

EVALUATING THE RELATIONSHIP BETWEEN CONCRETE STRENGTH

AND MIX DESIGN PROPERTIES USING ARTIFICIAL NEURAL

NETWORK (ANN) HYBRID ALGORITHMS

SİNAN KEFELİ

JUNE 2019

EVALUATING THE RELATIONSHIP BETWEEN CONCRETE STRENGTH AND

MIX DESIGN PROPERTIES USING ARTIFICIAL NEURAL NETWORK (ANN)

HYBRID ALGORITHMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

SİNAN KEFELİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

CIVIL ENGINEERING

DEPARTMENT

JUNE 2019

iii

iv

ABSTRACT

EVALUATING THE RELATIONSHIP BETWEEN CONCRETE STRENGTH

AND MIX DESIGN PROPERTIES USING ARTIFICIAL NEURAL

NETWORK (ANN) HYBRID ALGORITHMS

KEFELİ, Sinan

M.Sc., Department of Civil Engineering

Supervisor: Assist. Prof. Dr. Seda YEŞİLMEN

June 2019, 65 pages

In this thesis, accurate prediction of concrete strength was investigated by using

artificial neural network hybrid algorithms. To hybridize and tune ANN models,

Particle Swarm Optimization was implemented. Optimization process was conducted

step by step up to reaching predictions at a high level of accuracy. Activation functions,

numbers of neuron in hidden layers, initial learning rate, solver and learning rate were

subjected to optimization.

Keywords: Artificial Neural Network, Particle Swarm Optimization, Concrete,

Strength Prediction, Hybrid Algorithms

v

ÖZ

BETON DAYANIMI VE KARIŞIM TASARIMI ÖZELLİKLERİNİN YAPAY

SİNİR AĞI HİBRİT ALGORİTMALARI KULLANILARAK

DEĞERLENDİRİLMESİ

KEFELİ, Sinan

Yüksek Lisans, İnşaat Mühendisliği Anabilim Dalı

Tez Yöneticisi: Dr. Öğr. Üyesi Seda YEŞİLMEN

Haziran 2019, 65 sayfa

Bu tezde, beton dayanımının doğru ve kesin tahmini yapay sinir ağı (YSA) hibrit

algoritmaları kullanılarak incelenmiştir. YSA modellerini hibritleştirmek ve ayarlarını

yapmak için Parçacık Sürü Optimizasyonu (PSO) kullanılmıştır. Optimizasyon süreci

yüksek bir doğruluk seviyesindeki tahminlere ulaşıncaya kadar adım adım

yürütülmüştür. Aktivasyon fonksiyonları, gizli katmanlardaki nöron sayıları, başlangıç

öğrenme oranı, çözümleme algoritması ve öğrenme oranı optimizasyona konu

edilmiştir.

Anahtar Kelimeler: Yapay Sinir Ağı, Parçacık Sürü Optimizasyonu, Beton Dayanımı

Tahmini, Hibrit Algoritmalar

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assist. Prof. Dr. Seda YEŞİLMEN for

her supervision, special guidance, suggestions, and encouragement through the

development of this thesis.

It is a pleasure to express my special thanks to my family for their valuable support.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE..iii

ABSTRACT .. iv

ÖZ ...v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. ix

LIST OF TABLES ... x

LIST OF ABBREVIATIONS .. xii

CHAPTERS:

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1. Artificial Neural Network (ANN) .. 3

2.2. Strength Prediction with ANN ..12

2.3. Metaheuristics ..16

2.3.1. Particle Swarm Optimization (PSO) ...17

2.3.2. Hybrid Intelligence with PSO ...19

3. METHODOLOGY..25

viii

3.1. Step 1: Determining the best performing activation function for optimization

 ..33

3.2. Step 2: PSO-ANN Hybrid Models Optimizing Numbers of Neurons in Hidden

Layers ...39

3.3. Step 3: Final PSO-ANN Hybrid Models ...43

3.3.1. PSO-ANN Hybrid Models Optimizing Alpha (L2 Regularization term)

with L-BFGS as Solver and Optimized ANN Architecture43

3.3.2. PSO-ANN Hybrid Models Optimizing Alpha (L2 Regularization term)

and Initial Learning Rate with Stochastic Gradient Descent (SGD) and

Optimized ANN Architecture ..52

4. CONCLUSIONS ...55

REFERENCES ...58

ix

LIST OF FIGURES

Figure 1: An Example ANN Architecture ... 3

Figure 2: An Artificial Neuron .. 5

Figure 3: Flowchart of PSO algorithm..19

Figure 4: Test Outputs vs. Predicted Outputs for PSO-ANN Model HL740

Figure 5: Iterations vs. RMSE for PSO-ANN models HL1-HL20...........................41

Figure 6: Iteration vs RMSE for 8 selected PSO-ANN models47

Figure 7: Test Outputs vs. Predicted Outputs for PSO-ANN Model L1348

Figure 8: Test Outputs vs. Predicted Outputs for PSO-ANN Model L1949

Figure 9: Test Outputs vs. Predicted Outputs for PSO-ANN Model T849

Figure 10: Test Outputs vs. Predicted Outputs for PSO-ANN Model T1350

Figure 11: Test Outputs vs. Predicted Outputs for PSO-ANN Model T1850

Figure 12: Test Outputs vs. Predicted Outputs for PSO-ANN Model R551

Figure 13: Test Outputs vs. Predicted Outputs for PSO-ANN Model R1951

Figure 14: Test Outputs vs. Predicted Outputs for PSO-ANN Model R2052

Figure 15: Test Outputs vs. Predicted Outputs for PSO-ANN Model SGD654

x

LIST OF TABLES

Table 1: Python libraries used in the thesis ...26

Table 2: First 10 rows of the data used ...26

Table 3: Statistical description of inputs and output ..28

Table 4: MLP Regressor parameters and definitions ...29

Table 5: Major MLP Regressor parameters in ANN models32

Table 6: Performances of the ANN models ..32

Table 7: Major MLP Regressor parameters in Step 1 ..34

Table 8: Performances of the models with identity function35

Table 9: Performances of the models with logistic sigmoid function36

Table 10: Performances of the models with hyperbolic tangent (tanh) function37

Table 11: Performances of the models with rectified linear units (ReLU) function .38

Table 12: Average values of RMSE, R2 Score and MAE of the models in Step 1 ...39

Table 13: Major MLP Regressor parameters used in Step 239

Table 14: Performances of the PSO-ANN models HL1-HL2042

Table 15: Major MLP Regressor parameters used in Step 3 first part43

Table 16: Performances of the PSO-ANN models with logistic sigmoid function in

Step 3 first part ...44

Table 17: Performances of the PSO-ANN models with hyperbolic tangent (tanh)

function in Step 3 first part ..45

xi

Table 18: Performances of the PSO-ANN models with rectified linear units (ReLU)

function in Step 3 first part ..46

Table 19: Average values of RMSE, R2 Score and MAE of the models in Step 3 first

part ...47

Table 20: Major MLP Regressor parameters used in Step 3 second part52

Table 21: Performances of the PSO-ANN models with solver SGD53

xii

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

ADALINE Adaptive Linear Neuron or Later Adaptive Linear Element

ADAM Adaptive Moment Estimation

AI Artificial Intelligence

ANFIS Adaptive Network-Based Fuzzy

ANN Artificial Neural Network

ARMA Autoregressive Moving Average Model

BFGS Broyden-Fletcher-Goldfarb-Shanno Algorithm

BP Back Propagation

CC Cascade Correlation

CF Correlation Factor

COD Coefficient of Determination

CUPSO Center-Unified Particle Swarm Optimization

EPS Expanded Polystyrene

FRP Fiber Reinforced Polymer

HMLP High Order Multilayer Perceptrons

HPC High Performance Concrete

L-BFGS Limited memory Broyden-Fletcher-Goldfarb-Shanno Algorithm

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

xiii

MLR Multiple Linear Regression

MSE Mean-Square Error

MSS Maximum Surface Settlement

NADAM Nesterov-Accelerated Adaptive Moment Estimation

PSO Particle Swarm Optimization

RCPT Rapid Chloride Penetration Test

RELU Rectified Linear Unit

RMS Root Means Square

RMSE Root-Mean-Square Error

RMSPROP Root Mean Squared Prop

SCC Self Compacting Concrete

SGD Stochastic Gradient Descent

SVR Support Vector Regression

TANH Hyperbolic Tangent

UPSO Unified Particle Swarm Optimization

VMA Viscosity Modifying Agent

1

CHAPTER 1

INTRODUCTION

 Strength of concrete depends on not only a few, but many factors such as mix

design, curing conditions and mixing conditions, transporting, placing and testing [1],

[2]. This is the reason for a will to have a complete model for concrete strength

prediction. There has been many studies for proposing strength prediction [3], [4].

Predicting concrete strength with artificial neural network (ANN) models is more

convenient in terms of accuracy since ANN models outperforms models on regression

analysis or ANNs are more useful for practical purposes than mathematical models

and observing changes in strength occurred by changes in mix design is very easy [2],

[5].

 Without the need for testing, having the advantage of the use of previous

experiment, predicting concrete strength with ANN is a great advantage for many

applications in civil engineering and for all parties involved in the process of

designing, constructing, controlling and maintaining [2], [6].

 The purpose of the thesis is to propose a strong method for predicting strength

concrete and establish a foundation for future work in understanding the behavior of

concrete as one of the most important materials in civil engineering.

 The thesis comprises of 4 chapters including information about background of

artificial neural networks, machine learning theory, metaheuristics and specifically

Particle Swarm Optimization (PSO), methods that was used in the thesis and results of

the methods. Conclusions and references are also provided.

 Background chapter gives information about artificial neural networks, brief

history of networks, ANN architecture, artificial neuron definition, activation

functions, feedforward backpropagation, overfitting and underfitting, regularization,

2

learning algorithms, learning paradigms, applications of ANNs, particularly strength

prediction with ANN, metaheuristics, PSO and hybrid intelligence with PSO.

Methodology chapter includes medium of the study, dataset used, performance

indicators used, steps of ANN optimization with PSO and the results of the methods.

Conclusion chapter explains what is proposed in the thesis and underline the important

points of the thesis. In the end, references are listed.

3

CHAPTER 2

BACKGROUND

2.1. Artificial Neural Network (ANN)

Artificial neural network (ANN) is a mathematical/computational model that

emulate biological neural network, which is composed of interconnected set of

artificial neurons that are the basic processing unit where computation occurs to

answer challenging questions arisen in life in numerous areas [7]–[11]. An example

ANN architecture is given in Fig. 1 below.

Figure 1: An Example ANN Architecture

Warren McCulloch and Walter Pitts stated the first ANN model and explained

how neurons in brain function in 1943 [12]. They proposed a binary model in which

neurons can only be on or off. Donald Hebb wrote a book named “The Organization

of Behavior: A Neuropsychological Theory” stating that neural pathways are

strengthened on time each time they are used [13]. This book established “Hebbian

4

Learning”. Frank Rosenblatt was the first to compose an ANN and reached

“perceptron” which assigned and updated weights therefore reduced error [14]. In

1960, Bernard Widrow and Marcian Hoff introduced two models named “ADALINE”

and “MADALINE” which stands for adaptive linear element and multiple adaline [15].

Marvin Minsky is worth noting in the background of artificial intelligence and

perceptrons. In 1954, he contributed to the related research with a doctorate

dissertation named “Theory of Neural-Analog Reinforcement Systems and its

Application to the Brain-Model Problem”. In 1969, Marvin Minsky and Seymour

Papert published a book named “Perceptrons: An Introduction to Computational

Geometry” [16]. The book caused the curiosity on neural networks to decrease due to

the claim of the limitations of perceptrons [17]. In 1982, John Hopfield published a

paper opening a new and fresh look into artificial intelligence (AI), the paper renewed

the interest to AI [18]. After his paper, neural networks became more popular and

interests on AI started to grow.

ANNs comprise of layers which are named input layer, hidden layer(s) and

output layer(s). Input layer takes data into network to transmit it to next layer for

further processing. Hidden layer takes data from previous layer to process it in neurons

to assign weights and compute the results of activation functions and transmit this

result further to another hidden layer or to output layer [19].

Artificial neurons, neurons in short, mimics the function of biological neurons

in brain. Neurons have three missions: multiplication, summation and activation;

which be explained in a wider perspective. Inputs are assigned weights individually

and they are multiplied with each other. After the “multiplication”, weighted inputs

are summed and bias is added, which is called “summation”. The next mission is

“activation”: neurons apply an activation function to the sum of weighted inputs and

bias to convert to an output activation and decide whether a signal is activated or not,

or activation yields a value depending on the selection of activation function [7], [8].

An example artificial neuron is illustrated in Fig. 2.

5

Figure 2: An Artificial Neuron

The mathematical relationship between weights, biases and activation function

in a neuron or node is formulized in eq. 1 and eq. 2 as follows:

𝑧 = (∑ ai ∗ wi

𝑁

𝑖

) + 𝑏 (1)

𝑓(𝑧) = 𝑎𝑜𝑢𝑡 (2)

where ai is the input from ith input feature, wi is the weight assigned to the ith input

feature, z is the weighted sum, f is the activation function, aout is the output of the

neuron and b is the bias. Bias is the term added to the weighted sum, which makes the

operations of the neurons much more flexible and versatile [20].

Output of a neuron differs as discrete or continuous due to the selection of

activation function. For instance, Heaviside step function results in binary-valued

output whereas sigmoid function produces output values between 0 and 1. Activation

functions are the functions for nodes which get input signals and emit output signals

6

that will be used as input signals at other nodes in next layer. Some of the most widely

used activation functions are linear function, relu, sigmoid and tanh [21], [22].

Architecture or topology is how neurons are connected to one another, which

can occur in many ways as it can be divided into two sub-groups: feedforward (acyclic)

and recurrent (semi-cyclic) artificial neural networks.

In a feedforward backpropagation neural network, information flow from the

input layer to the output layer from one layer to the next in a sequence, during this

phase which is called forward propagation, outputs of neurons are computed and

transmitted to the next unit that will take it as an input. After this phase of forward

propagation, back propagation comes, where errors are computed in the reverse

direction of forward propagation in a sequence from output layer to input layer [10].

At this point, it should be explained what error means. Error should be measured in a

way to describe the difference between predictions and actual (real or experimental)

values of data.

In a three-layer feedforward artificial neural network, which has an input layer,

a hidden layer and an output layer, neurons in input layer takes data into network to

transmit it to next layer which is hidden layer for further processing. Neurons in hidden

layer takes data from neurons in input layer and assign weights individually to inputs,

multiply with these weights and inputs and add bias to them. After the abovementioned

“multiplication” and “summation” phases, neurons in hidden layer apply an activation

function to the sum of weighted inputs and bias to pass a signal to the next layer, that

is output layer. It is worth noting that information processing in one layer occurs at the

same time rather than in a sequence, this phenomenon is called parallel processing or

massive parallelism that provides great advance comparing to conventional sequential

processing [8].

One of the main advantages of ANNs is to be the universal approximator,

which means that ANNs are able to approximate any random function with any desired

level of accuracy. Moreover, ANNs can be employed to a problem that has not an

empirical model at all and ANN extracts the relationship hidden in data, which is called

learning or training the data [22]–[24].

7

Accuracy is the degree or success to predictions of experimental results.

Accuracy is measured with error between predicted values and experimental (actual)

values. Assessing accuracy of a model is a very important issue in regression, machine

learning and specifically ANN applications. To achieve this, dataset to be used is

divided into different subsets: training, validation and test sets. As the names imply,

training data is portion of data in which learning process happens. After having a

model obtained, the model is tuned to get better predictions over various datasets. The

portion of the dataset to be used to tune the model is validation data. It is separated

from training set and only used to tune the model. There is a necessity to evaluate

models on separate sets of data to have unbiased measure of accuracy [25]. Therefore,

the model should be evaluated, namely tested with a different dataset that is held

separate from training. This is test data.

When a model fits training data too well, error computed with that model

becomes too small. However, when this “too good” model is tested with another set of

data that is test data, it has a larger error than the one with training data. This is called

overfitting. Overfitting means that the model obtained with training data fits training

data too well, but it is not able to make good predictions on other sets of data.

In order to avoid overfitting; ANN architecture can be shrunk, model can be

trained to a smaller number of epochs or regularization term can be implemented to

cost function. The purpose of the regularization term is to apply a penalty to high

values of weights [26]. General form of regularization for cost function is given in eq.

3 below [27].

(
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑
𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

) = (
𝐸𝑚𝑝𝑟𝑖𝑐𝑎𝑙

 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
) + (

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

) ∗ (𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟) (3)

Two common methods of regularization are explained here. Regression model

which an L1 regularization term was added is called Lasso (Least Absolute Shrinkage

and Selection Operator) Regression as it can be seen in eq. 4. If an L2 regularization

term is added to cost function, model is called Ridge Regression as shown in eq. 5.

8

∑(𝑦𝑖

𝑛

𝑖=1

− ∑(𝑥𝑖𝑗𝑤𝑗)2

𝑝

𝑗=1

+ λ ∑ |𝑤𝑗| (4)

𝑝

𝑗=1

∑(𝑦𝑖

𝑛

𝑖=1

− ∑(𝑥𝑖𝑗𝑤𝑗)2

𝑝

𝑗=1

+ λ ∑ 𝑤𝑗
2

𝑝

𝑗=1

 (5)

A learning algorithm is a systematic process to obtain patterns in data to fit a

model to transform data from input to output [28]. In ANNs, there is a need to choose

a learning algorithm to train a network. Among a diverse collection learning

algorithms, one can be chosen according to the nature of problem. Artificial neural

networks generally use a modified form of gradient descent algorithm, which is quite

straight forward with the usage of derivative of cost function [9].

In ANN models, miscellaneous algorithms can be used. Among a diverse

alternatives including Levenberg–Marquardt, Broyden-Fletcher-Goldfarb-Shanno

(BFGS) Quasi Newton, limited memory BFGS (L-BFGS), One step secant, Bayesian

regularization ad Gradient descent; L- BFGS and Gradient descent are examined for

this study since those are two of the most effective, accurate and widely used

algorithms.

L-BFGS was introduced by Nocedal [29]. The difference between BFGS and

L-BFGS methods is the update in the matrix. Corrections of the matrix are stored and

when the maximum number of corrections is reached, the oldest one is deleted and the

newest one is added. L-BFGS method algorithm is given in equations 6-13 as follows

[30]:

Let xk denotes iterates, sk=xk+1-xk and yk=gk+1-gk.

𝐻𝑘+1 = 𝑉𝑘
𝑇𝐻𝑘𝑉𝑘 + 𝜌𝑘𝑠𝑘𝑠𝑘

𝑇 (6)

where 𝜌𝑘 =
1

𝑦𝑘
𝑇𝑠𝑘

 (7)

and 𝑉𝑘 = 𝐼 − 𝜌𝑘𝑦𝑘𝑠𝑘
𝑇 (8)

Step 1: Determine x0, m, 0 <β' <1/2, β'<β<1 and a symmetric and positive definite

starting matrix H0. Set k = 0.

Step 2

9

𝑑𝑘 = − 𝐻𝑘𝑔𝑘 (9)

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (10)

where αk satisfies the Wolfe conditions:

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛽′𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (11)

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝛽𝑔𝑘
𝑇𝑑𝑘 (12)

αk=1 at first

Step 3 Update H0 �̂� + 1 times using the pairs {𝑦𝑗 , 𝑠𝑗}𝑗−�̂�
𝑘 ,

𝐻𝑘+1 = (𝑉𝑘
𝑇 … 𝑉𝑘−�̂�

𝑇)𝐻0(𝑉𝑘−�̂� … 𝑉𝑘)

+ 𝜌𝑘−�̂�(𝑉𝑘
𝑇 … 𝑉𝑘−�̂�+1

𝑇)𝑠𝑘−�̂�𝑠𝑘−�̂�
𝑇 (𝑉𝑘−�̂�+1 … 𝑉𝑘)

+ 𝜌𝑘−�̂�+1(𝑉𝑘
𝑇 … 𝑉𝑘−�̂�+2

𝑇) + 𝑠𝑘−�̂�+1𝑠𝑘−�̂�+1
𝑇 (𝑉𝑘−�̂�+2 … 𝑉𝑘) …

+ 𝜌𝑘 𝑠𝑘𝑠𝑘
𝑇 (13)

where �̂� = 𝑚𝑖𝑛{𝑘, 𝑚 − 1}.

Step 4

𝑆𝑒𝑡 𝑘: = 𝑘 + 1 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 2.

Gradient descent minimizes selected cost function which is a function of

weights of neural network. It updates weights according to gradient of cost function.

It is a first order optimization algorithm which means that it only takes into account

the first derivative whereas there are second order algorithms that use the second

derivative [31], [32].

There are three variants of gradient descent algorithm according to the amount

of data used and a balance should be provided between the accuracy and the time to

compute. These variants are Batch Gradient Descent (eq. 14), Stochastic Gradient

Descent (SGD) (eq. 15) and Mini-Batch Gradient Descent (eq. 16).

𝑤 = 𝑤 − 𝜂 ∗ 𝛻𝑤𝐽(𝑤) (14)

𝑤 = 𝑤 − 𝜂 ∗ 𝛻𝑤𝐽(𝑤; 𝑥(𝑖); 𝑦(𝑖)) (15)

𝑤 = 𝑤 − 𝜂 ∗ 𝛻𝑤𝐽(𝑤; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (16)

10

where w is weight, η is learning rate (step size), x and y are training examples, and J is

cost function.

Also, there are different gradient descent optimization algorithms that can be

implemented according to the nature of the problem for various challenges for

convergence. These are can be listed as follows: Momentum, Nesterov-accelerated

gradient, Adagrad, Adadelta, RMSprop, Adam, AdaMax, Nadam [31].

In this study, Adam is also examined as an option to be selected as a type of

solver to train models. Adam is a first order optimization algorithm for stochastic

objective functions, which needs little memory and was proposed by Kingma and Ba

[33]. It actually benefits the advantages of two methods: AdaGrad [34] and RMSProp

[35]. The name, Adam refers to adaptive moment estimation, which explains the

computation of adaptive learning rates that comes from first and second moments of

the gradients. Algorithm for Adam is as follows:

𝑚0 ← 0

𝑣0 ← 0

𝑡 ← 0

while θt not converged

𝑡 ← 𝑡 + 1

𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡 − 1) (Obtain gradients w.r.t. function f at timestep t)

𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (Update biased first moment estimate)

𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (Update biased second raw moment estimate)

�̂�𝑡 ← 𝑚𝑡/(1 − 𝛽1
𝑡) (Compute bias-corrected first moment estimate)

𝑣𝑡 ← 𝑣𝑡/(1 − 𝛽2
𝑡) (Compute bias-corrected second raw moment estimate)

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ∙ �̂�𝑡/√ 𝑣𝑡+ε (Update parameters)

end while

return θt

11

where α is step size, β1, β2 ∈ [0, 1) are exponential decay rates for the moment

estimates, f(θ) is stochastic objective function with parameters θ, θ0 is initial parameter

vector, 𝑔𝑡
2 is the elementwise square of 𝑔𝑡 ⊙ 𝑔𝑡. Default values of α, β1, β2 and ε are

0.001, 0.9, 0.999 and 10-8, respectively.

In the neural networks, weight matrix W keeps all the information in itself and

learning can be defined as identifying the weights corresponding to the interconnection

between neurons [9]. There are three significant types of learning paradigms:

supervised, unsupervised, reinforced learning.

Supervised learning is a technique for machine learning to determine weights

of an artificial neural network. Weights to be set are determined by training data which

is composed of inputs and target values [7]. The concept of supervised learning is

involved with finding a function from domain to target, namely from data to

prediction. In the search of mapping that is led by data, cost function is difference

between prediction figured out from mapping and actual values in data [9]. Supervised

learning is used to solve problems that can be sub-divided into two groups: regression

where output is a real number as an approximation and classification where output is

a category [7], [9].

In unsupervised learning, unlike supervised learning, datasets are not labeled

therefore network itself figure outs the patterns hidden in data among variables [7],

[11]. Clustering is the most well-known application of unsupervised learning paradigm

in a way that examples in a dataset are separated into different groups according to

their similarities [36]. Unsupervised learning takes only independent variable matrix

into account whereas supervised learning employs independent with dependent matrix,

which makes a major difference between supervised learning [37].

As another paradigm of machine learning, in reinforcement learning, data is

not given to artificial neural network. In the absence of training data, it is generated by

an agent’s interactions with environment to take actions to maximize long-term,

namely cumulative reward. Discovering a policy is the principal target for what actions

are to be taken to minimize the long-term (cumulative) cost due to usually unknown

dynamics although dynamics of environments are not known but can be estimated in

12

some way. Environment can be described as Markov decision process (MDP) [7], [9],

[38].

Artificial neural networks are used in a broad range of different disciplines.

According to the complexity of a problem, network model should be adjusted to get

satisfying results. For a complex and specific task, a simple model yields a weak and

inaccurate results while using a complex model for a simple task ends up with

overfitting, not learning. Experience plays a key role for adjusting ANN topology and

configuration to get potent results [7].

Real-life applications of artificial neural networks cover wide range of areas

for various purposes. The purposes of applications for accounting and finance, health

and medicine, marketing, data mining, manufacturing and different branches of

engineering and other many forecasting problems can be listed and grouped as:

function approximation or regression analysis; classification problems like pattern

recognition (radar systems, face identification, object recognition etc.) and sequence

recognition (gesture, speech, handwriting recognition), novelty detection, and

sequential decision-making; data processing for filtering, clustering, blind source

separation, and compression; robotics in directing manipulators and computer

numerical control [9], [39]. In the literature, there miscellaneous applications of ANN

models, such as predicting the success of MBA students [40], forecasting travel

demand [41], production scheduling decision making [42], predicting accident

frequency [43]. ANN applications related to construction materials, specifically

concrete and concrete strength prediction is examined under a separate section.

 2.2. Strength Prediction with ANN

ANN is one of the most effective and accurate methods, although there are

different ways to predict strength of concrete [44]. Strength prediction with ANN has

the potential to eliminate the necessity of destructive tests which are costly and time-

consuming. Being able to know or at least meaningfully predict the strength of

concrete without a destructive test is a great advantage to adjust mix designs of various

types of concrete.

13

In the literature there are many studies about predicting different types of

strength for various types of concrete from normal concrete to high performance

concrete or from self-compacting concrete to engineered cementitious composites.

In the cases mentioned here, there are differences in the architecture or types

of ANNs. Also studies differ from each other in terms of activation function used.

While some studies use linear equations, some studies benefits the advantages of tanh

function and the others prefer sigmoid or relu. Naturally, studies have different datasets

and input parameters such as mix design parameters or environmental conditions

included in the input layer differ according to the relationships examined in the

problem. In literature, there are numerous studies about property prediction with ANN

models. In this thesis, strength prediction with ANN was reviewed and a part of leading

examples were included.

In [5], an ANN model was composed and strength of high performance

concrete was aimed to be predicted and the results were compared to the experiment

results obtained in the laboratory. Satisfying results were obtained with 8 input

features. The study showed that ANN models performed better than regression models.

Indicating the relationship between predicted values and actual values ANN models

provided R2 scores in the range of 0.814- 0.922 whereas regression models obtained it

in the range of 0.432-0.584 on the test data.

In [45], researchers proposed to build a multi-layer feed-forward neural

network model that predicted 28-day compressive strength of concrete. In the study,

11 input features involved which were grade of cement, water/cement ratio, water

content, cement content, maximum size of coarse aggregate, fine module of sand,

sand/aggregate ratio, aggregate/cement ratio, slump, effect of admixtures and content

of admixtures. The data used in the study was in two batches. In the first batch

collected from literature, the maximum relative percentage error obtained was 5.86.

The second batch of data was obtained from a mixing plant. In the second batch, the

maximum relative percentage error was 12.81.

In [2], the researcher brought a new vision to predicting idea since he detected

a difficulty to predict the strength of concrete at the same model for different ages of

concrete when a single ANN model was used if the curing temperature of a day

changed. To overcome this difficulty, the single ANN model was broken into pieces

14

according to the age of concrete. The study showed that all test patterns used provided

the accuracy with the averaged R2 scores above 0.9.

In [46], prediction of concrete strength was provided by the values of

ultrasonic velocity and some mixture features. A multi-layered feed-forward neural

network was constructed. Strength was predicted according to the features: amount of

aggregate, nominal maximum, aggregate size, aggregate type, shape of aggregate and

ultrasonic velocity. Coefficient of determination (R2) of the ANN models proposed are

0.80, 0.84 and 0.90.

In [47], light weight concrete was the subject for strength prediction. Two ANN

models that were feed-forward back propagation (BP) and cascade correlation (CC)

were constructed to predict the strength values after 3, 7, 14, and 28 days of curing. As

input parameters, 8 features of concrete were used, which were sand, water/cement

ratio, light weight fine aggregate, light weight coarse aggregate, silica fume used in

solution, silica fume used in addition to cement, superplasticizer, and curing period.

The paper also provided information of ANN models according to the number of

neuron in the hidden layers: as a trend, the graph demonstrated that as number of

neurons increases, errors in predictions decreased to a point and then increased again.

On the test data, models had absolute errors in the range of 0.042- 9.132 %.

In [6], compressive strength prediction of self-compacting concrete (SCC) and

high performance concrete (HPC) with high volume fly ash was aimed. The

researchers used the available data in the literature on SCC with normal volume since

there was not adequate amount of data on SCC with high volume. Also, they used the

same data to predict the strength of HPC. The study also aimed to predict slump flow

of SCC. The ANN models included 10 input parameters which were cement content

and ratios of water/cement, water/binder, water/powder, fine aggregate/powder, coarse

aggregate/powder, high range water reducer/powder, VMA/powder, fly ash/binder and

silica/binder where VMA was viscosity modifying admixture. The study used 300

rows of data, 270 of which were employed as the training data and the rest of it was

the test data. R2 scores for compressive strength of SCC, slump flow, compressive

strength of HPC were 0.91, 0.82 and 0.84, respectively.

In [48], the researchers proposed a model to predict the compressive strength

of recycled aggregate concrete. The model consisted of 14 input parameters, 1 hidden

15

layer with 16 neurons and an output layer with 1 output, with 168 instances of data,

which was obtained from literature. The study showed that ANN were able to

accurately predict the strength of recycled aggregate concrete. R2 score, RMSE and

mean absolute percentage error (MAPE) on the test data were 0.9955, 3.6804 and

1.6777, respectively.

One of the applications of ANN models was on the purpose to predict the

compressive strength of fiber reinforced polymer (FRP)-confined concrete [49]. In the

study, 213 instances of data were collected from various studies over years. The dataset

was sub-divided into three portion: training data, validation data and test data.

Learning algorithm of the models was Levenberg–Marquardt. The model architecture

included 6 input parameters with one layer of hidden layer that had different number

of neurons for different models trained. Input parameters consisted of diameter of the

circular concrete specimen, height of the circular concrete specimen, the total

thickness of FRP, the tensile strength of the FRP in the hoop direction, the compressive

strength of the unconfined concrete and the elastic modulus of FRP. When it comes to

comparing ANN models with empirical models, the study stated that the selected ANN

model to predict compressive strength demonstrated an average error of 10 % whereas

the models of Matthys et al. [50], Lam and Teng [51] and Mander et al. [52] showed

average errors of 10.9%, 16.3%, and 16.5%, respectively with the randomly selected

113 data. Additionally, the percentage of the predicted values in the range of ±20 was

more than 90, while it was less than 80% with the other models abovementioned.

In [53], modeling compressive strength of expanded polystyrene (EPS) bead

lightweight concrete was examined with three methods: regression, ANN and adaptive

network-based fuzzy (ANFIS). A dataset with 75 instances was used, which was

divided into 64 and 11 as the training and the test data, respectively. The study

indicated that ANN performed better when compared to regression and ANFIS. On

test data, correlation factor (CF) and root means square (RMS) were obtained as

0.9783 and 3.4053, respectively with an ANFIS model while ANN reached 0.9937 and

1.9302.

Compressive strength of different types of concrete has been subjected to ANN

models. An interesting example of that was the study conducted on concrete containing

construction and demolition waste [54]. For this type of concrete, compressive

16

strengths at age of 3, 7, 28 and 91 days were predicted with ANNs with 17 input

features. In the study, it was stated that the experimental test results were close to those

obtained by ANN models. It was given that the percentage of data having an error of

7.5% or less was 60%. For both training and test dataset, ANN models showed R2

scores of 0.928 and 0.971 for training and test data, respectively.

ANN models has been continuously compared to other techniques in many

articles. In [55], ANN models were compared to multiple linear regression model

(MLR) and adaptive neuro-fuzzy inference system (ANFIS) with a dataset of 173

samples. Having a detailed explanation in the paper, it was indicated that ANN and

ANFIS models had the capability of predicting 28 days compressive strength of

concrete whereas MLR models were not as successful as the others due to the non-

linearity of the problem. In comparison, MLR, ANFIS and ANN models reached R2

scores of 0.7456, 0.8212 and 0.9226 for predicted values vs. actual values on the test

data.

 2.3. Metaheuristics

Before the definition of metaheuristics, it is necessary to point out the meaning

of the word itself. Meta means beyond or identifying something higher and heuristic

means search, discover or find. Metaheuristics are optimization algorithms inspired

from nature [56], [57]. Those algorithms are intended to be used to reach a solution

below a tolerance for relatively short time [58]. However, it is not certain that to find

an optimal solution with metaheuristic algorithms. Metaheuristics can provide

different benefits. They are adaptable to different kind of problems in many ways.

Inspirations behind metaheuristic algorithms have a broad range from flocking of birds

or behavior of fireflies to cooling of a crystalline solid while some of those do not have

such a background [58].

Metaheuristics have two main features in terms of algorithm behavior:

intensification and diversification. Intensification refers to a concept for algorithm to

search a solution locally while knowing that the region has already a solution that is

good enough. Diversification, as the name implies, refers to breed miscellaneous

solutions globally in solution space [59].

17

When it comes to classification of metaheuristic algorithms, they can be

grouped due to the technique they discover an optimal solution after they assess

candidate solutions from a pool of all solutions. There are three types of metaheuristics

that can be named: local search, constructive and population-based algorithms.

Moreover, as a fourth class of algorithms, there are various hybrid type algorithms that

integrate assorted inspirations. Logic behind the class of local search algorithms is that

finding an optimal solution takes place by iterating an only solution for many times

and making small modifications on it. Simulated annealing can be an example of this

class, which imitates the cooling of a crystalline solid. When an algorithm is not

improving a candidate solution to get an optimal solution, but construct it by adding

elements to a partial solution, this is called a constructive algorithm. Ant colony

optimization (ACO) is an example for this class of algorithms. Population-based

algorithms, one of which is Particle Swarm Optimization implemented in this study,

discover candidates of optimal solution by integrating other candidate solutions from

a pool of possible solution which is generally named swarm.

2.3.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) has been considered one of the best

optimization techniques as a result of convergence capability, easy implementation

and adoption and strong robustness [60]. PSO was first introduced by Kennedy and

Eberhart in 1995, which imitates the social behavior of bird or fish (particle) flocking

[61]. ANN and PSO application in engineering are well-known with a variety of

studies in different aspects.

A candidate solution to the optimization problem corresponds to each particle

in the swarm. In the algorithm, particles with n-dimensional problem are given

random positions and velocities, and the objective function of each particle at its

current position is recorded. Based on the results, the best known position for the a

particle, termed as individual best position (pbest), and the whole particles’ best-known

position, which is called the global best position (gbest), can be located. The optimum

solution is chased by combining pbest and gbest as they are updated by equations 17-20.

18

𝑉𝑖(𝑘 + 1) = 𝑤𝑉𝑖 (𝑘) + 𝑐1𝑟𝑎𝑛𝑑1 (𝑝𝑏𝑒𝑠𝑡,𝑖(𝑘) − 𝑋𝑖(𝑘))

+ 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡(𝑘) − 𝑋𝑖(𝑘)) (17)

𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) (18)

𝑝𝑏𝑒𝑠𝑡(𝑘 + 1) = {
𝑋𝑖(𝑘 + 1), 𝐹(𝑋𝑖(𝑘 + 1)) < 𝐹 (𝑝𝑏𝑒𝑠𝑡,𝑖(𝑘))

𝑝𝑏𝑒𝑠𝑡,𝑖(𝑘), 𝐹(𝑋𝑖(𝑘 + 1)) ≥ 𝐹 (𝑝𝑏𝑒𝑠𝑡,𝑖(𝑘))
 (19)

𝑔𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{𝐹 (𝑝𝑏𝑒𝑠𝑡,0(𝑘), … , 𝐹 (𝑝𝑏𝑒𝑠𝑡,𝑛(𝑘))} (20)

where i denotes particle index, k denotes iteration index, Vi represents velocity of the

ith particle, and w represents inertia weight, rand1 and rand2 are the two random

variables within [0, 1]. c1 and c2 are cognitive and social positive acceleration constants

[61], [62].

The pseudo code of the procedure is as follows:

randomly initialize population of particles

 repeat

for each particle i of the population do

if f(Xi(k))<f(pbest,i(k)) then

 pbest,i(k)= Xi(k)

end if

If f(pbest,i(k))<f(gbest(k))then

 gbest(k)= pbest,i(k)

end if

end for

Update velocity and position of each particle according to eq. 17 and 18 until

stop criteria being satisfied [61]. Flowchart of PSO algorithm is provided in Fig. 3

below.

19

Figure 3: Flowchart of PSO algorithm

2.3.2. Hybrid Intelligence with PSO

Metaheuristics are used to hybridize models for fine tuning internal elements

of ANNs. Particle Swarm Optimization (PSO) is used in many fields of engineering

for making prediction and optimizing ANN parameters. Researchers from different

areas have used various ways to hybridize artificial intelligence methods with PSO.

Also, PSO has been used in different study areas of civil engineering. To give the

examples of PSO implementation for different purposes, a few study will be

mentioned.

20

Predicting outcomes of construction claims and litigation is one of those

applications. In [63], PSO was implemented into ANN to replace the back propagation

algorithm. In this implementation, data was extracted and sorted out in years 1991 to

2000 case to case and disputes and court decisions were linked to one another. As data,

1105 sets of cases were used and splitted into 3 portions. 550 of those were used as

training data, 275 as test data and 280 were used to validate the model. After

conducting a sensitivity analysis, which was used to determine the most relevant input

features; 13 case input features were selected such as type of contract, parties involve

and late payment. Binary format was used to identify the features. If one of those 13

features occurred in the case, the numerical value of occurrence is included as 1. If it

did not occur, it took the value of 0. In the study, it was stated that the predictions made

successfully were measured as up to 80 % while ANN with back propagation reached

the prediction rate of 0.67 %. Additionally, the convergence speed was improved 33%

as compared to ANN model with back propagation.

In [64], support vector machines (SVMs) were used to predict the streamflows

of Swan River and St. Regis River in Montana, United States. Parameters of SVMs

were optimized with PSO. The results obtained with the PSO-SVM hybrid model were

compared to artificial neural networks (ANNs) and autoregressive moving average

model (ARMA). The PSO-SVM hybrid model forecasted the values of one month lead

with the correlation coefficient (R) of 0.86 whereas ANN and ARMA predicted with

R of 0.82 and 0.76, respectively. Also, the three methods were compared for the mean

relative absolute peak prediction error. PSO-SVM forecasted the values of peaks with

a mean relative absolute peak prediction error of 0.248, while ANN and ARMA model

predicted the peak values with errors of 0.266 and 0.355, respectively.

Another application of PSO-ANN model was the study [65]. In the study,

maximum surface settlement (MSS) was predicted and the results were compared to

the previously developed ANN model. Input features were horizontal to vertical stress

ratio, cohesion and Young’s modulus. The study did not use validation data where the

dataset was splitted into two parts as training data and test data with portions of %80

and %20, respectively. The number of swarm particles was selected due to trial and

error with the ANN model that had an architecture of 2-5-1, regarding that previously

developed conventional ANN model had the architecture of 3-4-1. The comparison

21

showed that the PSO-ANN model was superior to ANN model. On the test data, the

ANN model obtained the R2 score of 0.940 and the selected PSO-ANN model reached

the R2 score of 0.968, which stated the superiority of hybrid PSO-ANN model as

indicated in the study.

Slope stability during an earthquake is one of the most important subjects in

geotechnical engineering. In [66], factor of safety on homogeneous slopes was

predicted, which was predominantly affected by slope height, cohesion, peak ground

acceleration, gradient and friction angle. The predictions were made by two intelligent

systems: ANN and PSO-ANN hybrid models. A dataset of 699 instances was splitted

into 5 subsets, which were also divided into two as training and test sets. As a

performance indicator of the models obtained, R2 scores of ANN and PSO-ANN

models were 0.915 and 0.986, respectively. Considering the other performance

indicator RMSE, the value of 0.057 was obtained by ANN whereas PSO-ANN

obtained 0.022 at most.

In [67], a PSO-ANN hybrid model was aimed to be obtained to estimate

ultimate bearing capacity of rock-socketed piles. The number of sample piles socketed

in various rock types was 132. The model performance was not affected significantly

due to the number of iterations performed, independently from what the swarm size

was. Evaluating the training and test sets both, PSO-ANN model with the R2 score of

0.932 outperforms the ANN model. The ANN model yielded the predictions at the

accuracy with the R2 score of 0.846. Only on test sets, PSO-ANN and ANN models

obtained R2 scores of 0.938 and 0.830, respectively. However, the researchers warned

readers that the model was a good tool for preliminary design stage or should be used

carefully.

In [68], unconfined compressive strength of soft rocks was predicted with PSO-

ANN hybrid algorithm. On 40 good-quality soft rock samples, 4 different tests were

conducted, which were unconfined compressive stress test, the Brazilian tensile

strength test, point load index test and ultrasonic test. The dataset was splitted into two

as training data and test data with portions of 80% and 20%, respectively. The best

performing swarm size was determined as 125 with trial and error among the range of

25-300. ANN models with one hidden layer and two hidden layers were trained. The

best performing architecture was determined with two hidden layers with 12 neurons

22

in each layer. For obtaining unconfined compressive stress, correlations with

ultrasonic test, point load index test and the Brazilian tensile strength test yielded R2

scores of 0.832, 0.958, and 0.821, respectively. The PSO-ANN hybrid model

composed of two hidden layers with 12 neurons provided the R2 score of 0.97, which

outperforms the other correlations abovementioned.

In [69], PSO-ANN hybridization was used to predict unconfined compressive

strength of cemented paste backfill. ANN was employed for prediction and PSO was

used to tune the ANN models. Tailings type, cement-tailings ratio, solids content, and

curing time were the input parameters of the ANN models. Number of instances in the

dataset was 396, 80% of which was used as the training data and rest of it was used as

test data. The study mentioned that PSO-ANN models provided cost and time saving,

non-destructive and most importantly very accurate predictions as compared to other

methods. The accuracy of the proposed model was indicated by the correlation

coefficients of 0.969 and 0.979 on training and test data.

As a good example, in [70], ANN was hybridized with PSO to predict uniaxial

compressive strength of rock samples. By implementing PSO to ANN, the researchers

aimed to eliminate the disadvantage of getting stuck at a local minima or a slow rate

of learning with a conventional ANN model. After training many hybrid PSO-ANN

models, in the end, they obtained a model which performed much better than the

average of conventional ANN models. When these two methods were compared, the

PSO-ANN hybrid model obtained a success with the coefficient of determination (R2)

of 0.97 whereas ANN reached 0.71.

Another PSO-ANN hybrid model was used in mining engineering to predict

strength of paste filling material [71]. Strength of paste filling material was examined

as a function of concentration of fill, fly ash and cementing material with a dataset of

12 instances. Training and test data were divided as 9 and 3, respectively. The method

provided predictions with maximum, minimum and average relative errors of 4.3%,

0.8% and 2.4%, respectively for early strength. For late strength, maximum, minimum

and average relative errors were 3.7%, 0.5%, and 1.5%.The authors of the paper stated

that they obtained relatively high errors since the training dataset did not have enough

samples. In spite of the reason abovementioned, they found this method useful.

23

In [62], forecasting shear strength of squat reinforced concrete walls was

conducted with PSO-ANN hybrid models and compared to previous models. The

dataset used had 139 samples and it was divided into two part as training and test sets

with portions of %80 and %20, respectively. The architecture of ANN models was 6-

n-1. Since the researchers did not have specific technique for the number of neurons

in the hidden layer, trial and error approach was used and eventually number of

neurons was determined as 13. The only activation function used in ANN models was

sigmoid function. On test data, R2 scores of 9 PSO-ANN models ranged between

0.860- 0.975 while 9 ANN model made predictions within the interval of R2 scores of

0.759- 0.881. Therefore, the study stated that the obtained PSO-ANN hybrid algorithm

was a robust method.

Another endeavor for PSO application to ANN was to predict mechanical

properties in fiber reinforced self-compacting concrete [72]. In the paper, a polynomial

model was obtained with PSO using the data trained by a feed-forward multilayer

perceptron ANN model for mechanical properties of fiber reinforced self-compacting

concrete. This study also used %80-%20 training-test data portions with no validation

data. It was stated that PSO-ANN hybrid model was able to model mechanical

properties of fiber reinforced self-compacting concrete accurately. At the iteration

number of 200, PSO-ANN hybrid model to generate a polynomial model predicted the

compressive strength with the R2 score of 0.999 while PSO without ANN predicted

with 0.945.

In [73], PSO was implemented Support Vector Regression (SVR). The hybrid

model was used to predict two outputs: compressive strength and rapid chloride

penetration test (RCPT) values. Parameters of SVR were tuned by the application of

PSO to obtain a better performing model. The results were compared to the results of

adaptive neural-fuzzy inference system (ANFIS) method. Both methods were

employed to the data with 100 instances. The dataset was splitted into training and test

set with portions of 90% and 10%, respectively. The splitting was repeated five times

and 5 training and test sets were generated. The swarm size was selected as 30 and

number of iterations was selected as 100. On test sets, for predicting concrete

compressive strength, R2 scores of 0.941 and 0.823 were reached by SVR–PSO and

24

ANFIS on average, respectively. For the prediction of RCPT value, SVR–PSO with

the R2 score of 0.980 was better than ANFIS, while ANFIS obtained 0.974.

In [74], hybrid multilayer perceptrons (HMLP) was used with Center-Unified

Particle Swarm Optimization (CUPSO) which is a combination of two variants:

Unified PSO (UPSO) [75] and Center PSO (CPSO) [76] to predict strengths of

concrete-type specimens. With this model, compressive strength of concrete, strength

of deep beams and strength of squat walls were predicted with datasets having

instances of 103, 62 and 62, respectively. The researcher stated that, as compared to

traditional linear multilayer perceptrons, certain high-order HMLP models yielded

more accurate results. On test data, the selected model predicted compressive strength

of concrete, strength of deep beams and strength of squat walls with R2 scores of

0.9756, 0.9772 and 0.9919, respectively.

25

CHAPTER 3

METHODOLOGY

For predicting compressive strength of concrete with PSO-ANN hybrid model

accurately, the methodology explained below was followed. In the endeavor of

accurate predictions, the best performing activation function, number of hidden layers,

initial learning rate and L2 regularization term for weight updates were determined or

optimized over individual intervals.

MLP Regressor of Scikit-learn library of Python programming language is

used for ANN models [77]. By trial and error, in all PSO-ANN hybrid models, swarm

size and number of iterations of PSO algorithm are set to 50 considering time

consumption and efficiency, which is a common attitude for this kind of efforts [70],

[78].

ANN is employed in the medium of Python for its functionality and flexibility

in usage. Python is an object-oriented, high level programming language with its broad

range of libraries, modules and packages. In Python, many different libraries can be

utilized for many different purposes including machine learning, randomizing,

mathematical operations, plotting, graph drawing and visualization, training/test data

splitting, scaling and also dataframe and matrix operations. The libraries used in the

codes developed for this thesis are listed in Table 1 below.

26

Table 1: Python libraries used in the thesis

Library Purpose

Random randomizing

Math mathematical operations

Pandas data manipulation and analysis

Numpy scientific computing

pandas.plotting plotting

matplotlib.pyplot plotting

scikit-learn machine learning

Pickle saving and loading models

Time time keeping

The dataset used in the thesis was donated to Machine Learning Repository,

Center for Machine Learning and Intelligent Systems, University of California, Irvine

by Prof. I-Cheng Yeh from Department of Information Management, Chung-Hua

University on August 3, 2007. The dataset includes 1030 instances and 9 attributes, 8

of which are quantitative input variables and 1 of which is quantitative output variable.

There is no missing attribute value. Table 2 showing the first 10 rows of the data can

be seen below.

Table 2: First 10 rows of the data used

Cement

(kg/m3)

Blast

Furnace
Slag

(kg/ m3)

Fly Ash

(kg/ m3)

Water

(kg/ m3)

SP*

(kg/ m3)

Coarse

Aggregate

(kg/ m3)

Fine

Aggregate

(kg/ m3)

Age

(day)

Concrete

comp.
strength
(MPa)

540.0 0.0 0.0 162.0 2.5 1040.0 676.0 28 79.99

540.0 0.0 0.0 162.0 2.5 1055.0 676.0 28 61.89

332.5 142.5 0.0 228.0 0.0 932.0 594.0 270 40.27

332.5 142.5 0.0 228.0 0.0 932.0 594.0 365 41.05

198.6 132.4 0.0 192.0 0.0 978.4 825.5 360 44.30

266.0 114.0 0.0 228.0 0.0 932.0 670.0 90 47.03

380.0 95.0 0.0 228.0 0.0 932.0 594.0 365 43.70

380.0 95.0 0.0 228.0 0.0 932.0 594.0 28 36.45

266.0 114.0 0.0 228.0 0.0 932.0 670.0 28 45.85

SP: Superplasticizer

700 of total 1030 instances were used as training data while 175 instances were

used as validation data and the remaining 155 were used as test data. In accordance to

the explanation in the background chapter, the data was splitted into three portions as

training data to train the data, validation data to tune models and test data to evaluate

27

accuracy of models. It is worth noting to clear the ambiguity about the existence of

validation and test set simultaneously that it is necessary to have a different set of data

which is not used for training or tuning models to evaluate accuracy of models without

having overfitting [79].

As the name imply, training data is the portion of the data in which learning

process happens. After having a model obtained, the model is tuned to get better

predictions over datasets. The portion of the dataset to be used to tune the model is

validation data. It is separated from training set and only used to tune the model. It is

needed to evaluate models on separate sets of data to have unbiased measure of

accuracy [25]. Therefore, the model should be evaluated, namely tested with a

different dataset that is held separate from training. This is test data.

The data was normalized due to the eq. 21 below to be fit into the interval of

[0,1] in order to avoid the effects of units of measurements. This normalization

equation was used since Scikit-learn library employed it where the range of the

normalization could be adjusted. The default interval of [0, 1] was selected. The

statistical description of inputs and output is provided in Table 3 below.

𝑋𝑛𝑜𝑟𝑚 = (𝑋 − 𝑋𝑚𝑖𝑛) − (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (21)

If ANN models train the data in too many iterations, the model may overfit on

the data. Numbers of neurons in hidden layers after a certain threshold may yield

overfitting, however very few numbers of neurons may demonstrate weak

performance. The key for overfitting is checking model on test data. Prediction over

test data gives the measurement of that whether the overfitting occurred or not.

Performance of the model also depends on the number of instances of dataset. Less

number of instances brings weaker models, but higher numbers of instances are more

likely to provide more accurate predictions [80].

In this study, as performance indicators of the ANN-PSO hybrid algorithms,

root-mean-square error (RMSE), mean absolute error (MAE) and coefficient of

determination (COD) (R2) are chosen. RMSE, MAE and COD (R2) are given in

equations 22, 23 and 24 below.

28

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖)2𝑁

𝑖=1

𝑁
 (22)

𝑀𝑆𝐸 =
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖)

2𝑁
𝑖=1

𝑁
 (23)

𝑀𝐴𝐸 =
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖|

𝑁
𝑖=1

𝑁
 (24)

Table 3: Statistical description of inputs and output

Variables Type Maximum Minimum Mean SD Kurtosis Skewness

Cement

(kg/m3)
Input 540.00 102.00 281.17 104.51 -0.52 0.51

Blast Furnace Slag

(kg/m3)
Input 359.40 0.00 73.90 86.28 -0.51 0.80

Fly Ash

(kg/m3)
Input 200.10 0.00 54.19 64.00 -1.33 0.54

Water

(kg/m3)
Input 247.00 121.75 181.57 21.36 0.12 0.07

Superplasticizer

(kg/m3)
Input 32.20 0.00 6.20 5.97 1.41 0.91

Coarse Aggregate

(kg/m3)
Input 1145.00 801.00 972.92 77.75 -0.60 -0.04

Fine Aggregate

(kg/m3)
Input 992.60 594.00 773.58 80.18 -0.10 -0.25

Age

(day)
Input 365.00 1.00 45.66 63.17 12.17 3.27

Concrete

compressive

strength (MPa)

Output 82.60 2.33 35.82 16.71 -0.31 0.42

29

In this study, PSO was used to tune the hyperparameters of ANN models. MLP

regressor of Scikit-learn library has different parameters which can be optimized by

an external algorithm. These are listed below on Table 4.

Table 4: MLP Regressor parameters and definitions

MLP Regressor parameters and definitions

activation
Activation function for the hidden layer, it can be identity,

logistic sigmoid, tanh or relu

alpha L2 penalty (regularization term) parameter

batch_size
Minibatches' size for stochastic optimizers. When solver is

'lbfgs', it is not used.

beta_1

Exponential decay rate for estimates of first moment

vector in adam, should be in [0, 1). Only used when

solver='adam'

beta_2

Exponential decay rate for estimates of second moment

vector in adam, should be in [0, 1). Only used when

solver='adam'

early_stopping

Whether to use early stopping to terminate training when

validation score is not improving. If set to true, it will

automatically set aside 10% of training data as validation

and terminate training when validation score is not

improving by at least tol for two consecutive epochs. Only

effective when solver='sgd' or 'adam'

epsilon
Value for numerical stability in adam. Only used when

solver='adam'

hidden_layer_sizes Number of neurons in hidden layers

learning_rate
Learning rate schedule for weight updates. It can be

constant, invscaling or adaptive.

learning_rate_init

The initial learning rate used. It controls the step-size in

updating the weights. Only used when solver='sgd' or

'adam'.

max_iter

Maximum number of iterations. The solver iterates until

convergence (determined by 'tol') or this number of

iterations.

momentum
Momentum for gradient descent update. Should be

between 0 and 1. Only used when solver='sgd'

nesterovs_momentum

30

power_t

The exponent for inverse scaling learning rate. It is used in

updating effective learning rate when the learning_rate is

set to 'invscaling'. Only used when solver='sgd'

random_state State or seed for random number generator

shuffle
Whether to shuffle samples in each iteration. Only used

when solver='sgd' or 'adam'.

solver
The solver for weight optimization. It can be 'lbfgs', 'sgd'

or 'adam'.

tol

Tolerance for the optimization. When the loss or score is

not improving by at least tol for two consecutive

iterations, unless learning_rate is set to 'adaptive',

convergence is considered to be reached and training

stops.

validation_fraction

The proportion of training data to set aside as validation

set for early stopping. Must be between 0 and 1. Only

used if early_stopping is True

verbose Whether to print progress messages to stdout.

warm_start

When set to True, reuse the solution of the previous call to

fit as initialization, otherwise, just erase the previous

solution.

Some of the most important parameters of MLP Regressor are explained here.

Activation is the activation functions for the hidden layers. It can be one of those:

identity function (eq. 25) logistic sigmoid function (eq. 26), hyperbolic tangent

function (eq. 27) or rectified linear units (ReLU) function (eq. 28). In artificial neural

networks, neurons send not only signals as on or off due to a threshold but also those

can compute values within a range that is specified by the activation function

employed [8]. Output of sigmoid function ranges within from 0 to 1 while hyperbolic

tangent ranges from -1 to 1. ReLU takes values within the range from 0 to infinity.

𝑓(𝑥) = 𝑥 (25)

𝑓(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (26)

tanh(𝑥) =
𝑒−𝑥 − 𝑒−𝑥

𝑒−𝑥 + 𝑒−𝑥
 (27)

31

𝑓(𝑥) = {
0 𝑖𝑓 𝑥 < 0
 𝑥 𝑖𝑓 𝑥 ≥ 0

 (28)

 “Solver” is the algorithm that updates weights of networks and can be selected

one of these three alternatives explained in the background chapter: “lbfgs” which

refers to limited memory quasi-Newton method for large scale optimization called L-

BFGS [30], “sgd” which refers to Stochastic Gradient Descent and “adam” which

refers to a stochastic gradient-based optimizer Adam stated by Kingma and Ba [33].

“Learning_rate” could be “constant”, “invscaling” or “adaptive”. If “constant”

is chosen is kept constant and set to “learning_rate_init”. “Invscaling” adjusts learning

rate according to eq. 29.

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒_𝑖𝑛𝑖𝑡

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡
 (29)

“Adaptive” sets learning rate up to the point two iterations cannot reduce the

training loss by minimum “tol”. If “early_stopping” is “True”, the learning rate is

adjusted to one-fifth of itself. “Max_iter” is the maximum number of iterations. Solver

iterates up to reaching “tol” or maximum number of iterations. “Tol” is the tolerance

for convergence. “Learning_rate_init” is the initial learning rate used and it sets the

step size for weight updates. Alpha is the L2 regularization parameter. For stochastic

optimizers, batch size is the size for mini-batches and its value is determined due eq.

30. If lbfgs is selected as the solver, it is not used.

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 𝑚𝑖𝑛(200, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠) (30)

Major MLP regressor parameters used in ANN models are given in Table 5. 20

ANN models are generated and the results are provided in Table 6 below. In the steps

from 1 to 3, it was aimed to increase the prediction performance of ANN models by

using PSO.

32

Table 5: Major MLP Regressor parameters in ANN models

Major MLP

regressor

parameters

Explanation

Possible parameter

values, intervals or

choices

Parameter values or

choices

activation activation function
identity, logistic,

tanh, relu
Logistic

alpha

L2 penalty

(regularization term)

parameter

(0.00001, 0.001) 0.0001

hidden_layer

_sizes

number of hidden

layers
no defined interval (20,20)

max_iter
Maximum number of

iterations
no defined interval 200

solver Solver lbfgs, sgd, adam Lbfgs

tol
Tolerance for

convergence
0.0001 (default) 0.0001

Table 6: Performances of the ANN models

Model

ID

RMSE R2 Score MAE
Elapsed

time
Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

ANN-1 8.67 8.22 0.75 0.74 6.60 6.16 0.43 sec.

ANN-2 6.90 6.56 0.84 0.83 4.90 4.66 0.37 sec.

ANN-3 7.42 7.83 0.82 0.77 5.57 5.63 0.45 sec.

ANN-4 7.21 7.19 0.83 0.80 5.26 5.11 0.51 sec.

ANN-5 7.62 7.39 0.81 0.79 5.50 5.45 0.43 sec.

ANN-6 8.09 7.16 0.78 0.80 5.78 5.24 0.41 sec.

ANN-7 6.14 7.78 0.88 0.77 4.73 5.17 0.49 sec.

ANN-8 6.72 6.54 0.85 0.84 5.09 4.86 0.56 sec.

ANN-9 7.58 7.34 0.81 0.79 5.80 5.70 0.53 sec.

ANN-10 7.28 6.37 0.83 0.84 5.47 4.80 0.49 sec.

ANN-11 8.16 7.25 0.78 0.80 6.10 5.51 0.49 sec.

ANN-12 6.38 8.17 0.87 0.74 4.88 5.31 0.55 sec.

ANN-13 5.92 6.68 0.88 0.83 4.31 4.96 0.49 sec.

ANN-14 6.31 6.23 0.87 0.85 4.86 4.69 0.42 sec.

ANN-15 8.03 7.17 0.79 0.80 5.87 5.22 0.46 sec.

ANN-16 6.23 7.65 0.87 0.78 4.80 5.23 0.42 sec.

ANN-17 6.94 7.71 0.84 0.77 5.27 5.66 0.42 sec.

ANN-18 6.27 7.23 0.87 0.80 4.52 5.11 0.42 sec.

ANN-19 8.98 8.87 0.73 0.70 6.63 6.33 0.40 sec.

ANN-20 7.82 7.52 0.80 0.78 5.89 5.98 0.44 sec.

AVERAGE 7.23 7.34 0.83 0.79 5.39 5.34 0.46 sec.

33

3.1. Step 1: Determining the best performing activation function for

optimization

To obtain a well-established hybrid model, numbers of neurons in the two

hidden layers should be determined. Since obtaining the optimal number of neurons in

the two hidden layers can be achieved with the other parameters controlled or pre-

determined, first of all, the best performing activation function was determined with

PSO.

As a preliminary step, many combinations of swarm size and iterations were

selected and employed. In the end, number of iterations and swarm size for PSO were

set to 50 by trial and error.

There is a risk for underfitting or overfitting by the effect of numbers of neurons

in the hidden layers if numbers of neurons were set to a too small or too large number.

Therefore, numbers of neurons were initially set to 20 as a reasonable value from

previous experience for both the hidden layers during the 80 runs of the algorithm.

 After this, the best performing activation functions on average were determined

to step up to determine the numbers of neurons in the hidden layers that will affect the

performance of prospective ANN models to be composed.

PSO parameters that are c1, c2, w and w* that is the multiplier of w in each

iteration are determined as 1.5, 2, 1 and 0.995, respectively by trial and error and also

previous experience. Swarm particles generated in the PSO algorithm implemented in

this section stores information about “position” which is the unknown but to be

optimized, “velocity”, “cost” which is the value of the cost function used to evaluate

the performance of ANN model, “best cost” which is the best cost value obtained

among the iterations up to the latest iteration of the cost function, “model” which is

stored as the current model, “best model” which is stored as the best model that yields

best cost among the iterations up to the latest iteration and lastly “best position” which

is the variable that yields the best cost.

In the further models to be explained later in this study, the information about

the activation function was stored in the information cell of a particle, however since

the best performing activation functions were selected during these runs and this

information was stored in the ANN model, it was not stored in the particle. Major MLP

34

Regressor parameters used in construction of the ANN models used in this section are

given in Table 7 below.

Table 7: Major MLP Regressor parameters in Step 1

Major MLP

Regressor

parameters

Explanation

Possible parameter

values, intervals or

choices

Parameter values or

choices

activation activation function
identity, logistic,

tanh, relu

to be randomly

selected

alpha

L2 penalty

(regularization term)

parameter

(0.00001, 0.001) to be optimized

hidden_layer_sizes
number of hidden

layers
no defined interval (20,20)

max_iter
Maximum number of

iterations
no defined interval 200

solver Solver lbfgs, sgd, adam lbfgs

Tol
Tolerance for

convergence
0.0001 (default) 0.0001

As the results can be seen in Tables 8,9,10 and 11, 80 PSO-ANN hybrid models

were generated. While obtaining the possible best models by optimizing alpha over

the interval of (0.00001, 0.001), RMSE, R2 and MAE values of 4 different activation

functions were computed for 20 models separately. Performances of models obtained

with identity, logistic sigmoid, hyperbolic tangent (tanh) and rectified linear units

(ReLU) functions were provided in tables 8, 9, 10 and 11, respectively. Average values

of RMSE, R2 and MAE were summarized in Table 12. Although identity function was

the best choice in terms of time consumption, its prediction performance evaluated by

these performance indicators was far behind the other three functions. The

performances of the remaining three functions were in a tight competition. Regarding

the results for both validation and test data, it was decided to step up the next phase

for optimizing ANN models with numbers of neurons in the hidden layers with the

35

random usage of logistic sigmoid, hyperbolic tangent (tanh) and rectified linear units

(ReLU) functions.

Table 8: Performances of the models with identity function

Identity Function

Model

ID

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

ID1 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

 55 sec.

ID2 10.84 10.94 0.59 0.61 8.67 8.57
3 min.

 15 sec.

ID3 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

45 sec.

ID4 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

58 sec.

ID5 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

55 sec.

ID6 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

 42 sec

ID7 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

 55 sec.

ID8 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

47 sec.

ID9 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

50 sec.

ID10 10.84 10.94 0.59 0.61 8.67 8.57
2 min.

55 sec.

ID11 10.86 11.07 0.57 0.61 8.35 8.66
2 min.

51 sec.

ID12 10.86 11.07 0.57 0.61 8.35 8.66
2 min.

43 sec.

ID13 10.86 11.07 0.57 0.61 8.35 8.66
2 min.

41 sec.

ID14 10.86 11.07 0.57 0.61 8.35 8.66
2 min.

56 sec.

ID15 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

 7 sec.

ID16 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

11 sec.

ID17 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

3 sec.

ID18 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

4 sec.

ID19 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

17 sec.

ID20 10.86 11.07 0.57 0.61 8.35 8.66
3 min.

1 sec.

36

Table 9: Performances of the models with logistic sigmoid function

Logistic Sigmoid Function

Model

ID

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

SIG1 5.24 6.95 0.84 0.81 5.85 4.87
13 min.

11 sec.

SIG2 5.13 5.86 0.76 0.87 5.84 4.19
13 min.

17 sec.

SIG3 5.32 6.28 0.90 0.85 5.08 4.30
13 min.

11 sec.

SIG4 5.47 6.99 0.87 0.81 5.39 5.04
12 min.

14 sec.

SIG5 5.21 6.83 0.83 0.82 4.93 4.87
13 min.

11 sec.

SIG6 5.35 6.15 0.79 0.85 6.15 4.51
13 min.

12 sec.

SIG7 5.37 7.16 0.78 0.80 4.63 4.74
13 min.

11 sec.

SIG8 5.30 6.19 0.85 0.85 6.39 4.53
13 min.

19 sec.

SIG9 5.29 6.39 0.84 0.84 4.81 4.61
13 min.

14 sec.

SIG10 5.42 5.61 0.85 0.88 5.75 4.00
13 min.

10 sec.

SIG11 5.27 7.58 0.81 0.81 4.74 5.48
24 min.

3 sec.

SIG12 5.57 7.30 0.83 0.83 5.19 5.33
22 min.

3 sec.

 SIG13 5.49 6.96 0.86 0.84 4.80 5.06
17 min.

10 sec.

SIG14 5.21 7.57 0.83 0.81 5.24 5.65
17 min.

3 sec.

SIG15 5.43 7.89 0.86 0.80 5.43 5.82
16 min.

12 sec.

SIG16 5.38 8.10 0.88 0.79 5.43 6.06
17 min.

 7 sec.

SIG17 5.25 7.19 0.87 0.83 4.84 5.13
17 min.

2 sec.

SIG18 5.46 7.70 0.84 0.81 5.13 5.72
17 min.

3 sec.

SIG19 5.33 7.37 0.85 0.82 5.35 5.45
19 min.

3 sec.

SIG20 5.44 6.80 0.85 0.85 4.66 5.00
20 min.

5 sec.

37

Table 10: Performances of the models with hyperbolic tangent (tanh) function

Hyperbolic Tangent Function

Model

ID

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

TANH

1
5.98 5.98 0.82 0.87 5.42 4.42

23 min.

49 sec.

TANH

2
6.08 5.97 0.81 0.87 5.58 4.60

24 min.

11 sec.

TANH

3
5.95 5.60 0.79 0.89 5.67 4.24

23 min.

42 sec.

TANH

4
5.95 5.88 0.81 0.88 6.44 4.45

23 min.

48 sec.

TANH

5
5.92 5.64 0.82 0.89 5.27 4.21

23 min.

39 sec.

TANH

6
6.03 6.39 0.84 0.85 5.12 4.99

23 min.

33 sec.

TANH

7
6.12 6.60 0.82 0.84 5.23 5.12

23 min.

44 sec.

TANH

8
5.93 5.92 0.82 0.87 5.46 4.58

23 min.

48 sec.

TANH

9
6.05 5.91 0.84 0.88 5.20 4.60

23 min.

46 sec.

TANH

10
5.74 5.91 0.79 0.87 5.92 4.62

23 min.

45 sec.

TANH

11
6.33 7.65 0.80 0.78 6.04 5.52

17 min.

51 sec.

TANH

12
6.22 7.55 0.81 0.79 5.20 5.53

18 min.

14 sec.

TANH

13
6.31 7.18 0.79 0.81 5.53 5.39

17 min.

28 sec.

TANH

14
6.31 7.18 0.79 0.81 5.53 5.39

17 min.

28 sec.

TANH

15
6.23 7.25 0.77 0.81 5.69 5.35

17 min.

6 sec.

TANH

16
6.35 7.34 0.78 0.80 5.20 5.42

16 min.

40 sec.

TANH

17
6.23 8.46 0.77 0.74 5.74 5.99

16 min.

43 sec.

TANH

18
6.10 7.07 0.68 0.82 5.71 5.12

17 min.

 0 sec.

TANH

19
6.26 6.84 0.78 0.83 5.92 5.00

17 min.

 2 sec.

TANH

20
6.06 6.76 0.77 0.83 6.90 4.92

16 min.

29 sec.

38

Table 11: Performances of the models with rectified linear units (ReLU)

function

Rectified Linear Units (ReLU) Function

Model

ID

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

RELU

1
5.44 6.52 0.85 0.86 5.36 5.03

14 min.

39 sec.

RELU

2
5.45 6.75 0.85 0.85 5.13 5.18

14 min.

25 sec.

RELU

3
5.33 7.10 0.85 0.83 4.87 5.35

14 min.

42 sec.

RELU

4
5.44 6.47 0.79 0.86 4.98 4.83

14 min.

34 sec.

RELU

5
5.45 6.54 0.86 0.85 4.85 5.11

14 min.

37 sec.

RELU

6
5.27 6.54 0.86 0.85 4.48 4.91

14 min.

44 sec.

RELU

7
5.49 6.94 0.86 0.84 5.04 5.15

14 min.

49 sec.

RELU

8
5.29 6.35 0.85 0.86 4.68 4.90

14 min.

42 sec.

RELU

9
5.75 7.16 0.84 0.80 5.55 5.53

9 min.

46 sec.

RELU

10
5.72 7.38 0.87 0.79 5.45 5.74

9.0 min.

52 sec.

RELU

11
5.80 6.90 0.80 0.83 5.72 5.40

9 min.

59 sec.

RELU

12
5.83 6.56 0.77 0.85 5.53 5.11

10 min.

3 sec.

RELU

13
5.66 6.99 0.80 0.83 5.86 5.44

10 min.

6 sec.

RELU

14
5.83 6.86 0.79 0.83 5.68 5.24

10 min.

12 sec.

RELU

15
5.72 7.06 0.80 0.82 5.63 5.63

11 min.

17 sec.

RELU

16
5.66 6.75 0.82 0.84 5.37 5.20

11 min.

22 sec.

RELU

17
5.67 6.87 0.78 0.83 4.85 5.36

10 min.

1 sec.

RELU

18
5.71 6.79 0.79 0.84 5.08 5.31

9 min.

47 sec.

RELU

19
5.71 6.72 0.78 0.84 5.11 5.18

9 min.

41 sec.

RELU

20
5.72 6.83 0.80 0.83 5.59 5.26

9 min.

51 sec.

39

Table 12: Average values of RMSE, R2 Score and MAE of the models in Step 1

Activation

function

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

Identity 10.85 11.01 0.58 0.61 8.51 8.61
2 min
57 sec.

Logistic

Sigmoid
5.35 6.94 0.84 0.83 5.28 5.02

15 min

54 sec.

Tanh 6.11 6.65 0.79 0.84 5.64 4.97
20 min.
29 sec.

ReLU 5.60 6.80 0.82 0.84 5.24 5.24
11 min.

57 sec.

3.2. Step 2: PSO-ANN Hybrid Models Optimizing Numbers of Neurons

in Hidden Layers

Numbers of neurons in hidden layers play a key role for accuracy of ANN

models. To reach accurately predicting models, PSO algorithm was implemented into

ANN. Major MLP Regressor parameters used in construction of the ANN models used

in optimization with numbers of neurons in the hidden layers are given in Table 13.

Table 13: Major MLP Regressor parameters used in Step 2

Major MLP

Regressor

parameters

Explanation

Possible
parameter

values,

intervals or

choices

Parameter values or

choices

activation activation function

identity,

logistic, tanh,

relu

to be randomly selected

Alpha
L2 penalty (regularization

term) parameter

no defined

interval
0.00047388

hidden_layer_si

zes
number of hidden layers [20,35] to be optimized

max_iter
Maximum number of

iterations

no defined

interval
150

solver Solver
lbfgs, sgd,

adam
lbfgs

Tol Tolerance for convergence
0.0001

(default)
0.00001

40

As in the previous section, number of iterations and swarm size for PSO were

set to 50. Swarm particles generated in the PSO algorithm implemented in this section

stores information about activation function since it was randomly selected by the

swarm particles, in addition to the information stored explained in the previous section.

Interval for generating particles with positions of numbers of hidden layers was

set to [20,35]. If numbers of neurons are set to too small, there is a potential for

underfitting, whereas if those are too large, in reverse, it carries a risk for overfitting

or inefficiency. Therefore, from previous experience and trial and error, interval of

[20, 35] was decided. The results given by the 3 performance indicators which were

calculated on two sets of data, validation and test data, confirmed the fitness of the

interval selection.

 Totally, 20 PSO-ANN hybrid models were generated, which had model names

from HL1 to HL20. As can be seen from Table 14 below, 6 of those had the numbers

of neurons of (20,35), just on the boundaries of the interval. Moreover, among the 20

models generated, the best model was from those 6 models whose numbers of neurons

were (20,35). Therefore, for the next step, numbers of neurons in hidden layer were

determined as (20,35).

The scatter plot for HL7 which was the best model in this section demonstrated

the relationship between experimental test outputs (actual values) and the predicted

values of the model in Fig. 4 below. Iterations of PSO algorithm vs. errors in terms of

RMSE is provided in Fig. 5 below.

Figure 4: Test Outputs vs. Predicted Outputs for PSO-ANN Model HL7

R2=0.86

MPa

M
P

a

41

Figure 5: Iterations vs. RMSE for PSO-ANN models HL1-HL20

M
P

a

42

Table 14: Performances of the PSO-ANN models HL1-HL20

Model

ID

Number

of

neurons

RMSE R2 Score MAE
Elapsed

time
Validation

data
Test
data

Validation
data

Test
data

Validation
data

Test
data

HL1 [20, 35] 4.94 6.92 0.87 0.83 4.86 4.74
13 min.

36 sec.

HL2 [22, 23] 5.07 6.22 0.86 0.86 5.08 4.61
11 min.
50 sec.

HL3 [20, 20] 4.98 6.60 0.88 0.85 4.62 4.73
11 min.

0 sec.

HL4 [20, 35] 5.07 6.88 0.90 0.83 4.66 4.88
13 min.
4 sec.

HL5 [20, 32] 5.02 6.89 0.88 0.83 4.86 5.26
14 min.

50 sec.

HL6 [32, 20] 5.02 7.10 0.89 0.82 4.65 5.46
13 min.
11 sec.

HL7 [20, 35] 4.91 6.30 0.90 0.86 4.17 4.63
14 min.

15 sec.

HL8 [25, 32] 5.09 6.54 0.88 0.85 5.43 5.07
14 min.
44 sec.

HL9 [21, 26] 5.07 7.15 0.90 0.82 5.31 5.26
12 min.

47 sec.

HL10 [28, 25] 5.08 7.05 0.86 0.82 4.32 5.49
13 min.
22 sec.

HL11 [25, 35] 4.96 6.76 0.85 0.84 5.06 5.10
12 min.

35 sec.

HL12 [27, 20] 4.98 6.86 0.89 0.83 4.75 5.09
13 min.
34 sec.

HL13 [29, 20] 5.02 6.69 0.88 0.84 5.37 5.29
13 min.

16 sec.

HL14 [20, 35] 5.05 6.71 0.87 0.84 5.09 5.11
12 min.
25 sec.

HL15 [20, 20] 5.04 6.91 0.85 0.83 4.45 5.09
11 min.

16 sec.

HL16 [21, 22] 5.00 6.90 0.87 0.83 4.83 5.14
11 min.
2 sec.

HL17 [27, 23] 5.01 6.77 0.87 0.84 4.56 5.06
12 min.

50 sec.

HL18 [20, 35] 5.05 6.92 0.87 0.83 5.54 5.15
13 min.
27 sec.

HL19 [35, 20] 5.08 7.01 0.88 0.83 4.35 5.40
13 min.

4 sec.

HL20 [20, 35] 4.92 6.47 0.85 0.85 4.97 4.70
14 min.

11 sec.

AVERAGE 5.02 6.78 0.87 0.84 4.85 5.06
13 min.

1 sec.

43

3.3. Step 3: Final PSO-ANN Hybrid Models

3.3.1. PSO-ANN Hybrid Models Optimizing Alpha (L2 Regularization

term) with L-BFGS as Solver and Optimized ANN Architecture

Major MLP Regressor parameters used in construction of the PSO-ANN

hybrid models used in optimization with number of neurons in hidden layers is given

in Table 15 below.

Table 15: Major MLP Regressor parameters used in Step 3 first part

Major MLP

Regressor
parameters

Explanation

Possible

parameter

values,
intervals or

choices

Parameter values or

choices

activation activation function

identity,

logistic, tanh,
relu

to be randomly selected

alpha
L2 penalty (regularization

term) parameter

no defined

interval
to be optimized

hidden_layer_si

zes
number of hidden layers

no defined

interval
(20,35)

max_iter
Maximum number of

iterations

no defined

interval
150

solver Solver
lbfgs, sgd,

adam
lbfgs

tol Tolerance for convergence
0.0001

(default)
0.00001

Number of iterations and swarm size for PSO were set to 50. There is no

specific interval for generating particles with positions of alpha values. The interval

for positions of alpha values was set to [0.00001, 0.001]. Alpha value is very important

for preventing models from overfitting and helps models be optimized and predict

target values accurately. Since there is no certain rule for that, the interval

abovementioned is determined with experience.

In this section, total 60 PSO-ANN models were generated. These models had

numbers of neurons 20 and 35 for the first and the second hidden layers, respectively.

While these 60 models shared the same properties, except randomly selected or

optimized items, those differed in terms of their activation function. Although

activation functions employed in the previous section were selected randomly for 20

models, the endeavor in this section gave the opportunity to generate more models

with the best choice of numbers of neurons. Logistic sigmoid, hyperbolic tangent and

relu functions were contributed in the hybrid model equally per function. Tables 16,

44

17, 18 and 19 showing the performances of PSO-ANN models with logistic sigmoid,

hyperbolic tangent (tanh) and rectified linear units (ReLU) functions are provided

below.

Table 16: Performances of the PSO-ANN models with logistic sigmoid function

in Step 3 first part

Model

ID

Activation

function

RMSE R2 Score MAE Elapsed

time
Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

L1 log. sig. 5.14 6.04 0.85 0.87 5.11 4.58 18 min.
0 sec.

L2 log. sig. 5.34 6.16 0.87 0.86 4.74 4.52 17 min.

49 sec.

L3 log. sig. 5.38 6.32 0.85 0.85 5.17 4.57 17 min.
36 sec.

L4 log. sig. 5.28 6.48 0.82 0.85 5.29 4.93 17 min.

38 sec.

L5 log. sig. 5.27 6.06 0.84 0.87 4.71 4.46 17 min.
47 sec.

L6 log. sig. 5.38 6.42 0.86 0.85 4.84 4.41 17 min.

37 sec.

L7 log. sig. 5.32 6.64 0.86 0.84 5.26 4.88 17 min.
35 sec.

L8 log. sig. 5.38 6.47 0.88 0.85 4.79 4.63 17 min.

46 sec.

L9 log. sig. 5.35 6.34 0.87 0.85 4.54 4.49 17 min.
58 sec.

L10 log. sig. 5.39 6.68 0.87 0.84 4.99 4.93 17 min.

41 sec.

L11 log. sig. 5.31 6.27 0.87 0.86 5.00 4.68 17 min.
52 sec.

L12 log. sig. 5.34 6.38 0.87 0.85 5.30 4.83 17 min.

48 sec.

L13 log. sig. 5.37 5.56 0.85 0.89 5.49 4.00 17 min.
47 sec.

L14 log. sig. 5.38 6.20 0.86 0.85 4.58 4.57 18 min.

57 sec.

L15 log. sig. 5.29 6.30 0.85 0.85 5.15 4.63 17 min.
32 sec.

L16 log. sig. 5.35 6.28 0.87 0.86 5.07 4.55 17 min.

28 sec.

L17 log. sig. 5.39 6.69 0.87 0.84 4.64 4.90 17 min.
25 sec.

L18 log. sig. 5.38 6.08 0.87 0.86 5.04 4.65 17 min.

26 sec.

L19 log. sig. 5.39 5.53 0.87 0.89 4.66 4.04 17 min.
25 sec.

L20 log. sig. 5.36 6.47 0.87 0.85 4.70 4.90 17 min.

40 sec.

45

Table 17: Performances of the PSO-ANN models with hyperbolic tangent (tanh)

function in Step 3 first part

Model

ID

Activation

function

RMSE R2 Score MAE

Elapsed

time
Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

T1 tanh 4.92 6.50 0.89 0.86 4.86 4.97 16 min.

17 sec.

T2 tanh 4.84 6.89 0.88 0.84 4.64 5.32 16 min.

30 sec.

T3 tanh 4.85 6.80 0.90 0.85 4.38 5.10 17 min.

52 sec.

T4 tanh 4.65 6.87 0.88 0.84 4.72 5.15 17 min.

48 sec.

T5 tanh 4.84 7.17 0.85 0.83 4.62 5.35 18 min.

5 sec.

T6 tanh 4.84 6.80 0.88 0.85 4.40 5.25 17 min.

50 sec.

T7 tanh 4.93 6.63 0.88 0.85 4.26 4.87 17.min.59

sec.

T8 tanh 4.84 6.31 0.89 0.87 5.24 4.79 18 min.

0 sec.

T9 tanh 4.99 6.65 0.89 0.85 4.25 5.12 16 min.

50 sec.

T10 tanh 4.82 7.28 0.87 0.82 4.56 5.47 16 min.

14 sec.

T11 tanh 4.80 6.94 0.88 0.84 4.51 5.26 16 min.

47 sec.

T12 tanh 4.92 6.77 0.87 0.85 4.59 5.07 17 min.

31 sec.

T13 tanh 4.94 6.58 0.91 0.86 4.44 4.92 20 min.

29 sec.

T14 tanh 4.86 6.88 0.90 0.84 3.99 5.12 16 min.

24 sec.

T15 tanh 4.78 6.76 0.87 0.85 5.22 5.06 17 min.

55 sec.

T16 tanh 4.95 7.03 0.88 0.84 4.48 5.22 17 min.

49 sec.

T17 tanh 4.91 6.65 0.88 0.85 4.46 5.04 17min.

12 sec.

T18 tanh 4.86 6.50 0.89 0.86 4.54 4.89 17 min.

39 sec.

T19 tanh 4.88 6.72 0.88 0.85 4.55 5.09 17 min.

44 sec.

T20 tanh 4.85 6.94 0.85 0.84 4.54 5.26 17 min.

1 sec.

46

Table 18: Performances of the PSO-ANN models with rectified linear units

(ReLU) function in Step 3 first part

Model

ID

Activation

function

RMSE R2 Score MAE

Elapsed

time
Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

R1 relu 6.19 6.55 0.84 0.86 5.30 4.84 14 min.

54 sec.

R2 relu 6.09 7.20 0.82 0.83 5.56 5.31 17 min.

0 sec.

R3 relu 6.06 6.27 0.82 0.87 5.16 4.49 15 min.

34 sec.

R4 relu 6.25 6.52 0.84 0.86 5.35 4.89 14 min.

30 sec.

R5 relu 5.91 6.12 0.84 0.88 5.34 4.60 12 min.

59 sec.

R6 relu 6.26 6.28 0.83 0.87 5.14 4.68 12 min.

48 sec.

R7 relu 6.24 6.37 0.85 0.87 5.55 4.71 12 min.

40 sec.

R8 relu 6.18 6.28 0.83 0.87 5.54 4.58 12 min.

39 sec.

R9 relu 6.18 6.30 0.85 0.87 5.46 4.66 12 min. 49

sec.

R10 relu 5.97 7.00 0.83 0.84 5.48 5.37 12 min.

41 sec.

R11 relu 6.10 6.25 0.82 0.87 5.39 4.44 12 min.

41 sec.

R12 relu 6.19 6.31 0.82 0.87 5.15 4.72 12 min.

55 sec.

R13 relu 6.24 6.44 0.83 0.87 5.13 4.62 12 min.

50 sec.

R14 relu 6.22 6.36 0.78 0.87 5.52 4.64 12 min.

43 sec.

R15 relu 6.24 6.54 0.82 0.86 5.21 4.94 12 min.

43 sec.

R16 relu 6.28 6.48 0.82 0.87 5.05 4.80 12 min.

55 sec.

R17 relu 6.30 6.57 0.84 0.86 6.20 5.04 12 min.

46 sec.

R18 relu 6.23 6.08 0.82 0.88 5.79 4.46 12 min.

57 sec.

R19 relu 5.98 6.50 0.84 0.86 5.60 4.62 12min.

44 sec.

R20 relu 6.14 6.17 0.83 0.88 5.33 4.60 12 min.

51 sec.

47

Table 19: Average values of RMSE, R2 Score and MAE of the models in Step 3

first part

Activation
function

RMSE R2 Score MAE

Elapsed time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

log. sig. 5.34 6.27 0.86 0.86 4.95 4.61 17 min. 45 sec.

tanh 4.86 6.78 0.88 0.85 4.56 5.12 17 min. 30 sec.

relu 6.16 6.43 0.83 0.87 5.41 4.75 13 min. 20 sec.

Performance of the models are given in the Tables 16, 17, 18 and 19. On

average, models with logistic sigmoid and hyperbolic tangent functions performed

better than models with relu function, while relu demonstrated the best time

consumption by far. If R2 scores on data are considered among all models; L13, L19,

T8, T13 which also has the highest R2 score, T18, R5, R18 and R20 outshine. The plot

showing iterations vs errors (RMSE) of 8 selected model is provided in Fig. 6. The

scatter plots showing test outputs vs. predicted outputs for L13, L19, T8, T13, T18,

R5, R18 and R20 are provided in figures 7, 8, 9, 10, 11, 12, 13, 14 below.

Figure 6: Iteration vs RMSE for 8 selected PSO-ANN models

48

Figure 7: Test Outputs vs. Predicted Outputs for PSO-ANN Model L13

R2=0.89

MPa

M
P

a

49

Figure 8: Test Outputs vs. Predicted Outputs for PSO-ANN Model L19

Figure 9: Test Outputs vs. Predicted Outputs for PSO-ANN Model T8

R2=0.89

M
P

a

MPa

R2=0.87

M
P

a

MPa

50

Figure 10: Test Outputs vs. Predicted Outputs for PSO-ANN Model T13

Figure 11: Test Outputs vs. Predicted Outputs for PSO-ANN Model T18

R2=0.86

MPa

M
P

a

51

Figure 12: Test Outputs vs. Predicted Outputs for PSO-ANN Model R5

Figure 13: Test Outputs vs. Predicted Outputs for PSO-ANN Model R19

R2=0.88

MPa

M
P

a

R2=0.86

MPa

M
P

a

52

Figure 14: Test Outputs vs. Predicted Outputs for PSO-ANN Model R20

3.3.2. PSO-ANN Hybrid Models Optimizing Alpha (L2 Regularization

term) and Initial Learning Rate with Stochastic Gradient Descent (SGD)

and Optimized ANN Architecture

Major MLP Regressor parameters used in construction of the PSO-ANN

hybrid models in optimizing alpha (L2 Regularization term) and initial learning rate

with Stochastic Gradient Descent (SGD) as solver are given in Table 20.

Table 20: Major MLP Regressor parameters used in Step 3 second part

Major MLP

Regressor

parameters

Explanation

Possible

parameter

values,

intervals or

choices

Parameter values or

choices

activation activation function

identity,

logistic, tanh,

relu

to be randomly

selected

alpha

L2 penalty

(regularization term)

parameter

no defined

interval
to be optimized

R2=0.88

MPa

M
P

a

53

hidden_layer_

sizes
number of hidden layers

no defined

interval
(20,35)

solver Solver sgd, adam sgd

learning rate Learning rate schedule

constant,

invscaling,

adaptive

constant

learning_rate_

init
Initial learning rate

[0.000001,

0.001]
to be optimized

max_iter
Maximum number of

iterations

no defined

interval
150

tol
Tolerance for

convergence

0.0001

(default)
0.00001

 Number of iterations and swarm size for PSO were set to 50. There is no

specific interval for generating particles with positions of alpha values was set to

[0.000001, 0.001]. Alpha value is used in optimization again. Since there is no certain

rule for that, the interval abovementioned was expanded with respect to the previous

section. Initial learning rate also used the same interval for optimization.

 10 PSO-ANN models were generated. These models had numbers of neurons

20 and 35, respectively for the first and the second hidden layers because it was

decided that among the other possibilities this pair of numbers for neurons performed

better. Additionally, activation function was randomly selected by swarm particles

from the best performing three activation functions.

 Quick convergence of SGD solver can be seen obviously in the models.

However, the performance of SGD was far behind the performance of solver L-BFGS

in all three performance indicators as can be seen in Table 21. The best performing

model SGD6 among the models with Stochastic Gradient Descent (SGD) can be seen

in Fig. 15.

Table 21: Performances of the PSO-ANN models with solver SGD

Model

ID

Activation

function

RMSE R2 Score MAE
Elapsed

time Validation

data

Test

data

Validation

data

Test

data

Validation

data

Test

data

SGD1 relu 7.25 7.58 0.67 0.80 8.06 5.83
13 min.

14 sec.

54

SGD2 relu 7.10 7.66 0.64 0.79 7.97 5.74
12 min.

52 sec.

SGD3 log. sig. 6.89 8.34 0.66 0.75 8.45 6.61
15 min.

53 sec.

SGD4 relu 7.34 8.12 0.66 0.77 8.18 6.23
12 min.

4 sec.

SGD5 tanh 7.72 9.06 0.68 0.71 8.02 7.25
18 min.

53 sec.

SGD6 relu 7.37 7.49 0.67 0.80 8.06 5.66
13 min.

48 sec.

SGD7 relu 7.28 8.56 0.62 0.74 7.37 6.72
12 min.

15 sec.

SGD8 relu 7.21 7.61 0.64 0.79 8.10 5.81
12 min.

27 sec.

SGD9 log. sig. 7.15 8.16 0.68 0.76 8.10 6.35
15 min.

52 sec.

SGD10 tanh 7.16 8.05 0.66 0.77 8.15 6.11
16 min.

48 sec.

Figure 15: Test Outputs vs. Predicted Outputs for PSO-ANN Model SGD6

R2=0.88

M
P

a

MPa

55

CHAPTER 4

CONCLUSIONS

 In this thesis, the relationship between concrete strength and mix design

properties was evaluated with artificial neural network (ANN) hybrid algorithms. PSO

algorithm and ANN were brought together and hybridized to generate model making

more accurate predictions of concrete strength. Particle Swarm Optimization (PSO)

was selected from metaheuristic algorithms due to its convergence capability, easy

implementation and adoption, and robustness [60].

ANN was constructed in the medium of Python. Python provides flexibility for

implementing PSO to ANN with its wide range of libraries for different purposes.

Python libraries of random, math, pandas, numpy, pandas.plotting, matplotlib.pyplot,

scikit-learn, pickle and time were used for the purposes of randomizing, mathematical

operations, data manipulation and analysis, scientific computing, plotting, machine

learning, saving and loading models, and time keeping, respectively.

In this thesis, PSO-ANN and ANN models were employed on a dataset which

was donated by Prof. I-Cheng Yeh from Department of Information Management,

Chung-Hua University to Machine Learning Repository, Center for Machine Learning

and Intelligent Systems, University of California, Irvine on August 3, 2007.

The dataset was normalized to be fit into the interval of [0,1] and splitted into

three portions as training, validation and test sets. For the models obtained, root-mean-

square error (RMSE), mean absolute error (MAE) and coefficient of determination

(COD) (R2) were selected as performance indicators.

Activation functions of identity, logistic sigmoid, hyperbolic tangent and

rectified linear unit functions were employed in the ANN models. Among the options

for solver in the ANN structure, Limited memory Broyden-Fletcher-Goldfarb-Shanno

Algorithm (L-BFGS) and Stochastic Gradient Descent (SGD) were used.

56

In total, 170 different models were generated with different variables to

increase the prediction power of ANN models. In the pursuit of obtaining the most

accurate hybrid PSO-ANN model, the performances of the activation functions were

tested, at first. Logistic sigmoid, hyperbolic tangent (tanh) and rectified linear units

(relu) functions were very close to one another while identity function was far behind

in terms of accuracy, but it worked very quickly when compared to the others.

After determining that logistic sigmoid, hyperbolic tangent and rectified linear

unit functions were worth using in the next steps of hybridizing, numbers of neurons

in the hidden layers were optimized as a major part of obtaining the best performing

PSO-ANN model since it directly affected the success of the models and it was a key

factor for underfitting or overfitting. When the models were generated for the hidden

layers, 6 of those gave the same numbers of neurons. Considering the pool of

possibilities, it demonstrated a strong tendency to reach an optimized ANN

architecture around the determined values of numbers of neurons in the hidden layers.

For the two hidden layers, 20 for the first hidden layer and 35 for the second layer were

determined as the best choices due the values of performance indicators.

Once the architecture of the ANN was determined, it was the task to find the

correct combination of other variables. For this, L-BFGS and SGD as solvers, alpha

and initial learning rate as continuous variables, and activation functions were used in

various combinations. Since the performances of activation functions were very close

one another, it was not very easy to pick up one of those, but they helped increasing

the randomization of candidate solutions. It is seen that L-BFGS outperformed SGD.

The best predicting models were obtained from PSO-ANN hybrid models optimizing

alpha (L2 Regularization term) with L-BFGS as solver. The highest R2 score obtained

from all models is 0.91.

When evaluating the success of the predictions made, it can be said that it is

directly related to the numbers of instances and input features of data. The method

proposed in the thesis is also steady in predictions. The predictions do not fluctuate in

a large interval of values of performance indicators. In the future, in the case of having

a large set of data in terms of both samples and input features for different types of

57

concrete under different circumstances, more accurate predictions can easily be made

with the method proposed in this thesis.

58

REFERENCES

[1] W. Ji-Zong, N. Hong-Guang, and H. Jin-Yun, “The application of automatic

acquisition of knowledge to mix design of concrete,” Cem. Concr. Res., vol.

29, no. 12, pp. 1875–1880, 1999.

[2] S.-C. Lee, “Prediction of concrete strength using artificial neural networks,”

Eng. Struct., vol. 25, no. 7, pp. 849–857, 2003.

[3] S. Popovics, History of mathematical model for strength development of

Portland cement concrete, vol. 95. 1998.

[4] L. M. Snell, J. Van Roekel, and N. D. Wallace, “Predicting early concrete

strength,” Concr. Int., vol. 11, no. 12, pp. 43–47, 1989.

[5] I.-C. Yeh, “Modeling of strength of high-performance concrete using artificial

neural networks,” Cem. Concr. Res., vol. 28, no. 12, pp. 1797–1808, 1998.

[6] B. K. R. Prasad, H. Eskandari, and B. V. V. Reddy, “Prediction of

compressive strength of SCC and HPC with high volume fly ash using ANN,”

Constr. Build. Mater., vol. 23, no. 1, pp. 117–128, 2009.

[7] A. Krenker, “Introduction to the Artificial Neural Networks,” J. Bešter, Ed.

Rijeka: IntechOpen, 2011, p. Ch. 1.

[8] C.-M. Kuan, “Artificial Neural Networks BT - The New Palgrave Dictionary

of Economics,” London: Palgrave Macmillan UK, 2017, pp. 1–12.

[9] D. M. D’Addona, “Neural Network BT - CIRP Encyclopedia of Production

Engineering,” T. I. A. for Produ, L. Laperrière, and G. Reinhart, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2016, pp. 1–9.

[10] P.-N. Tan, “Neural Networks BT - Encyclopedia of Database Systems,” L.

Liu and M. T. Özsu, Eds. New York, NY: Springer New York, 2016, pp. 1–5.

[11] S. L. Prime, “Neural Networks BT - Encyclopedia of Personality and

Individual Differences,” V. Zeigler-Hill and T. K. Shackelford, Eds. Cham:

59

Springer International Publishing, 2017, pp. 1–4.

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[13] D. O. Hebb, “The organization of behavior. A neuropsychological theory,”

1949.

[14] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of

brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[15] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” Stanford Univ Ca

Stanford Electronics Labs, 1960.

[16] M. Minsky and S. Papert, “Perceptron: an introduction to computational

geometry,” MIT Press. Cambridge, Expand. Ed., vol. 19, no. 88, p. 2, 1969.

[17] “Introduction to artificial neural networks,” in Proceedings Electronic

Technology Directions to the Year 2000, 1995, pp. 36–62.

[18] J. J. Hopfield, “Neural networks and physical systems with emergent

collective computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp.

2554–2558, 1982.

[19] X.-S. Zhang, “Introduction to Artificial Neural Network BT - Neural

Networks in Optimization,” X.-S. Zhang, Ed. Boston, MA: Springer US,

2000, pp. 83–93.

[20] J. Zupan, “Introduction to artificial neural network (ANN) methods: what they

are and how to use them,” Acta Chim. Slov., vol. 41, p. 327, 1994.

[21] W. S. Sarle, “Neural networks and statistical models,” 1994.

[22] I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals,

computing, design, and application,” J. Microbiol. Methods, vol. 43, no. 1, pp.

3–31, 2000.

[23] R. Hecht-Nielsen, “Neurocomputing Addison-Wesley,” Reading, MA, 1990.

[24] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-

60

forward neural networks,” Chemom. Intell. Lab. Syst., vol. 39, no. 1, pp. 43–

62, 1997.

[25] M. Kuhn and K. Johnson, Applied predictive modeling, vol. 26. Springer,

2013.

[26] M. Hellström and J. Behler, “Neural Network Potentials in Materials

Modeling BT - Handbook of Materials Modeling : Methods: Theory and

Modeling,” W. Andreoni and S. Yip, Eds. Cham: Springer International

Publishing, 2018, pp. 1–20.

[27] S. Haykin, “Neural networks and learning machines,–3rd ed., Copyright by

Pearson Education,” Inc., Up. Saddle River, New Jersey, vol. 7458, 2009.

[28] S. Lahmiri, “On simulation performance of feedforward and NARX networks

under different numerical training algorithms,” in Handbook of Research on

Computational Simulation and Modeling in Engineering, IGI Global, 2016,

pp. 171–183.

[29] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math.

Comput., vol. 35, no. 151, pp. 773–782, 1980.

[30] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large

scale optimization,” Math. Program., vol. 45, no. 1, pp. 503–528, 1989.

[31] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv

Prepr. arXiv1609.04747, 2016.

[32] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1.

MIT press Cambridge, 2016.

[33] D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization. 2014.

[34] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12, no. Jul,

pp. 2121–2159, 2011.

[35] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA Neural networks Mach.

61

Learn., vol. 4, no. 2, pp. 26–31, 2012.

[36] P.-N. Tan, M. Steinbach, and V. Kumar, “Introduction to data mining: Pearson

addison wesley,” Boston, 2005.

[37] R. Tauler, B. Walczak, and S. D. Brown, Comprehensive chemometrics:

chemical and biochemical data analysis. Elsevier, 2009.

[38] A. A. Benczúr, L. Kocsis, and R. Pálovics, “Reinforcement Learning,

Unsupervised Methods, and Concept Drift in Stream Learning BT -

Encyclopedia of Big Data Technologies,” S. Sakr and A. Zomaya, Eds. Cham:

Springer International Publishing, 2018, pp. 1–8.

[39] M. Paliwal and U. A. Kumar, “Neural networks and statistical techniques: A

review of applications,” Expert Syst. Appl., vol. 36, no. 1, pp. 2–17, 2009.

[40] B. C. Hardgrave, R. L. Wilson, and K. A. Walstrom, “Predicting graduate

student success: A comparison of neural networks and traditional techniques,”

Comput. Oper. Res., vol. 21, no. 3, pp. 249–263, 1994.

[41] M. C. M. De Carvalho, M. S. Dougherty, A. S. Fowkes, and M. R. Wardman,

“Forecasting travel demand: a comparison of logit and artificial neural

network methods,” J. Oper. Res. Soc., vol. 49, no. 7, pp. 717–722, 1998.

[42] W. Remus and T. Hill, Neural network models of managerial judgment. 1990.

[43] L.-Y. Chang, “Analysis of freeway accident frequencies: negative binomial

regression versus artificial neural network,” Saf. Sci., vol. 43, no. 8, pp. 541–

557, 2005.

[44] T. J. Griinke, “Development of an artificial neural network (ANN) for

predicting tribological properties of kenaf fibre reinforced epoxy composites

(KFRE),” 2013.

[45] H.-G. Ni and J.-Z. Wang, “Prediction of compressive strength of concrete by

neural networks,” Cem. Concr. Res., vol. 30, no. 8, pp. 1245–1250, 2000.

[46] G. Trtnik, F. Kavčič, and G. Turk, “Prediction of concrete strength using

ultrasonic pulse velocity and artificial neural networks,” Ultrasonics, vol. 49,

62

no. 1, pp. 53–60, 2009.

[47] M. M. Alshihri, A. M. Azmy, and M. S. El-Bisy, “Neural networks for

predicting compressive strength of structural light weight concrete,” Constr.

Build. Mater., vol. 23, no. 6, pp. 2214–2219, 2009.

[48] Z.-H. Duan, S.-C. Kou, and C.-S. Poon, “Prediction of compressive strength

of recycled aggregate concrete using artificial neural networks,” Constr. Build.

Mater., vol. 40, pp. 1200–1206, 2013.

[49] H. Naderpour, A. Kheyroddin, and G. G. Amiri, “Prediction of FRP-confined

compressive strength of concrete using artificial neural networks,” Compos.

Struct., vol. 92, no. 12, pp. 2817–2829, 2010.

[50] S. Matthys, H. Toutanji, K. Audenaert, and L. Taerwe, “Axial load behavior

of large-scale columns confined with fiber-reinforced polymer composites,”

ACI Struct. J., vol. 102, no. 2, p. 258, 2005.

[51] L. Lam and J. G. Teng, “Strength models for fiber-reinforced plastic-confined

concrete,” J. Struct. Eng., vol. 128, no. 5, pp. 612–623, 2002.

[52] J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical stress-strain model

for confined concrete,” J. Struct. Eng., vol. 114, no. 8, pp. 1804–1826, 1988.

[53] A. Sadrmomtazi, J. Sobhani, and M. A. Mirgozar, “Modeling compressive

strength of EPS lightweight concrete using regression, neural network and

ANFIS,” Constr. Build. Mater., vol. 42, pp. 205–216, 2013.

[54] A. T. A. Dantas, M. Batista Leite, and K. de Jesus Nagahama, “Prediction of

compressive strength of concrete containing construction and demolition

waste using artificial neural networks,” Constr. Build. Mater., vol. 38, pp.

717–722, 2013.

[55] F. Khademi, M. Akbari, S. M. Jamal, and M. Nikoo, “Multiple linear

regression, artificial neural network, and fuzzy logic prediction of 28 days

compressive strength of concrete,” Front. Struct. Civ. Eng., vol. 11, no. 1, pp.

90–99, 2017.

63

[56] F. Glover, “Future paths for integer programming and links to artificial

intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[57] F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics, vol. 57.

Springer Science & Business Media, 2006.

[58] K. Sörensen and F. W. Glover, “Metaheuristics,” Encycl. Oper. Res. Manag.

Sci., pp. 960–970, 2013.

[59] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:

Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3,

pp. 268–308, 2003.

[60] F. Xie, Q. Wang, and G. Li, “Optimization research of FOC based on PSO of

induction motors,” in 2012 15th International Conference on Electrical

Machines and Systems (ICEMS), 2012, pp. 1–4.

[61] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”

in MHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, 1995, pp. 39–43.

[62] X. L. Chen, J. P. Fu, J. L. Yao, and J. F. Gan, “Prediction of shear strength for

squat RC walls using a hybrid ANN–PSO model,” Eng. Comput., vol. 34, no.

2, pp. 367–383, 2018.

[63] K. W. Chau, “Application of a PSO-based neural network in analysis of

outcomes of construction claims,” Autom. Constr., vol. 16, no. 5, pp. 642–646,

2007.

[64] C. Sudheer, R. Maheswaran, B. K. Panigrahi, and S. Mathur, “A hybrid SVM-

PSO model for forecasting monthly streamflow,” Neural Comput. Appl., vol.

24, no. 6, pp. 1381–1389, 2014.

[65] M. Hasanipanah, M. Noorian-Bidgoli, D. J. Armaghani, and H. Khamesi,

“Feasibility of PSO-ANN model for predicting surface settlement caused by

tunneling,” Eng. Comput., vol. 32, no. 4, pp. 705–715, 2016.

[66] B. Gordan, D. J. Armaghani, M. Hajihassani, and M. Monjezi, “Prediction of

64

seismic slope stability through combination of particle swarm optimization

and neural network,” Eng. Comput., vol. 32, no. 1, pp. 85–97, 2016.

[67] D. J. Armaghani, R. S. N. S. Bin Raja, K. Faizi, and A. S. A. Rashid,

“Developing a hybrid PSO–ANN model for estimating the ultimate bearing

capacity of rock-socketed piles,” Neural Comput. Appl., vol. 28, no. 2, pp.

391–405, 2017.

[68] E. T. Mohamad, D. J. Armaghani, E. Momeni, and S. V. A. N. K. Abad,

“Prediction of the unconfined compressive strength of soft rocks: a PSO-based

ANN approach,” Bull. Eng. Geol. Environ., vol. 74, no. 3, pp. 745–757, 2015.

[69] C. Qi, A. Fourie, and Q. Chen, “Neural network and particle swarm

optimization for predicting the unconfined compressive strength of cemented

paste backfill,” Constr. Build. Mater., vol. 159, pp. 473–478, 2018.

[70] E. Momeni, D. J. Armaghani, M. Hajihassani, and M. F. M. Amin, “Prediction

of uniaxial compressive strength of rock samples using hybrid particle swarm

optimization-based artificial neural networks,” Measurement, vol. 60, pp. 50–

63, 2015.

[71] Q.-L. Chang, H.-Q. Zhou, and C.-J. Hou, “Using particle swarm optimization

algorithm in an artificial neural network to forecast the strength of paste filling

material,” J. China Univ. Min. Technol., vol. 18, no. 4, pp. 551–555, 2008.

[72] H. Mashhadban, S. S. Kutanaei, and M. A. Sayarinejad, “Prediction and

modeling of mechanical properties in fiber reinforced self-compacting

concrete using particle swarm optimization algorithm and artificial neural

network,” Constr. Build. Mater., vol. 119, pp. 277–287, 2016.

[73] S. S. Gilan, H. B. Jovein, and A. A. Ramezanianpour, “Hybrid support vector

regression–Particle swarm optimization for prediction of compressive strength

and RCPT of concretes containing metakaolin,” Constr. Build. Mater., vol. 34,

pp. 321–329, 2012.

[74] H.-C. Tsai, “Predicting strengths of concrete-type specimens using hybrid

multilayer perceptrons with center-unified particle swarm optimization,”

65

Expert Syst. Appl., vol. 37, no. 2, pp. 1104–1112, 2010.

[75] K. E. Parsopoulos, “UPSO: A unified particle swarm optimization scheme,”

Lect. Ser. Comput. Comput. Sci., vol. 1, pp. 868–873, 2004.

[76] Y. Liu, Z. Qin, Z. Shi, and J. Lu, “Center particle swarm optimization,”

Neurocomputing, vol. 70, no. 4–6, pp. 672–679, 2007.

[77] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.

Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

[78] M. Hajihassani, D. J. Armaghani, H. Sohaei, E. T. Mohamad, and A. Marto,

“Prediction of airblast-overpressure induced by blasting using a hybrid

artificial neural network and particle swarm optimization,” Appl. Acoust., vol.

80, pp. 57–67, 2014.

[79] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited, 2016.

[80] L. Shi, S. T. K. Lin, Y. Lu, L. Ye, and Y. X. Zhang, “Artificial neural network

based mechanical and electrical property prediction of engineered

cementitious composites,” Constr. Build. Mater., vol. 174, pp. 667–674, 2018.

