination points based on Dijkstra

algorithm.

2. Detecting the source and destination points.

For the path to be drawn, the user should determine the starting point (origin) and

final point (destination) for routing. If the origin and destination points are bus stops,

then we can directly use the bus stop information, as shown on Figure 21.

Figure 21 Source and destination points as bus stops

33

However, in general the origin and destination can be any point on the map; in such a

case, the researcher should identify nearest bus stop to origin and destination points

(Figure 22). Then the researcher used the MapBasic to write a code to detect the

origin and destination points, section 3.2 steps 1 and 2.

Figure 22 Destination and source are free points

34

3. There is no direct path from origin and destination points

Figure 23 Destination, source points and the path

In Figure 23, the origin is shown as a square point and the destination as a circle point

while the arrow shows the path. Here, the origin point does not have a direct

connection to the destination point.

Another case is shown on Figure 23, where the origin is a square point and the

destination is a triangle point, and arrow line is a path. In this case the distance

between origin and destination is quite long.

These cases represent long paths to reach to the destination. The researcher solved

these problems in section 3.2 steps 1 and 2.

35

4. Connections among bus stops.

An important issue in transport system is to make connections among the bus stops.

Such connections are based on the type of transportation by bus or on foot as seen on

Figure 24.

Figure 24 Connections among bus stops

In Figure 24, if we want to go from circle point to square point, we need to use line

no 212 to the central lines stops, then take another line called 105-1. This caused the

largest path and in addition the longest time. The same case appears when we want to

go from square point to triangle point.

The researcher solved this problem in section 3.1.

36

5. Dealing with huge data

The transportation systems have huge datasets to represent bus stops, addresses,

destinations, transmit type, etc.; hence manipulation such as calculating shortest path

requires handling huge data; the researcher has faced this problem while reading and

processing in C++. The problem is solved as shown in section 3.2 step 3.

6. Extract the result

In section 3.2 step 4, the researcher use MapBasic to extract the shortest path between

origin and destinations.

37

CHAPTER III

3. SAMPLE APPLICATION OF MASS TRANSPORT SYSTEM IN

ANKARA

This chapter addresses the problems presented in chapter 2.

3.1 Data Analyses

In this part, we present analyses of the data obtained from Başarsoft company. This

analysis helps to solve problem 4 given in section 2.7. The idea to analyze these

datasets is to investigate potential relationships among all the bus stops based on their

proximities by the type of transportation bus or walk (Figure 25).

Figure 25 Bus stops relationship by walking

38

When we want to go from the circle point to the square point we have more than one

option:

First option: to use only the bus route. In this cases, if we do not have a direct path

from origin to destination, or the origin and destination are not on the same line then

we approximately we have a long path to reach to the destination

Second option: we can create walk relations between bus stops with a specific length.

These relations help us to convert the bus line, and helps in the above example to

convert the line 212 to line 105-1.

In the same time we can use these walk relationships if we want to go from the square

point to the triangle point

The bus stop relationships by walking can be made in two ways:

1. By MapInfo Nearest Function

From File menu select New Table or Ctrl+N from keyboard. After that detect Add

to Current Mapper from New Table box, and press Create, Figure 26.

Figure 26 Create new table and add to the current mapper

39

After that, the Modify table Structure text box is shown. In this text box, we

can add any field we want form the table. In addition we can give it a name

and classify the type of field, Figure 27.

Figure 27 Modify Table Structure text box

After we create the table and fields, we use the Nearest statement function to

create the relationship [42].

After that, we open the MapBasic window from Option menu (Figure 28), and

write a code to make a query to achieve the relationship by walking. By

running this code, we can detect the walking distance by meters.

41

Figure 28 Open MapBasic window from MapInfo

We need a "FromTable" name and "To" table name, so we make a query to

have a copy of the Table. So we saved ank_stops as AnkStopsCopy,

respectively. Figure 29 shows the implementation query, it take 11 second to

finish by using a personal computer with processor Intel(R) Core™ i3-2310

CPU @ 2.10 GHz, 8.00 RAM, and 64-bit Windows 7 Home Premium.

Then we write the code as follows:

Figure 29 Query implementation to achieve the relationship by walking

Nearest 5 From table ank_stops To AnkStopsCopy into StationRelation

ignore max 500 units "m" Data FromStationNo=ank_stops.stationno,

ToStationNo=AnkStopsCopy.Stationno, typeofTransport"=Walk",

Frombuslane=ank_stops.hatno,tobuslane=ankstopscopy.hatno

41

A necessary step to update the distances is that we choose Update Column

from Table menu, figures 30, 31 and 32 respectively.

Figure 30 Choose Update Column structure

Figure 31 Requirement to update

Figure 32 Update Column text box

42

In Figure 33 we can see the relationship table, and figures 34, 35 shows the

relationships as layers.

Figure 33 Relationship table

Figure 34 Represent relationship as a layer

43

Figure 35 Another relationship as a layer

2. We create circles around BusStops and generate SQL intersection Query.

Choose Buffer from Table menu (Figure 36).

Figure 36 Choose Buffer from Table menu

44

Select the object and store the result in new table (Figure 37).

Figure 37 Detect buffer object and store the result

We complete the requirements by creating a new table and saving it as shown

on figures 38, 39.

Figure 38 Creating new table

45

Figure 39 Complete creating the new table

After that, we must detect the buffer criteria to complete this query, such as

the value to present the walking distance and the unit, in addition to choose

one buffer for each object (Figure 40).

46

Figure 40 Detect the buffer criteria

Complete the data aggregation as follows (Figure 41).

Figure 41 Data aggregation

47

Finally, we must to complete the SQL required to complete the query (Figure

42).

Figure 42 SQL Select text box

SELECT

ank_stops.StationNo "FromStationNo",

AnkStopsCircle.StationNo "toStationNo",

Distance(centroidx(ank_stops.obj),centroidy(ank_stops.obj),

centroidx(AnkStopsCircle.obj) ,

centroidy(AnkStopsCircle.obj),"m") "Distance_m","Walk"

"type", ank_stops.HatNo "FromBusLane",

AnkStopsCircle.HatNo "toBusLane"

FROM

ank_stops, AnkStopsCircle

WHERE

ank_stops.Obj Within AnkStopsCircle.Obj

48

The result of buffering is represented as a layer on figures 43, 44 respectively.

Figure 43 Buffer table layer

49

Figure 44 Buffer table result

This table can be saved as a text file to be used as main dataset in C++

application.

3.2 Implementation and Addressing the Problems

In this part, we divide the implementation into 4 steps to address the problems which

listed in section 2.7. Firstly, we use the MapBasic to write a code to create a button

pad called SetBusStops (Figure 45).

51

Figure 45 SetBusStops button pad

This pad contains 4 buttons appointed to the implementation steps:

1- SetStartBusStop sub-routine.

2- SetEndBusStop sub-routine.

3- calcstations sub-routine.

4- showfastestandlongest sub-routine

Create Buttonpad "SetBusStops" as

 ToolButton Calling SetStartBusStop icon 116

 ToolButton Calling SetendBusStop icon 103

 PushButton Calling calcstations

 PushButton Calling showfastestandlongest

n=10 'No Of Nearest Bus Stops

 pa=ApplicationDirectory$()

 if right$(pa,1) <> "\" then pa = pa + "\" end if

1 2 3 4

51

1- This step is used to detect the nearest bus stop to the start point, and used with

step 2 to solve problems 2 and 3 in section 2.7.

Our approach to solve the problem 3 is to find several nearby bus stops to the

start and end points when we implement the step 2 (Figure 46).

Figure 46 Several nearest bus stop

The support of this approach is as follows:

In Figure 23, if we want to go from square point to

circle point, we spend a large path to reach, in

addition spend long time, because we do not have a

direct path to the destination. However, in case we

have more than one nearest bus stops, we can

choose another bus stop which has a direct path to

the destination. In Figure 47, we do not use the

nearest bus stop, we use bus stop on the opposite

side, because it has a direct path to the destination.

 Figure 47 Choose another nearest bus stop

52

Example:

Figure 48 shows a captured aerial view from Google map [43]. If we want to go from

the square point toward circle point, we do not use the nearest bus stop, we use bus

stop on the opposite side of the road.

Figure 48 Example for choose a bus stop

The researcher wrote a MapBasic code to detect the source and destination point and

to find 10 nearest bus stops for source and destination.

To create new MapBasic files choose new from the File menu.

We push on the first button to call the SetStartBusStop sub routine, to detect

the start point. The following code bellow shows SetStartBusStop sub routine.

Sub SetStartBusStop

 x= Commandinfo(1)

 y= Commandinfo(2)

 t = "NearestStationsStart"

 call FindNearestBusStop

End sub

53

As we see in the code above, we call FindNearestBusStop sub routine to find the

nearest 10 bus stops to the start point. Figure 49 shows the icon pad.

Figure 49 Push first button

54

The following code bellow shows FindNearestBusStop sub routine.

As the result of this step, NearestStationsStart.txt is created (Figure 50). This text file

stores the nearest bus stops in the first column and the distance to the start point in the

second column (Figure 51).

Figure 50 NearestStationStart text file

Sub FindNearestBusStop

 oobj= Createpoint(x,y)

 delete from t

 commit table t

 pack table t

Nearest 10 From variable Oobj To ank_stops Into t Data col1=col1

 Update t set Distance_m = Objectlen(obj,"m")'

Distance(centroidx(obj),centroidy(obj),x,y,"m")

 p=Tableinfo(t,19)

 if right$(p,3) = "tab" then p = left$(p,len(p)-3) + "txt" end if

print p + t + ".txt"

Export t Into p Type "ASCII" Overwrite CharSet "WindowsTurkish"

end sub

55

Figure 51 Content of NearestStationStart text file

2- The second step triggered with the F icon, is to detect the nearest bus stop to

destination point (problem 2 in section 2.7), and to find several nearest bus stops

to the destination point (problem 3 in section 2.7).

When we push on the second button we call the SetEndBusStop sub

routine to detect the end point.

The following code bellow shows SetEndBusStop sub routine.

10 nearest

bus stop to

the start

point

Distance to

bus stop by

meter

Sub SetEndBusStop

 x= Commandinfo(1)

 y= Commandinfo(2)

 t = "NearestStationsFinal"

 call FindNearestBusStop

End sub

56

Again we can see the code invoking FindNearestBusStop sub routine, to find 10

nearest bus stops to the end point (destination). Figure 52 shows implement step

2.

Figure 52 Push second button

The result for this step is a text file, NearestStationsFinal.txt shows on the Figure 53.

This text file contains two columns, to represent the nearest bus stops to destination

point and the distances to the final point (Figure 54).

57

Figure 53 NearestStationFinal text file

Figure 54 Content of NearestStationFinal text file

10 nearest

bus stop to

the final

point

Distance to

bus stop by

meter

58

3- This step is to find the shortest paths between source and destination (problem 1

in section 2.7). In addition we solve the problem 5 in section 2.7 by using specific

function. This step starts when we press the first start icon, and call the

calcstations sub routine.

In MapBasic code above we can see invoking the dijkstra,exe file.

To create a new project in C++ go to file menu and choose new>project. After

that choose windows application to create standard windows application, or we

can choose Console Application as shown on Figure 55.

sub calcstations

call closefinalfile

if fileexists(pa+"FinalResult.txt") then kill pa + "FinalResult.txt" end if

if fileexists(pa+"NearestStationsStart.txt") and

fileexists(pa+"NearestStationsFinal.txt") then

run program pa + "dijkstra.exe"

end if

end sub

59

Figure 55 Create new project and choose windows application

Firstly, we approach the problem 5 given in section 2.7 by using <sstream>

library and (ifstream) instructions to read data from text file.

We generate two dimensional arrays, called MasterFile to save all data read

from the file BusStopDistance.txt. The MasterFile array contains 6 columns:

Column 1: Source bus stop.

Column 2: Destination bus stop

Column 3: Distance between source and destination bus stop.

Column 4: Transport type (Bus/Walk).

Column 5: Bus line.

Column 6: Time needed to reach from source to destination. The values in this

column are calculated based on the transportation type.

61

The followed code below, shows how can be read from text file.

// Read From Text File (FromS=Source station, ToS=Destination station,

Dis=Distance, BR1=Bus line, Ty=Transit Type)

 int FromS,ToS,Dis,BR1;

 string Ty;

 double MasterFile[n][6];

 ifstream Read("BusStopDistance.txt");

 if (Read.is_open()) {

 for(i=0;i<n;i++) {

 Read >> FromS;

 Read >> ToS;

 Read >> Dis;

 Read >> Ty;

 Read >> BR1;

 MasterFile[i][0]=FromS;

 MasterFile[i][1]=ToS;

 MasterFile[i][2]=Dis;

if (Ty=="Walk") {

MasterFile[i][3]=1;MasterFile[i][5]=MasterFile[i]

[2]/4/1000*3600; }

else {

MasterFile[i][3]=2;MasterFile[i][5]=MasterFile[i]

[2]/30/1000*3600;}

 if (MasterFile[i][5]==0) MasterFile[i][5]=1;

 MasterFile[i][4]=BR1;

 }

 }

 Read.close();

// End to Read From Text File

61

After we detect the number of bus stops, we store it in BusStopDistance.txt as a one

dimensional array called BusStops. It is sorted in ascending order.

// Detect Number Of BusStop (BN=Number of bus stops)

 short BusStop[n]; bool Flag;

 for(i=0;i<n;i++) BusStop[i]=0;

 int BN=0;

 for (i=0;i<n;i++){

 Flag=true;

 for (j=0;j<n;j++){

 if (MasterFile[i][0]==BusStop[j]) { Flag=false; break; }

 }

 if (Flag) { BusStop[BN]=MasterFile[i][0]; BN=BN+1; }

 }

 for (i=0;i<n;i++){

 Flag=true;

 for (j=0;j<n;j++){

 if (MasterFile[i][1]==BusStop[j]) { Flag=false; break; }

 }

 if (Flag) { BusStop[BN]=MasterFile[i][1]; BN=BN+1; }

 }

 // Arrange BusStop Array

 int R;

 for(i=0;i<BN-1;i++)

 for(j=i;j<BN;j++)

 if(BusStop[i]>BusStop[j]){

 R=BusStop[i];

 BusStop[i]=BusStop[j];

 BusStop[j]=R;

 }

 // End Arrangement

// End Detect Number Of BusStop

62

After that we create a bus stop distance array (BusStopDis) to be computed through

Dijkstra algorithm as explained in section 2.4.

Following is the C++ code to create BusStopDis array.

// Create BusStopDistance

 short BusStopDis[BN][BN];

 for(i=0;i<BN;i++)

 for(j=0;j<BN;j++) BusStopDis[i][j]=29999;

 int Pi=0,Pj=0;

 for(i=0;i<n;i++)

 {

 for(j=0;j<BN;j++)

 {

 BusStopDis[j][j]=20000;

 if (MasterFile[i][0]==BusStop[j]) Pi=j;

 if (MasterFile[i][1]==BusStop[j]) Pj=j ;

 }

 BusStopDis[Pi][Pj]=MasterFile[i][2];

 }

// End BusStop Distance

63

Use the ofstream instructions to create text file called FinalResults.txt. This file is

used to save the implementation results.

As following as below shows the C++ code for creating FinalResult.txt.

Figure 56 shows FinalResult.txt file.

Figure 56 FinalResult text file

Source bus

stop

Destination

bus stop

Distance from

source to

destination by

meter

Path between

source and

destination

ofstream Write("FinalResult.txt",ios::app);

 if(Write.is_open()){

 Write<<SA[Mi][0]<<"\t";

 Write<<FA[Mj][0]<<"\t";

 Write<<ExportArray[Mi][Mj]+SA[Mi][1]+FA[Mi][1]<<"\t";

 for (int jj=0;jj<BN;jj++){

 if(sta[jj]==9999) continue;

 Write<<sta[jj]<<",";

 }

 Write<<"\n";

 }

 Write.close();

64

Figure 57 shows the third button to run the C++ project. By using a personal

computer with processor Intel(R) Core™ i3-2310 CPU @ 2.10 GHz, 8.00 RAM, and

64-bit Windows 7 Home Premium. We can see the command screen appearing 3

seconds to run C++ project, and disappear.

Figure 57 Push Third button in SetBuStops pad

4- The fourth step start when we press icon. It helps to solve problem 6 which

listed in section 2.7. We use the FinalResult.txt to find the shortest and longest

paths by using a MapBasic sub-routine, showfastestandlongest.

Basically, we choose the less value in column 3 to represent the shortest path

between the source and destination bus stops, and choose the largest value to

represent the long path.

65

sub showfastestandlongest

dim s as string

call closefinalfile

if not fileexists(pa+"FinalResult.txt") then note "File " + pa + "FinalResult.txt

not found" exit sub end if

Register Table pa+"FinalResult.txt" TYPE ASCII Delimiter 9 Charset

"WindowsArabic" Into pa+"FinalResult.TAB"

Open Table pa+"FinalResult.TAB" Interactive

select * from FinalResult order by _COL3 into selsort

fetch first from selsort

s=selsort.col4

run command "Select * from ank_stops where StationNo=any("+left$(s,len(s)-1)

+") into ShortestRoute noselect"

fetch last from selsort

s=selsort.col4

run command "Select * from ank_stops where StationNo=any("+left$(s,len(s)-1)

+") into LongestRoute noselect"

if numwindows() =0 then map from ank_stops end if

if windowinfo(frontwindow(),3) <>1 then map from ank_stops end if

Add Map Auto Layer LongestRoute

Set Map Layer 1 Display Global Global Symbol (33,16711680,12)

Add Map Auto Layer ShortestRoute

Set Map Layer 1 Display Global Global Symbol (34,65280,12)

end sub

66

Figure 58 below shows the shortest path calculated.

Figure 58 Shortest path

Figure 59 below shows the longest path calculated.

Figure 59 Longest path

67

CHAPTER IV

4. CONCLUSION

As we showed in our literature survey in section 2.6 and case study about Ankara

transportation in chapter 3, there are underlined potential problems in the

implementation, and we tried to address and proposed solution for them.

In this chapter, we present the findings and associated limitations of this study; the

chapter also includes follow-up future studies.

Finally, we present the conclusion for this thesis to address the research question.

4.1 Findings and Results

Results that appeared in chapter 3 are not limited to the research questions listed in

chapter 1; hence, there are additional results that appeared for future studies.

The following list contains what we can do with our datasets:

1. Successful study of Ankara as a case. In chapter 1, we presented the

transportation system in Baghdad and Ankara and saw the similarities that

enable us to use Ankara’s transportation system as a sample dataset.

2. Clean and up to date datasets need to be collected in order to start planning

mass transport system. Primary datasets should be spatial and nonspatial

datasets of residential, commercial and industrial areas, roads, traffic

limitation such as peak hours and demographic datasets including population

density.

68

3. The literature review in section 2.6 showed that GIS can be employed in

developing a transportation system in many countries and graph theory can be

used to solve the major problem in transport field called “the shortest path

problem” by using several algorithms. We used Dijkstra algorithm in this

thesis to find more than one possible shortest path. In addition, literature

shows several software such as ArcView as a GIS software and use other

programming languages such as Java. In this thesis, we successfully used

MapInfo with C++ program language for our data and obtained plausible

results.

4. Addressing potential problems. In section 2.7, we show the potential problems

in implementation. These problems are related to dealing with sample dataset.

Thus, in chapter 3, we showed how to analyze these data and how to solve

these problems.

5. Successful use of Dijkstra algorithm. We were successful in using the Dijkstra

algorithm to find alternative shortest paths and showed the differences

between shortest and longest paths.

4.2 Limitations

In this thesis we considered following limitations:

1- Choosing Ankara as a case study: there are several reasons for choosing

Ankara. First, the researcher is currently studying and living in Ankara.

Second, as we showed in section 1.2, Ankara has similarities with Baghdad

such as topography of both cities’ central parts are quite flat, there is a variety

of transport systems and both places are populated center. However, the most

important reason is that The Electricity, Gas and Bus General Directorate

(EGO) uses the modern techniques such as GIS to develop Ankara’s transport

system. Additionally, Baghdad does not have any rail transport system and

69

Ankara does not have any water transport system. The sample data used in

this thesis are just for academic purposes and they are datasets of a limited

number of bus stations in Ankara; there is no guarantee they are up to date.

This limitation is related with finding 1.

2- We used straight lines to connect bus stops instead of real roads; for this

reason, the connections do not reflect real distances between bus stops which

limits findings 4 and 5. With this limitation, we have used vertex and node

terms interchangeably.

3- Findings 3 and 5 have the following limitations:

The software used: the availability of the software used by specialized experts

working in this field is a major reason for choosing it. In this thesis, the

researcher used MapInfo and MapBasic in the implementation assisted by the

expertise of Başarsoft company. In addition, the researcher has a background

in using C++ to write program codes for implementing the used algorithm.

The algorithms used: as can be seen in section 2.3, there are many algorithms

that can be used to find the shortest path, however the researcher has chosen

Dijkstra algorithm, because it used more frequently in the field, and the time

limitation of the research did not allow the researcher to apply more

algorithms.

4. While determining closest bus stops we have chosen to limit the alternatives

as five in step 3 in section 3.2. This number is a practically chosen number to

reduce running time of the application.

71

4.3 Future Studies

The importance of this thesis lies in the use of GIS as well as graph theory to solve

the shortest path problem in developing the public transport system. For this reason,

we think there are more research sectors to be done it in the future. Some of them are

as follow:

1- The major help this study is offering is a way to develop the transport system

in Iraq. In association with this, there are some required preparations in Iraq,

such as:

 Provide a comprehensive look for the world experiences in public

transport, to help the Iraqi chiefs to establish a plan to prepare all

requirements such as collecting the datasets for all old bus stations, and

thinking for their re-distribution based on the population distribution.

 Provide appropriate budget for buying the necessary hardware and

software.

 Establish programs for population readiness to use the modern

technologies through the establishment of public seminars and university

lectures, in addition to providing free workshops to use these applications.

As for the data, we must use legal issues to collect and use the datasets

which important for implementing any project in the government, and to

guarantee the gaining of result; so, the researcher must contact and share

with all government institutions in Iraq, which are working in the

country’s transport systems.

2- Finding 2 and limitation 2. When we want to build more realistic model and

simulation, polylines that overlay roads should be used instead of straight

lines between bus stops. In this case, the distinction between node and vertex

should be considered.

3- Related with findings 3 and 5 and limitation 3, the researcher can use another

GIS software such as gvSIG [44] and use Java language as well as another

71

algorithm such as Floyd-Warshall algorithm to solve the shortest path

problem to see differences in the results obtained in this thesis. The researcher

is also thinking to merge all shortest path algorithms to see the advantage of

any algorithm, and create a hybrid algorithm that can used to find the shortest

path in public transportation system.

4- In section 2.6 and related finding 4 and limitation 3, there are several studies

used to develop the public transport system, such as in [31] where the authors

reduced the iterations used in the traditional algorithm, and in [36] the authors

combined factors on travel habits to verify and analyze the constraining

factors the passengers faced in traveling decision-making; hence, the

researcher has to consider collecting the advantages of these studies and

implement them in the public transport system of Iraq.

5- To address the limitation 4, a further analysis can be done to optimize number

of alternative bus stops nearby. These analyses should include further

programming optimization to reduce resource consumption.

6- Another idea we are thinking about is taking into consideration the time

schedule for the buses and to find the earlier buses beside the shortest path.

7- Developing a web and mobile applications for end users to finding a shortest

path and make a stress test with many online users inquiring.

72

4.4 Conclusion

Using graph theory and specifically shortest path algorithm to solve shortest path

problems, requires clean datasets for reliable analysis results.

From this thesis, we learnt about mass transport systems not limited to the following

items but primarily:

 Required data for analyses

 How to survey potential problems

 Use of GIS along with the application tools to address these problems

About the research question:

Can Iraq authorities use graph theory and shortest path algorithm to build a system to

develop the public transit system including exchanging lines and walking, based on

the experiences of transport system in Turkey?

We believe the results obtained in our implementation support our hypothesis that

Iraq can restart designing transportation system by starting to address the issues

pointed in this thesis.

1R

REFERENCES

1. Maps of World Web Site, (2014), “Iraq Road Map”,

http://www.mapsofworld.com/iraq/road-map.html, (Data Download Date:

15.05.2014).

2. Al-mashhadani A. A., (2013), "Terminals in the History of Passenger Buses in

Baghdad", http://www.algardenia.com/tarfiya/menouats/6599-2013-09-29-09-

43-33.html, (Data Download Date: 12.03.2014).

3. http://www.pt-tm.gov.iq, (Data Download Date: 18.05.2014).

4. http://www.amanatbaghdad.gov.iq, (Data Download Date: 18.05.2014).

5. Central Statistical Organization-Ministry of Planning-Iraq, (2010), “Iraq's

Governorates by Area & Their Relative Share of Area & Population: 1997,

2009”, http://www.cosit.gov.iq/en/population-manpower-staatistics/life.

6. Mirza H. A., (2013), “The Development of Public Transport and Use of Clean

Fuel”, Citizen Newspaper-Iraq, 1418,

http://www.almowatennews.com/index.php/2013-04-19-21-25-43/1418-2013-

06-26-16-19-54.html, pp. 1-4.

7. Turkey Statistical Institute Web Site, (2014), “The Population of the

Metropolitan Municipalities and the Municipalities - 2013”,

http://rapor.tuik.gov.tr/reports/rwservlet?adnksdb2&ENVID=adnksdb2Env&rep

ort=wa_buyukbelediye.RDF&p_kod=1&p_yil=2013&p_dil=1&desformat=html,

(Data Download Date: 12.05.2014).

http://www.mapsofworld.com/iraq/road-map.html
http://www.algardenia.com/tarfiya/menouats/6599-2013-09-29-09-43-33.html
http://www.algardenia.com/tarfiya/menouats/6599-2013-09-29-09-43-33.html
http://www.pt-tm.gov.iq/
http://www.amanatbaghdad.gov.iq/
http://www.cosit.gov.iq/en/population-manpower-staatistics/life
http://www.almowatennews.com/index.php/2013-04-19-21-25-43/1418-2013-06-26-16-19-54.html
http://www.almowatennews.com/index.php/2013-04-19-21-25-43/1418-2013-06-26-16-19-54.html
http://rapor.tuik.gov.tr/reports/rwservlet?adnksdb2&ENVID=adnksdb2Env&report=wa_buyukbelediye.RDF&p_kod=1&p_yil=2013&p_dil=1&desformat=html
http://rapor.tuik.gov.tr/reports/rwservlet?adnksdb2&ENVID=adnksdb2Env&report=wa_buyukbelediye.RDF&p_kod=1&p_yil=2013&p_dil=1&desformat=html

2R

8. EGO Web Site, (2014), “Rail Systems”

http://www.ego.gov.tr/EN/newsreadEN.asp?id=3224, (Data Download Date:

14.05.2014).

9. http://www.mapinfo.com/, (Data Download Date: 15.10.2013)

10. http://www.bloodshed.net, (Data Download Date: 15.10.2012).

11. Kleinberg J., Tardos É., (2006), "Algorithm Design", Pearson Education Inc.,

pp. 73-78.

12. Liu L., (2011), "Data Model and Algorithms for Multimodal Route Planning

with Transportation Networks", Technische Universität München, pp. 9-13.

13. Cargal J. M., (1988), "Discrete Mathematics for Neophytes: Number Theory,

Probability, Algorithms, and Other Stuff”, chapter 9.

14. Sedgewick R., Wayne K., (2011), "Algorithms", 4
th

 Edition, Princeton

University, Pearson Education, Inc., pp. 638-651

15. Sanan S., Jain L., Kappor B., (2013), "Shortest Path Algorithm", International

Journal of Application or Innovation in Engineering & Management (IJAIEM),

Volume 2, Issue 7, ISSN 2319–4847, pp.316-320,

http://www.ijaiem.org/volume2issue7/IJAIEM-2013-07-23-079.pdf, (Data

Download Date: 25.12.2014).

16. Hoare T., (2003), "Edsger Wybe Dijkstra", Physics Today, pp. 96-98,

http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/3/10.1063/1.

1570789, (Data Download Date: 31.12.2013).

17. Jungnickel D., (2005), “Graphs, Networks and Algorithms”, 2
nd

 Edition,

Springer-Verlag Berlin Heidelberg, pp. 75-79.

http://www.ego.gov.tr/EN/newsreadEN.asp?id=3224
http://www.mapinfo.com/
http://www.bloodshed.net/
http://www.ijaiem.org/volume2issue7/IJAIEM-2013-07-23-079.pdf
http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/3/10.1063/1.1570789
http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/3/10.1063/1.1570789

3R

18. Ruohonen K., (2013), "Graph Theory", Translation by Janne Tamminen, Kung-

Chung Lee and Robert Piché, pp. 61-63.

19. ESRI Web Site, (2012), “What is GIS?”, pp. 6-30,

http://www.esri.com/~/media/Files/Pdfs/library/bestpractices/what-is-gis.pdf,

(Data Download Date: 15.03.2013).

20. Buckley D. J., (1990), "The GIS Primer: An Introduction to Geographical

Information Systems", Forestry Canada, pp. 14-25.

21. Chai D., Zhang D., (2001), "Algorithm and Its Application of N Shortest Paths

Problem", Institution of Space and Information Technology, Zhejiang

University, Hangzhou, Zhejiang, pp. 1-6.

22. Zhang F., Liu J., (2009), "An Algorithm of Shortest Path Based on Dijkstra for

Huge Data", Chinese Academy of Surveying and Mapping, Beijing, China,

International Conference on Fuzzy Systems, pp. 1-4.

23. Huang Z., Ding Y., Li J., (2009), "A GIS-based Accessibility Modeling Process

for Estimating Transit Travel Demand", School of Urban Design Wuhan

University Wuhan, China, pp. 1-4.

24. Ma J., Yu X., Chen G., Wang J., Pi Y., (2010), "Research on Urban

Accessibility Distribution Areal Model by Floyd Algorithm and Kriging

Interpolation", Department of Geographical Information Science, Nanjing

University, China, Geoinformatics, 18
th

 International Conference, pp. 1-4.

25. Zhan F. B., (1997), "Three Fastest Shortest Path Algorithms on Real Road

Networks: Data Structures and Procedures", Journal of Geographic Information

and Decision Analysis, pp. 69-82,

http://publish.uwo.ca/~jmalczew/gida_1/Zhan/Zhan.htm, (Data Download Date:

22.03.2014).

http://www.esri.com/~/media/Files/Pdfs/library/bestpractices/what-is-gis.pdf
http://publish.uwo.ca/~jmalczew/gida_1/Zhan/Zhan.htm

4R

26. Effat H. A., Hassan O. A., (2013), "Designing and Evaluation of Three

Alternatives Highway Routes Using the Analytical Hierarchy Process and the

Least-cost Path Analysis, Application in Sinai Peninsula, Egypt", The Egyptian

Journal of Remote Sensing and Space Science, pp. 141-151,

http://www.sciencedirect.com/science/article/pii/S1110982313000264, (Data

Download Date: 14.03.2014).

27. Alazab A., Venkatraman S., Abawajy J., Alazab M., (2011), "An Optimal

Transportation Routing Approach Using GIS-based Dynamic Traffic Flows", 3
rd

International Conference on Information and Financial Engineering, pp. 172-778.

28. Al-mumaiz M. O., (2012), "Paths Planning For AL-Ramdi Intercity Road Using

GIS Tool", Engineering College, University of Al-Mustansiriya/Baghdad, Eng.

&Tech. Journal, Vol.30, No. 2, pp. 265-282,

http://www.iasj.net/iasj?func=fulltext&aId=25843, (Data Download Date:

18.03.2014).

29. Abbasi S., Moosavi F., (2012), "Finding Shortest Path in Static Networks:

Using a Modified Algorithm", Department of Industrial Engineering, Najafabad

Branch, Islamic Azad University, Esfahan, Iran, International Journal of Finance

& Banking Studies IJFBS, Vol.1 No.1, ISSN: 2147-4486, pp.29-34,

http://www.ssbfnet.com/ojs/index.php/ijfbs/article/viewFile/12/12, (Data

Download Date: 18.03.2014).

30. Al-joboory B. S., Al-bakry M. M., Al-hamadany O. Y., (2006), "The Selection

of Optimum Road Path Using Geographic Information System (GIS)", Journal of

Engineering, Number 2 Volume 12, University of Baghdad, College of

Engineering, Department of Surveying, pp. 295-303,

http://www.iasj.net/iasj?func=fulltext&aId=45065, (Data Download Date:

18.03.2014).

http://www.sciencedirect.com/science/article/pii/S1110982313000264
http://www.iasj.net/iasj?func=fulltext&aId=25843
http://www.ssbfnet.com/ojs/index.php/ijfbs/article/viewFile/12/12
http://www.iasj.net/iasj?func=fulltext&aId=45065

5R

31. Kadry S., Abdallah A., Joumaa C., (2012), "On the Optimization of Dijkstra’s

Algorithm", Informatics in Control, Automation and Robotics. Springer Berlin

Heidelberg, Springer Berlin Heidelberg, pp. 393-397.

32. Baker S. L., (2004), "Critical Path Method (CPM)", pp. 1-9,

http://hspm.sph.sc.edu/COURSES/J716/CPM/CPM.html, (Data Download Date:

01.04.2014).

33. Ravi N., Sireesha V., (2010), "Using Modified Dijkstra’s Algorithm for Critical

Path Method in a Project Network", International Journal of Computational and

Applied Mathematics, Volume 5 number 2 pp. 217-225.

34. Yong B., Hongping H., (2010), "Mathematical Model of Best-path Planning

Algorithms for Public Transportation Systems", International Conference on

Computer Application and System Modeling (ICCASM), vol. 13, pp. 345-348.

35. Kanatani N., Sasama T., Kawamura T., Sugahara K., (2010), "Development

of Bus Location System Using Smart Phones", SICE Annual Conference 2010,

pp. 2432-2433, http://www.keisana.ike.tottori-

u.ac.jp/publications/papers/368.pdf, (Data Download Date: 02.04.2014).

36. Yuewen L., Zhong W., (2012), "Research of Intelligent Model of Optimal Route

for the Urban Public Transport", Second International Conference on Business

Computing and Global Informatization (BCGIN), pp. 695-698,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6382628, (Data

Download Date: 02.04.2014).

37. Mandal A., Deshmukh S. G., (1994), "Vendor Selection Using Interpretive

Structural Modelling (ISM)" International Journal of Operations & Production

Management 14.6, pp. 52-59,

http://www.emeraldinsight.com/journals.htm?articleid=848794, (Data Download

Date: 25.03.2014).

http://hspm.sph.sc.edu/COURSES/J716/CPM/CPM.html
http://www.keisana.ike.tottori-u.ac.jp/publications/papers/368.pdf
http://www.keisana.ike.tottori-u.ac.jp/publications/papers/368.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6382628
http://www.emeraldinsight.com/journals.htm?articleid=848794

6R

38. Li Y., Xing J., Huang G., Meng L., (2010), "Least Transfer Cost Model for

Optimizing Public Transport Travel Routes", 2
nd

 International Conference on

Signal Processing Systems (ICSPS), Vol. 2, pp. 828-831,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5555864, (Data

Download Date: 02.04.2014).

39. Martinwz H., Mauttone A., Urquhart M. E., (2013), "Frequency Optimization

in Public Transportation Systems: Formulation and Metaheuristic Approach",

European Journal of Operational Research 236, pp. 27-36,

http://www.sciencedirect.com/science/article/pii/S0377221713009065, (Data

Download Date: 02.04.2014).

40. Sun C., Pallottino S., (2003), "Circular Shortest Path in Images", Pattern

Recognition 36, pp. 709-719,

http://www.sciencedirect.com/science/article/pii/S0031320302000857, (Data

Download Date: 18.03.2014).

41. Hadas Y., Ranjitkar P., (2012), "Modeling Public-transit Connectivity with

Spatial Quality-of-transfer Measurements", Journal of Transport Geography 22,

pp. 137-147,

http://www.sciencedirect.com/science/article/pii/S0966692311002274, (Data

Download Date: 03.04.2014).

42. MapBasic 11.5 Reference, (2012), Pitney Bowes Software Inc.,

http://reference.mapinfo.com/software/mapbasic/english/11.5/MapBasicReferenc

e.pdf, (Data Download Date: 17.01.2014)

43. https://maps.google.com, (Data Download Date: 26.02.2014).

44. Steiniger S., Bocher E., (2009), “An Overview on Current Free and Open

Source Desktop GIS Developments” International Journal of Geographical

Information Science, 23(10), pp. 1345-1370.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5555864
http://www.sciencedirect.com/science/article/pii/S0377221713009065
http://www.sciencedirect.com/science/article/pii/S0031320302000857
http://www.sciencedirect.com/science/article/pii/S0966692311002274
http://reference.mapinfo.com/software/mapbasic/english/11.5/MapBasicReference.pdf
http://reference.mapinfo.com/software/mapbasic/english/11.5/MapBasicReference.pdf
https://maps.google.com/

1A

APPENDIX A

MapBasic Code

The following below show the MapBasic code for implement and solve all problems

and analysis.

include "mapbasic.def"

Declare sub calcstations

Declare sub showfastestandlongest

Declare sub closefinalfile

Declare Sub FindNearestBusStop

Declare Sub SetStartBusStop

Declare Sub SetEndBusStop

dim t,p,pa as string

dim x,y as float

dim n,i,j as integer

dim oobj as object

Create Buttonpad "SetBusStops" as

 ToolButton Calling SetStartBusStop icon 116

 ToolButton Calling SetendBusStop icon 103

 PushButton Calling calcstations

 PushButton Calling showfastestandlongest

2A

n=10 'No Of Nearest Bus Stops

 pa=ApplicationDirectory$()

 if right$(pa,1) <> "\" then pa = pa + "\" end if

Sub SetStartBusStop

 x= Commandinfo(1)

 y= Commandinfo(2)

 t = "NearestStationsStart"

 call FindNearestBusStop

End sub

Sub SetEndBusStop

 x= Commandinfo(1)

 y= Commandinfo(2)

 t = "NearestStationsFinal"

 call FindNearestBusStop

End sub

Sub FindNearestBusStop

 oobj= Createpoint(x,y)

 delete from t

 commit table t

 pack table t

 Nearest 10 From variable Oobj To ank_stops Into t Data col1=col1

 Update t set Distance_m = Objectlen(obj,"m")'

 p=Tableinfo(t,19)

 if right$(p,3) = "tab" then p = left$(p,len(p)-3) + "txt" end if

 print p + t + ".txt"

 Export t Into p Type "ASCII" Overwrite CharSet "WindowsTurkish"

end sub

3A

sub calcstations

 call closefinalfile

 if fileexists(pa+"FinalResult.txt") then kill pa + "FinalResult.txt" end if

 if fileexists(pa+"NearestStationsStart.txt") and

fileexists(pa+"NearestStationsFinal.txt") then

 run program pa + "dijkstra.exe"

 end if

end sub

sub closefinalfile

 dim k as integer

 for k = numtables() to 1 step -1

 if tableinfo(k,1) = "FinalResult" then

 Close Table FinalResult

 exit for

 end if

 next

end sub

sub showfastestandlongest

dim s as string

call closefinalfile

if not fileexists(pa+"FinalResult.txt") then note "File " + pa + "FinalResult.txt not

found" exit sub end if

Register Table pa+"FinalResult.txt" TYPE ASCII Delimiter 9 Charset

"WindowsArabic" Into pa+"FinalResult.TAB"

Open Table pa+"FinalResult.TAB" Interactive

select * from FinalResult order by _COL3 into selsort

fetch first from selsort

s=selsort.col4

s=selsort.col4

4A

run command "Select * from ank_stops where StationNo=any("+left$(s,len(s)-1) +")

into ShortestRoute noselect"

fetch last from selsort

s=selsort.col4

run command "Select * from ank_stops where StationNo=any("+left$(s,len(s)-1) +")

into LongestRoute noselect"

if numwindows() =0 then map from ank_stops end if

if windowinfo(frontwindow(),3) <>1 then map from ank_stops end if

Add Map Auto Layer LongestRoute

Set Map Layer 1 Display Global Global Symbol (33,16711680,12)

Add Map Auto Layer ShortestRoute

Set Map Layer 1 Display Global Global Symbol (34,65280,12)

end sub

1B

APPENDIX B

C++ Code

#include <iostream>

#include <fstream>

#include <sstream>

using namespace std;

int main()

{

 int i,j,n=3367;

 // Read From Text File (FromS=Source station, ToS=Destination station,

Dis=Distance, BR1=Bus line, Ty=Transit Type)

 int FromS,ToS,Dis,BR1;

 string Ty;

 double MasterFile[n][6];

 ifstream Read("BusStopDistance.txt");

 if (Read.is_open()) {

 for(i=0;i<n;i++) {

 Read >> FromS;

 Read >> ToS;

 Read >> Dis;

 Read >> Ty;

 Read >> BR1;

 MasterFile[i][0]=FromS;

 MasterFile[i][1]=ToS;

 MasterFile[i][2]=Dis;

2B

 if (Ty=="Walk") {

 MasterFile[i][3]=1;MasterFile[i][5]=MasterFile[i][2]/4/1000*3600;

 }

 else {

 MasterFile[i][3]=2;MasterFile[i][5]=MasterFile[i][2]/30/1000*3600;

 }

 if (MasterFile[i][5]==0) MasterFile[i][5]=1;

 MasterFile[i][4]=BR1;

 }

 }

 Read.close();

// End Read From Text File

// Detect Number Of BusStop (BN=Number of bus stops)

 short BusStop[n];

 bool Flag;

 for(i=0;i<n;i++) BusStop[i]=0;

 int BN=0;

 for (i=0;i<n;i++){

 Flag=true;

 for (j=0;j<n;j++){

 if (MasterFile[i][0]==BusStop[j]) { Flag=false; break; }

 }

 if (Flag) { BusStop[BN]=MasterFile[i][0]; BN=BN+1; }

 }

 for (i=0;i<n;i++){

 Flag=true;

 for (j=0;j<n;j++){

 if (MasterFile[i][1]==BusStop[j]) { Flag=false; break; }

 }

 if (Flag) { BusStop[BN]=MasterFile[i][1]; BN=BN+1; }

 }

3B

 // Arrange BusStop Array

 int R;

 for(i=0;i<BN-1;i++)

 for(j=i;j<BN;j++)

 if(BusStop[i]>BusStop[j]){

 R=BusStop[i];

 BusStop[i]=BusStop[j];

 BusStop[j]=R;

 }

 // End Arrangement

// End Detect Numbr Of BusStop

// Create BusStop Distance

 short BusStopDis[BN][BN];

 for(i=0;i<BN;i++)

 for(j=0;j<BN;j++) BusStopDis[i][j]=29999;

 int Pi=0,Pj=0;

 for(i=0;i<n;i++)

 {

 for(j=0;j<BN;j++)

 {

 BusStopDis[j][j]=20000;

 if (MasterFile[i][0]==BusStop[j]) Pi=j;

 if (MasterFile[i][1]==BusStop[j]) Pj=j ;

 }

 BusStopDis[Pi][Pj]=MasterFile[i][2];

 }

// End BusStop Distance

4B

// Create Path Matrix

// Create Distance Array

 short WE[BN][BN],O[BN];

 int SA[5][2],FA[5][2];

 int St,DS,Ft,DF;

 // start & final point

 ifstream StartPoints("NearestStationsStart.txt");

 if (StartPoints.is_open()) { for(i=0;i<5;i++) { StartPoints >> St;

 StartPoints >> DS;

 SA[i][0]=St;

 SA[i][1]=DS;

 }

 }

 StartPoints.close();

 ifstream FinalPoints("NearestStationsFinal.txt");

 if (FinalPoints.is_open()) { for(i=0;i<5;i++) { FinalPoints >> Ft;

 FinalPoints >> DF;

 FA[i][0]=Ft;

 FA[i][1]=DF;

 }

 }

 FinalPoints.close();

 cout<<" Start Points Final Points\n\n";

 for(i=0;i<5;i++) cout<<" "<<SA[i][0]<<" ("<<SA[i][1]<<")

"<<FA[i][0]<<" ("<<FA[i][1]<<") \n";

 // final start & final point

int Mi,Mj,ExportArray[10][10];

for(Mi=0;Mi<5;Mi++)

for(Mj=0;Mj<5;Mj++)

{

 int s,m,f;

5B

 s=SA[Mi][0];

 // first row for b

 for(i=0;i<BN;i++) WE[0][i]=BusStopDis[s-1][i];

 // other rows for b

 O[0]=s;

 for (i=1;i<BN;i++)

 {

 m=WE[i-1][0];

 f=0;

 for(j=1;j<BN;j++)

 if (WE[i-1][j]<m) { f=j;m=WE[i-1][j]; }

 O[i]=f+1;

 for (int t=0;t<BN;t++)

 {

 if(WE[i-1][t]==20000) {WE[i][t]=20000;continue;}

 if((WE[i-1][t]==29999)&&(BusStopDis[f][t]==29999))

 {WE[i][t]=BusStopDis[f][t];continue;}

 if(WE[i-1][t]==29999) {WE[i][t]=BusStopDis[f][t]+m;continue;}

 if(f==t) {WE[i][t]=20000;continue;}

 if((m+BusStopDis[f][t])>WE[i-1][t])

 {WE[i][t]=WE[i-1][t];continue;}

 else WE[i][t]=m+BusStopDis[f][t];

 }

 }

// End Path Matrix

// find The Path

 int SP,min,d,sta[BN]; // sta array for save the path

 d=FA[Mj][0];

 for(i=0;i<BN;i++) sta[i]=9999;

 SP=WE[0][d-1];

 i=BN-1;

6B

 if (d==s) {SP=0;sta[i]=d;goto FindResult;}

 if ((d<s)&&(d>BN)) {goto FindResult;}

 for (j=1;j<BN;j++)

 if((WE[j][d-1]<SP)&&(WE[j][d-1]!=0)) { SP=WE[j][d-1]; }

 sta[i]=d;

Repeat: min=WE[0][d-1];

 f=0;

 for (j=1;j<BN;j++)

 if((WE[j][d-1]<min)&&(WE[j][d-1]!=0)) {

 min=WE[j][d-1];

 f=j;

 }

 i=i-1;

 d=O[f];

 if(d==s) goto FindResult;

 else {

 sta[i]=O[f];

 goto Repeat;

 }

FindResult:

 sta[i]=d;

 cout<<"\n\n"<<" Shortest path is: "<<SP;

 cout<<"\n\n"<<" Path is:--------- ";

 for (i=0;i<BN;i++){

 if(sta[i]==9999) continue;

 cout <<sta[i]<<" ";

 }

 cout <<"\n";

// End Finding Path

7B

 ExportArray[Mi][Mj]=SP;

 //Export Text File

 ofstream Write("FinalResult.txt",ios::app);

 if(Write.is_open()){

 Write<<SA[Mi][0]<<"\t";

 Write<<FA[Mj][0]<<"\t";

 Write<<ExportArray[Mi][Mj]+SA[Mi][1]+FA[Mi][1]<<"\t";

 for (int jj=0;jj<BN;jj++){

 if(sta[jj]==9999) continue;

 Write<<sta[jj]<<",";

 }

 Write<<"\n";

 }

 Write.close();

 //End Exportation

}

 return EXIT_SUCCESS;

}

1C

APPENDIX C

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: AL-TAMEEMI Haitham, Latif Hassan

Nationality: Iraqi (IQ)

Date and Place of Birth: 11 October 1971, Iraq

Marital Status: Married

Phone: +90 538 010 24 08

Email: hai_mah2003@yahoo.com

EDUCATION

Degree Institution
Year of

Graduation

B.Sc. Department of Computer Science,

Al-Mustansiriya University

1993

High School Baghdad College 1989

WORK EXPERIENCE

Year Place Position

1995-2001 Libyan Arab Jamahiriya Teacher

2005-until now Ministry of Education, Iraq Teacher

FOREIGN LANGUAGES: Arabic, English

HOBBIES: Computer hardware, Football, Music

mailto:hai_mah2003@yahoo.com

