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Abstract
In this paper, we study a sideways heat equation with a nonlinear source in a
bounded domain, in which the Cauchy data at x =X are given and the solution in
0 ≤ x <X is sought. The problem is severely ill-posed in the sense of Hadamard.
Based on the fundamental solution to the sideways heat equation, we propose to
solve this problem by the filter method of degree α, which generates a well-posed
integral equation. Moreover, we show that its solution converges to the exact solution
uniformly and strongly in Lp(ω,X ;L2(R)), ω ∈ [0,X ) under a priori assumptions on
the exact solution. The proposed regularized method is illustrated by numerical
results in the final section.
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1 Introduction
In this paper, we determine the surface temperature u(x, t) for 0 ≤ x < X from the known
temperature measurements u(X , t) = φ(t) and heat-flux measurement ∂u

∂x (X , t) = ψ(t)
when u(x, t) satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = ∂2u

∂x2 + f (u)G(x, t; u), (x, t) ∈ (0,X ) ×R,

u(x, t)|t→±∞ = 0, (x, t) ∈ (0,X ) ×R,

u(X , t) = φ(t), t ∈R,
∂u
∂x (X , t) = ψ(t), t ∈R,

(1.1)

where φ,ψ ∈ L2(R) are given functions. The source terms f (u), G(u) are globally Lipschitz
functions satisfying (2.15a) and (2.15b), respectively.

The problem called the inverse nonlinear sideways heat equation (INSHE for short) is a
model of a problem where one wants to determine the temperature on both sides of a thick
wall, but where one side is inaccessible to measurements. In many dynamic heat transfer
situations, one wishes to determine the temperature on the surface of a body, where the
surface itself is inaccessible for measurements. The physical situation at the surface may
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be unsuitable for attaching a sensor, or the accuracy of a surface measurement may be
seriously impaired by the presence of the sensor. Typical practical applications are the
estimation of the heat flux and the temperature at the surface of the body under investiga-
tion, e.g., re-entry vehicles, calorimeter-type instrumentation, and combustion chambers
[1, 2, 5, 11, 13, 15, 16, 19, 20]. In such cases, one is restricted to interior measurements,
and from these one wishes to compute the surface temperature.

Cannon (1984) [4] considered the direct problem for the homogeneous heat equation in
the quarter plane (x ≥ 0, t ≥ 0):

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∂2u

∂x2 , x ≥ 0, t ≥ 0,

u(x, 0) = 0, x ≥ 0,

u(0, t) = φ(t), t ≥ 0.

(1.2)

The functions φ(·) and u(x, ·) are to be in L2(R) (φ and u vanish for t < 0). The author
proved that, for each φ ∈ L2(R), (1.2) has a unique solution u with u(x, ·) ∈ L2(R) for each
x ≥ 0.

Fredrik Berntsson (1999) [3] considered the sideways heat equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = κ ∂2u

∂x2 , 0 < x < 1, t ≥ 0,

u(x, 0) = 0, 0 < x < 1,

u(1, t) = g(t), t ≥ 0
∂u
∂x (1, t) = h(t), t ≥ 0.

(1.3)

The author used the spectral method to solve problem (1.3). Error estimates for the regu-
larized solution were derived, and a procedure for selecting an appropriate regularization
parameter was given.

In recent years, linear homogeneous problem (1.1), i.e., f (u)G(x, t; u) = 0, has been re-
searched by many authors, and various numerical methods have been proposed, e.g., the
boundary element Tikhonov regularization method (Lesnic et al. (1996) [9]), the conju-
gate gradient method (Hao (2012) [8]), the difference regularization method (Xiong et al.
(2006a) [17]), the ”optimal filtering” method (Seidman & Elden (1990) [14]), the Fourier
method (Xiong et al. 2006b [18]), the quasi-reversibility method (Elden (1987) [6], Liu &
Wei (2013) [10]), the wavelet, wavelet-Galerkin, and the spectral regularization methods
(Elden et al. (2000) [7], Reginska & Elden (1997) [12]), to mention only a few.

The more important but challenging semilinear sideways heat equation with the heat
source depends nonlinearly on the temperature, which occurs in many applications re-
lated to reaction-diffusion. The function f (u)G(u) is known as a special type of locally
Lipschitz function. For example, if we choose f (u) := u, G(x, t; u) := sin u (individually they
are globally Lipschitz), then

∣
∣f (u)G(x, t; u) – f (v)G(x, t; v)

∣
∣ = |u sin u – v sin v|
≤ |u – v| sin u + v| sin u – sin v|

= |u – v| sin u + 2v cos
u + v

2
sin

|u – v|
2

≤ |u – v|u + v|u – v| ≤ max{u; v}|u – v|. (1.4)
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Although there are some works on the nonlinear case, the literature on the case of locally
Lipschitz sources f (u)G(x, t; u) is quite scarce. Our results extend problem (1.3), and we
propose a new filter method to establish regularized solutions of problem (1.1) in the case
of the locally Lipschitz function f (u)G(x, t; u).

The paper is organized as follows. In Sect. 2, the formulation of problem and regular-
ization methods is given. In Sect. 3, a stability estimate in Lp(ω,X ;L2(R)), ω ∈ [0,X )
is proved under a priori condition of the exact solution and the locally Lipschitz source
term. Finally, we present a numerical result to illustrate the proposed regularized method
in Sect. 4.

2 Mathematical problem and mild solution of (INSHE)
For w ∈ L2(R), we have the Fourier transform

ŵ(ξ ) =
1√
2π

∫ ∞

–∞
w(t)e–iξ t dt, ξ ∈R,

and the L2 norm of w is

‖w‖2
L2(R) = ‖ŵ‖2

L2(R) =
∫ ∞

–∞

∣
∣ŵ(ξ )
∣
∣2 dξ . (2.1)

Suppose that the solution of problem (1.1) is represented as a Fourier transform

u(x, t) =
1√
2π

∫ ∞

–∞
û(x, ξ )eiξ t dξ (2.2)

with

û(x, ξ ) =
1√
2π

∫ ∞

–∞
u(x, t)e–iξ t dt. (2.3)

Throughout this paper, we let W(x, t; u) = f (u)G(x, t; u), ∀(x, t) ∈ (0,X ) ×R.
From (1.1), we have the following systems of second order ordinary equation:

⎧
⎪⎪⎨

⎪⎪⎩

–∂̂xxu(x, ξ ) + iξ û(x, ξ ) = Ŵ(u)(x, ξ ),

û(X , ξ ) = φ̂(ξ ),

∂̂xu(X , ξ ) = ψ̂(ξ ).

(2.4)

We thus have after some direct calculation

û(x, ξ ) = cosh
(
(X – x)

√
iξ
)
û(X , ξ ) –

sinh((X – x)
√

iξ )√
iξ

∂̂xu(X , ξ )

–
∫ X

x

sinh((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz, (2.5)

where

√
iξ =
√ |ξ |

2
(1 + σ i), σ = sign(ξ ), ξ ∈ R.
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Remark 2.1 In (2.5), for ξ = 0, sinh(y
√

iξ )√
iξ is defined as y, since

lim
ξ→0

sinh(y
√

iξ )√
iξ

= y.

Moreover, for ξ = 0, we have

û(x, 0) = û(X , 0) – (X – x)∂̂xu(X , 0) –
∫ X

x
(z – x)Ŵ(u)(z, 0) dz.

From (2.5), the exact form of u is given by

u(x, t) =
1√
2π

∫ ∞

–∞

(
cosh
(
(X – x)

√
iξ
)
φ̂(ξ )
)
eiξ t dξ

–
1√
2π

∫ ∞

–∞

(
sinh((X – x)

√
iξ )√

iξ
ψ̂(ξ )
)

eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ X

x

sinh((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz
)

eiξ t dξ . (2.6)

We say that u is a mild solution of problem (1.1) if u satisfies integral (2.6). We know
that the three functions

cosh
(
(X – x)

√
iξ
)
,

sinh((X – x)
√

iξ )√
iξ

,
sinh((z – x)

√
iξ )√

iξ
(2.7)

are unbounded as a function of the variable ξ . Consequently, small errors in high fre-
quency components can blow up and completely destroy the solution for 0 < x < z < X .
A natural idea to stabilize the problem is to replace them by a bounded approximation. In
a natural way, we can replace the terms in (2.7) by

coshγ (δ)((X – x)
√

iξ
)
,

sinhγ (δ)((X – x)
√

iξ )√
iξ

,
sinhγ (δ)((z – x)

√
iξ )√

iξ

(respectively), with δ > 0 is a small positive number representing the level of noise and the
parameter γ (δ) > 0 is small (regularization parameter). We introduce the first regularized
solution Uδ

γ (δ) obtained by

Uδ
γ (δ)(x, t)

=
1√
2π

∫ ∞

–∞

(
coshγ (δ)((X – x)

√
iξ
)
φ̂δ(ξ )
)
eiξ t dξ

–
1√
2π

∫ ∞

–∞

(
sinhγ (δ)((X – x)

√
iξ )√

iξ
ψ̂δ(ξ )
)

eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ X

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ
(
Uδ

γ (δ)
)
(z, ξ ) dz

)

eiξ t dξ . (2.8)

Here coshγ (δ)(y
√

iξ ), sinhγ (δ)(y
√

iξ ) are defined for all 0 ≤ y ≤X and ξ ∈R in the following:

coshγ (δ)(y
√

iξ ) = cosh(y
√

iξ ) +
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e
√

iξy, (2.9)
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sinhγ (δ)(y
√

iξ ) = sinh(y
√

iξ ) +
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e
√

iξy, (2.10)

where

Fα
γ (δ)(X , ξ ) =

(
1 + γ (δ)e

√|ξ |/2X )–α for α ∈N
∗. (2.11)

We introduce some notations and assumptions that are needed for our analysis.

Definition 2.1 (Gevrey space) The Gevrey class of functions of order θ ≥ 0 defined as

“GEVREY” :=
{

w ∈ L2(R) :
∫ ∞

–∞
exp
(√

2|ξ |θ)∣∣ŵ(ξ )
∣
∣2 dξ ≤ ∞

}

(2.12)

is equipped with the norm defined by

‖w‖Gθ (R) =

√
∫ ∞

–∞
exp
(√

2|ξ |θ)∣∣ŵ(ξ )
∣
∣2 dξ ≤ ∞. (2.13)

Definition 2.2 For a Hilbert spaceX, we denote by Lp(0,X ;X) (respectively, C([0,X ];X))
the Banach spaces of measurable (respectively, continuous functions) functions w :
[0,X ] →X such that

‖w‖Lp(0,X ;X) =
(∫ X

0

∥
∥w(x)
∥
∥p
X

dx
) 1

p
< ∞, 1 ≤ p < ∞,

‖w‖L∞(0,X ;X) = ess sup
0≤x≤X

∥
∥w(x)
∥
∥
X

< ∞, p = ∞
(

respectively,‖w‖C([0,X ];X) = sup
0≤x≤X

∥
∥w(x)
∥
∥
X

< ∞
)

.

We assume the following:
(H1) The data φ,ψ ∈ L2(R) are noisy and are represented by the observation data

φδ ,ψδ ∈ L2(R) satisfying

∥
∥φδ – φ

∥
∥

L2(R) ≤ δ,
∥
∥ψδ – ψ

∥
∥

L2(R) ≤ δ, (2.14)

here δ > 0 is a small positive number representing the level of noise.
(H2) The source functions f : R → R and G : [0,X ] × R

2 → R are globally Lipschitz-
continuous, i.e., there exist the constants Kf , KG ≥ 0 such that

∣
∣f (u) – f (v)

∣
∣≤ Kf |u – v|, (2.15a)

∣
∣G(x, t; u) – G(x, t; v)

∣
∣≤ KG|u – v| (2.15b)

for all (x, t) ∈ [0,X ] ×R, u, v ∈R.
(H3) There exist the constants Bf , BG ≥ 0 such that

∥
∥f (u)
∥
∥

L∞(0,X ;L2(R)) ≤ Bf , (2.16a)
∥
∥G(x, ·; u)

∥
∥

L∞(0,X ;L2(R)) ≤ BG (2.16b)

for all u ∈ C([0,X ];L2(R)).
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3 Error estimate in Lp(ω,X ; L2(R)), 0 ≤ ω < X
First, we have the following lemmas which will be useful.

Lemma 3.1 For ξ ∈R, α ∈N
∗, we have the following inequalities:

(a)
∣
∣Fα

γ (δ)(X , ξ )e
√

iξχ
∣
∣≤ ∣∣γ (δ)

∣
∣–

αχ
X for all 0 ≤ χ ≤X , (3.1a)

(b)
∣
∣
(
Fα

γ (δ)(X , ξ ) – 1
)
e–

√
iξχ
∣
∣≤ ∣∣γ (δ)

∣
∣

αχ
X for all 0 ≤ χ ≤X , (3.1b)

(c)
∣
∣coshγ (δ)(

√
iξχ )
∣
∣≤ ∣∣γ (δ)

∣
∣–

αχ
X for all 0 ≤ χ ≤X , (3.1c)

(d)
∣
∣sinhγ (δ)(

√
iξχ )
∣
∣≤ ∣∣γ (δ)

∣
∣–

αχ
X for all 0 ≤ χ ≤X . (3.1d)

Proof (a) From (2.11) and Euler’s formula, we have

∣
∣Fα

γ (δ)(X , ξ )e
√

iξχ
∣
∣ =
∣
∣
∣
∣

e
√

iξχ

(1 + γ (δ)e
√|ξ |/2X )α

∣
∣
∣
∣ =

|e√
iξχ |

(1 + γ (δ)e
√|ξ |/2X )α

≤ e–α
√|ξ |/2(X–χ )

(e–
√|ξ |/2X + γ (δ))α

=
e–α

√|ξ |/2(X–χ )

(e–
√|ξ |/2X + γ (δ))

α(X–χ )
X (e–

√|ξ |/2X + γ (δ))
αχ
X

≤ 1
(e–

√|ξ |/2X + γ (δ))
αχ
X

≤ ∣∣γ (δ)
∣
∣–

αχ
X . (3.2)

(b) Similarly, from (2.11) and for a < b, we have aα – bα ≤ (a – b)α , so

∣
∣
(
Fα

γ (δ)(X , ξ ) – 1
)
e–

√
iξχ
∣
∣

≤ ∣∣γ (δ)
∣
∣α |e–

√
iξχ |

(e–
√|ξ |/2X + γ (δ))α

≤ ∣∣γ (δ)
∣
∣α e–α

√|ξ |/2χ

(e–
√|ξ |/2X + γ (δ))

αχ
X (e–

√|ξ |/2X + γ (δ))
α(X–χ )

X

≤ |γ (δ)|α
(e–

√|ξ |/2X + γ (δ))
α(X–χ )

X
≤ ∣∣γ (δ)

∣
∣

αχ
X . (3.3)

(c) From (2.9) and (3.1a), we obtain

∣
∣coshγ (δ)(

√
iξχ )
∣
∣≤ 1

2
∣
∣Fα

γ (δ)(X , ξ )e
√

iξχ
∣
∣ +

1
2
∣
∣e–

√
iξχ
∣
∣

≤ 1
2
∣
∣γ (δ)
∣
∣–

αχ
X +

1
2

≤ ∣∣γ (δ)
∣
∣–

αχ
X .

From (2.9), an argument similar to the previous one implies (3.1d). �

Lemma 3.2 For 0 ≤ x ≤X , ξ ∈R, we have

û(x, ξ ) –
∂̂xu(x, ξ )√

iξ

= e
√

iξ (X–x)
(

φ̂(ξ ) –
ψ̂(ξ )√

iξ

)

–
∫ X

x

e
√

iξ (z–x)
√

iξ
Ŵ(u)(z, ξ ) dz. (3.4)
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Proof Differentiating (2.6) with respect to x gives

–
∂̂xu(x, ξ )√

iξ
= sinh
(
(X – x)

√
iξ
)
φ̂(ξ ) –

cosh((X – x)
√

iξ )√
iξ

ψ̂(ξ )

–
∫ X

x

sinh((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz, (3.5)

and adding (3.5) to (2.6) completes the proof. �

Our result is in the next theorem.

Theorem 3.1 Let γ (δ) ∈ (0, 1) be such that

⎧
⎨

⎩

limδ→0+ γ (δ) = 0,

limδ→0+ δ|γ (δ)|–α = 0 for α ∈N
∗.

(3.6)

Then the nonlinear integral equation (2.8) has a solution Uδ
γ (δ) ∈ C([0,X ];L2(R)). Assume

that problem (1.1) has a solution u satisfying

‖u‖L∞(0,X ;GX (R)) +
1
ρ0

‖∂xu‖L∞(0,X ;GX (R)) ≤ P(u) (3.7)

for some known constant P(u) > 0. Then (for all ω ∈ [0,X ))

∥
∥Uδ

γ (δ) – u
∥
∥

Lp(ω,X ;L2(R))

≤ C(α, p,X ,ρ0, K̃)
(∣
∣γ (δ)
∣
∣–α

δ + P(u)
)
( |γ (δ)| pαω

X – |γ (δ)|pα

log( 1
|γ (δ)| )

) 1
p

, (3.8)

where the positive constant C(α, p,X ,ρ0, K̃) is a positive constant independent of ω and δ.

Remark 3.1 From (3.6) we infer that the right-hand side of (3.8) tends to zero as
δ → 0+. Let us choose a parameter regularization γ (δ) = δκ (κ ≤ 1

α
), and then the error

‖Uδ
γ (δ) – u‖Lp(ω,X ;L2(R)) is of the order ( δ

κpαω
X –δκpα

log( 1
δκ

)
)

1
p , which goes to zero as δ → 0+ for all

ω ∈ [0,X ).

Proof The proof is divided into two parts.
1st part. Integral equation (2.8) has a unique solution Uδ

γ (δ) ∈ C([0,X ];L2(R)). We put

1
d

= N =
⌊ |γ (δ)|–αBf BG

� – |γ (δ)|–α(‖φδ
j ‖L2(R) + ‖ψδ

j ‖L2(R))

⌋

+ �BGKf + Bf KG�,

� >
∣
∣γ (δ)
∣
∣–α(∥∥φδ

j
∥
∥

L2(R) +
∥
∥ψδ

j
∥
∥

L2(R)

)
, (3.9)

where �y� is the integer part of the real number y. Let us define

Xj = X – jd, j = 0, 1, . . . , N ,
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and

Mj =
{
ϑ ∈ C
(
[Xj+1,Xj];L2(R)

)∣
∣
(
ϑ(Xj, t), ∂xϑ(Xj, t)

)
=
(
φδ

j (t),ψδ
j (t)
)
,

‖ϑ‖⊕ = sup
x∈[Xj ,Xj+1]

∥
∥ϑ(x, ·)∥∥

L2(R) ≤ �, x ∈ [Xj+1,Xj]
}

, j = 0, 1, . . . , N – 1.

We also define (for Xj – d ≤ x ≤ z ≤Xj) j = 0, 1, . . . , N – 1

B
γ (δ)
j (ϑ)(x, t) :=

1√
2π

∫ ∞

–∞
coshγ (δ)((Xj – x)

√
iξ
)
φ̂δ

j (ξ )eiξ t dξ

–
1√
2π

∫ ∞

–∞

sinhγ (δ)((Xj – x)
√

iξ )√
iξ

ψ̂δ
j (ξ )eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ Xj

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ(ϑ)(z, ξ ) dz
)

eiξ t dξ .

For ϑ ∈ Mj and Xj – d ≤ x ≤ z ≤Xj, using Lemma 3.1, we obtain

∥
∥B

γ (δ)
j (ϑ)(·, t)

∥
∥

L2(R) ≤ ∣∣γ (δ)
∣
∣

α(x–Xj)
Xj
∥
∥φδ

j
∥
∥

L2(R) +
∣
∣γ (δ)
∣
∣

α(x–Xj)
Xj
∥
∥ψδ

j
∥
∥

L2(R)

+
∫ Xj

x

∣
∣γ (δ)
∣
∣

α(x–z)
Xj
∥
∥W(z, ·;ϑ)

∥
∥

L2(R).

Multiplying by |γ (δ)|
–αx
Xj on both sides, we obtain

∣
∣γ (δ)
∣
∣

–αx
Xj
∥
∥B

γ (δ)
j (ϑ)(·, t)

∥
∥

L2(R) ≤ ∣∣γ (δ)
∣
∣–α(∥∥φδ

j
∥
∥

L2(R) +
∥
∥ψδ

j
∥
∥

L2(R)

)

+
∫ Xj

x

∣
∣γ (δ)
∣
∣

–αz
Xj
∥
∥W(z, ·;ϑ)

∥
∥

L2(R) dz. (3.10)

Using (H3), the second term in (3.10) becomes

∫ Xj

x

∣
∣γ (δ)
∣
∣

–αz
Xj
∥
∥W(z, ·;ϑ)

∥
∥

L2(R) dz

=
∫ Xj

x

∣
∣γ (δ)
∣
∣

–αz
Xj
∥
∥f (ϑ)
∥
∥

L2(R)

∥
∥G(z, ·;ϑ)

∥
∥

L2(R) dz

≤ (Xj – x)
∣
∣γ (δ)
∣
∣–αBf BG. (3.11)

From (3.10), (3.11), we have for Xj – d ≤ x ≤ z ≤Xj

∥
∥B

γ (δ)
j (ϑ)
∥
∥⊕ ≤ ∣∣γ (δ)

∣
∣–α(∥∥φδ

j
∥
∥

L2(R) +
∥
∥ψδ

j
∥
∥

L2(R) + (Xj – x)Bf BG
)
.

From (3.9), we have

1
d

≥ |γ (δ)|–αBf BG

� – |γ (δ)|–α(‖φδ
j ‖L2(R) + ‖ψδ

j ‖L2(R))
. (3.12)
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This implies that

d <
� – |γ (δ)|–α(‖φδ

j ‖L2(R) + ‖ψδ
j ‖L2(R))

|γ (δ)|–αBf BG
, (3.13)

so ‖Bγ (δ)
j (ϑ)‖⊕ ≤ �, i.e., Bγ (δ)

j (Mj) ⊂ Mj.
Now, for ϑ1,ϑ2 ∈ Mj, we invoke Lemma 3.1 to deduce that, for Xj – d ≤ x ≤ z ≤Xj,

∥
∥B

γ (δ)
j (ϑ1)(x, ·) – B

γ (δ)
j (ϑ2)(x, ·)∥∥

L2(R)

≤
∫ Xj

x

∣
∣γ (δ)
∣
∣

α(x–z)
Xj
∥
∥W(z, ·;ϑ1) – W(z, ·;ϑ2)

∥
∥

L2(R) dz. (3.14)

From hypotheses (H2) and (H3), we infer that

∥
∥W(x, ·;ϑ1) – W(x, ·;ϑ2)

∥
∥

L2(R)

=
∥
∥f (ϑ1)G(x, ·;ϑ1) – f (ϑ2)G(x, ·;ϑ2)

∥
∥

L2(R)

≤ ∥∥G(x, ·;ϑ1)
∥
∥

L2(R)

∥
∥f (ϑ1) – f (ϑ2)

∥
∥

L2(R)

+
∥
∥f (ϑ2)
∥
∥

L2(R)

∥
∥G(x, ·;ϑ1) – G(x, ·;ϑ2)

∥
∥

L2(R)

≤ (BGKf + Bf KG)
∥
∥ϑ1(x, ·) – ϑ2(x, ·)∥∥

L2(R). (3.15)

We put (3.15) into (3.14) and multiply both sides of the above result by |γ (δ)|
–αx
Xj to get

∣
∣γ (δ)
∣
∣

–αx
Xj
∥
∥B

γ (δ)
j (ϑ1)(x, ·) – B

γ (δ)
j (ϑ2)(x, ·)∥∥

L2(R)

≤
∫ Xj

x

∣
∣γ (δ)
∣
∣

–αz
Xj (BGKf + Bf KG)

∥
∥ϑ1(z, ·) – ϑ2(z, ·)∥∥

L2(R) dz

≤ (Xj – x)(BGKf + Bf KG)‖ϑ1 – ϑ2‖⊕,

so

∥
∥B

γ (δ)
j (ϑ1) – B

γ (δ)
j (ϑ2)

∥
∥⊕ ≤ d(BGKf + Bf KG)‖ϑ1 – ϑ2‖⊕. (3.16)

From (3.9), we have

1
d

≥ BGKf + Bf KG,

which implies that

d ≤ 1
BGKf + Bf KG

. (3.17)

Hence we have ‖Bγ (δ)
j (ϑ1)–B

γ (δ)
j (ϑ2)‖⊕ ≤ �‖ϑ1 –ϑ2‖⊕, � ∈ (0, 1), so B

γ (δ)
j is a contraction

on Mj. The Banach fixed point principle guarantees that there exists unique ϑ ∈ Mj such
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that

B
γ (δ)
j (ϑ)(x, t) = ϑ(x, t).

In fact, for j = 0, we put φδ
0(t) = φδ(t) and ψδ

0 (t) = ψδ(t). Using the results just obtained,
we can find Uδ

γ (δ),0 ∈ C([X1,X ];L2(R)) such that B0(Uδ
γ (δ),0) = Uδ

γ (δ),0. Assume that we can
find Uδ

γ (δ),j–1 ∈ C([Xj,Xj–1];L2(R)) such that Bj–1(Uδ
γ (δ),j–1) = Uδ

γ (δ),j–1. We now prove that
we can extend this solution to the interval [Xj+1,Xj]. Indeed, put φδ

j (t) = Uδ
γ (δ),j(Xj, t) and

ψδ
j (t) = ∂xUδ(Xj, t). We can find Uδ

γ (δ),j ∈ C([Xj+1,Xj];L2(R)) such that BjUδ
γ (δ),j = Uδ

γ (δ),j.
So we can extend the solution Uδ

γ (δ) on [Xj+1,Xj] by putting Uδ
γ (δ)(x, t) = Uδ

γ (δ),j(x, t) for
Xj+1 ≤ x ≤Xj. By induction, we can complete the proof of this step.

2nd part. Error estimate ‖Uδ
γ (δ) – u‖Lp(ω,X ;L2(R)). Note

∥
∥Uδ

γ (δ) – u
∥
∥

Lp(ω,X ;L2(R))

≤ ∥∥Uδ
γ (δ) – Vγ (δ)

∥
∥

Lp(ω,X ;L2(R)) + ‖Vγ (δ) – u‖Lp(ω,X ;L2(R)), (3.18)

where Vγ (δ)(x, t) is defined by

Vγ (δ)(x, t) =
1√
2π

∫ ∞

–∞

(
coshγ (δ)((X – x)

√
iξ
)
φ̂(ξ )
)
eiξ t dξ

–
1√
2π

∫ ∞

–∞

(
sinhγ (δ)((X – x)

√
iξ )√

iξ
ψ̂(ξ )
)

eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ X

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ(Vγ (δ))(z, ξ ) dz
)

eiξ t dξ . (3.19)

From (2.6) and Lemma 3.2, we have

û(x, ξ ) = coshγ (δ)((X – x)
√

iξ
)
φ̂(ξ ) –

sinhγ (δ)((X – x)
√

iξ )√
iξ

ψ̂(ξ )

–
∫ X

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz +
1
2
(
1 – Fα

γ (δ)(X , ξ )
)

×
(

e
√

iξ (X–x)
(

φ̂(ξ ) +
ψ̂(ξ )√

iξ

)

–
∫ X

x

e
√

iξ (z–x)
√

iξ
Ŵ(u)(z, ξ ) dz

)

= coshγ (δ)((X – x)
√

iξ
)
φ̂(ξ ) –

sinhγ (δ)((X – x)
√

iξ )√
iξ

ψ̂(ξ )

–
∫ X

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz

+
1
2
(
1 – Fα

γ (δ)(X , ξ )
)
[

û(x, ξ ) –
∂̂xu(x, ξ )√

iξ

]

. (3.20)

Note

∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R)

=
∥
∥V̂γ (δ)(x, ·) – û(x, ·)∥∥2

L2(R)
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≤ 2
∫ ∞

–∞

∫ X

x

∣
∣
∣
∣
sinhγ (δ)((z – x)

√
iξ )√

iξ

∣
∣
∣
∣

2∣
∣Ŵ(Vγ (δ))(z, ξ ) – Ŵ(u)(z, ξ )

∣
∣2 dz dξ

+ 2
∫ ∞

–∞

∣
∣
∣
∣
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e–

√
iξx
∣
∣
∣
∣

2∣∣
∣
∣e

√
iξxû(x, ξ ) – e

√
iξx ∂̂xu(x, ξ )√

iξ

∣
∣
∣
∣

2

dξ

≤ 2
∫ ∞

–∞

(∫ X

x

∣
∣
∣
∣
sinhγ (δ)((z – x)

√
iξ )√

iξ

∣
∣
∣
∣

2

dz
∫ X

x

∣
∣Ŵ(Vγ (δ))(z, ξ ) – Ŵ(u)(z, ξ )

∣
∣2 dz
)

dξ

+ 4
∫ ∞

–∞

∣
∣
∣
∣
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e–

√
iξx
∣
∣
∣
∣

2(∣
∣e

√
iξxû(x, ξ )

∣
∣2 +
∣
∣
∣
∣e

√
iξx ∂̂xu(x, ξ )√

iξ

∣
∣
∣
∣

2)

dξ .

From Lemma 3.1, we get

∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R)

≤ 2
∫ ∞

–∞
X
ρ0

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∫ X

x

∣
∣Ŵ(Vγ (δ))(z, ξ ) – Ŵ(u)(z, ξ )

∣
∣2 dz dξ

+ 4
∫ ∞

–∞

∣
∣γ (δ)
∣
∣

2αx
X

(

e
√

2|ξ |X ∣∣̂u(x, ξ )
∣
∣2 +

e
√

2|ξ |X

ρ0

∣
∣∂̂xu(x, ξ )

∣
∣2
)

dξ

≤ 2
∫ X

x

X
ρ0

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥Ŵ(Vγ (α))(z, ·) – Ŵ(u)(z, ·)∥∥2

L2(R) dz

+ 4
∣
∣γ (δ)
∣
∣

2αx
X

(
∥
∥̂u(x, ·)∥∥2GX (R) +

1
ρ0

∥
∥∂̂xu(x, ·)∥∥2GX (R)

)

.

Hence, we get

∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R)

≤ 2
∫ X

x

X
ρ0

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥W(z, ·; Vγ (δ)) – W(z, ·; u)

∥
∥2

L2(R) dz

+ 4
∣
∣γ (δ)
∣
∣

2αx
X

(

‖u‖2
L∞(0,X ;GX (R)) +

1
ρ0

‖∂xu‖2
L∞(0,X ;GX (R))

)

≤ 2
∫ X

x

X
ρ0

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥W(z, ·; Vγ (δ)) – W(z, ·; u)

∥
∥2

L2(R) dz + 4
∣
∣γ (δ)
∣
∣

2αx
X P2(u).

Moreover, like in (3.15), we obtain

∥
∥W(x, ·, Vγ (δ)) – W(x, ·, u)

∥
∥

L2(R) ≤ (Kf BG + KGBf )
∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥

L2(R)

≤ K̃
∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥

L2(R),

where K̃ := Kf BG + KGBf .
Note

∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R)

≤ 4
∣
∣γ (δ)
∣
∣

2αx
X P2(u) +

2X
ρ0

K̃
∫ X

x

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥Vγ (δ)(z, ·) – u(z, ·)∥∥2

L2(R) dz.
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Thus, we have the following inequality:

∣
∣γ (δ)
∣
∣–

2αx
X
∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R)

≤ 4P2(u) +
2X
ρ0

K̃
∫ X

x

∣
∣γ (δ)
∣
∣–

2αz
X
∥
∥Vγ (δ)(z, ·) – u(z, ·)∥∥2

L2(R) dz.

From Gronwall’s inequality, we conclude that

∣
∣γ (δ)
∣
∣–

2αx
X
∥
∥Vγ (δ)(x, ·) – u(x, ·)∥∥2

L2(R) ≤ 4P2(u) exp

(
2X (X – x)

ρ0
K̃
)

.

Hence, we deduce that

‖Vγ (δ) – u‖Lp(ω,X ;L2(R))

≤ 2
X
pα

P(u) exp

(X 2K̃
ρ0

)( |γ (δ)| pαω
X – |γ (δ)|pα

log( 1
|γ (δ)| )

) 1
p

. (3.21)

Next, we estimate ‖Uδ
γ (δ) – Vγ (δ)‖Lp(ω,X ;L2(R)). Using the basic inequality (a + b + c)2 ≤

3(a2 + b2 + c2) and Hölder’s inequality, we obtain

∥
∥Uδ

γ (δ)(x, ·) – Vγ (δ)(x, ·)∥∥2
L2(R)

=
∥
∥̂Uδ

γ (δ)(x, ·) – V̂γ (δ)(x, ·)∥∥2
L2(R)

≤ 3
∫ ∞

–∞

∣
∣coshγ (δ)((X – x)

√
iξ
)∣
∣2
∣
∣φ̂δ(ξ ) – φ̂(ξ )

∣
∣2 dξ

+ 3
∫ ∞

–∞

∣
∣
∣
∣
sinhγ (δ)((X – x)

√
iξ )√

iξ

∣
∣
∣
∣

2∣
∣ψ̂δ(ξ ) – ψ̂(ξ )

∣
∣2 dξ

+ 3
∫ ∞

–∞

∫ X

x

∣
∣
∣
∣
sinhγ (δ)((z – x)

√
iξ )√

iξ

∣
∣
∣
∣

2

dz

×
∫ X

x

∣
∣Ŵ
(
Uδ

γ (δ)
)
(z, ξ ) – Ŵ(Vγ (δ))(z, ξ )

∣
∣2 dz dξ .

Similar calculations as in (3.15) yield

‖W(x, ·, Uδ
γ (δ)
)

– W(x, ·, Vγ (δ)‖L2(R) ≤ K̃
∥
∥Uδ

γ (δ)(x, ·) – Vγ (δ)(x, ·)∥∥
L2(R).

From Lemma 3.1 and using the Lipschitzian property of W , we get the following inequal-
ity:

∥
∥Uδ

γ (δ)(x, ·) – Vγ (δ)(x, ·)∥∥2
L2(R)

≤ 3
∣
∣γ (δ)
∣
∣

2α(x–X )
X
∥
∥φδ – φ

∥
∥2

L2(R) + 3
∣
∣γ (δ)
∣
∣

2α(x–X )
X
∥
∥ψδ – ψ

∥
∥2

L2(R)

+ 3(X – x)K̃
∫ X

x

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥Uδ

γ (δ)(z, ·) – Vγ (δ)(z, ·)∥∥2
L2(R) dz

≤ 6
∣
∣γ (δ)
∣
∣

2α(x–X )
X δ2 + 3X K̃

∫ X

x

∣
∣γ (δ)
∣
∣

2α(x–z)
X
∥
∥Uδ

γ (δ)(z, ·) – Vγ (δ)(z, ·)∥∥2
L2(R) dz.
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This implies that

∣
∣γ (δ)
∣
∣–

2αx
X
∥
∥Uδ

γ (δ)(x, ·) – Vγ (δ)(x, ·)∥∥2
L2(R)

≤ 6
∣
∣γ (δ)
∣
∣–2α

δ2 + 3X K̃
∫ X

x

∣
∣γ (δ)
∣
∣–

2αz
X
∥
∥Uδ

γ (δ)(z, ·) – Vγ (δ)(z, ·)∥∥2
L2(R) dz. (3.22)

Applying Grönwall’s inequality, we have

∣
∣γ (δ)
∣
∣–

2αx
X
∥
∥Uδ

γ (δ)(x, ·) – Vγ (δ)(x, ·)∥∥2
L2(R) ≤ 6

∣
∣γ (δ)
∣
∣–2α

δ2 exp
{

3X (X – x)K̃
}

.

Thus

∥
∥Uδ

γ (δ) – Vγ (δ)
∥
∥

Lp(ω,X ;L2(R))

≤ √
6
X
pα

∣
∣γ (δ)
∣
∣–α

δ exp

{
3
2
X 2K̃
}( |γ (δ)| pαω

X – |γ (δ)|pα

log( 1
γ (δ) )

) 1
p

. (3.23)

Combining (3.18), (3.21), and (3.23), we obtain

∥
∥Uδ

γ (δ) – u
∥
∥

Lp(ω,X ;L2(R))

≤ ∥∥Uδ
γ (δ) – Vγ (δ)

∥
∥

Lp(ω,X ;L2(R)) + ‖Vγ (δ) – u‖Lp(ω,X ;L2(R))

≤ C(α,X ,ρ0, K̃)
(∣
∣γ (δ)
∣
∣–α

δ + P(u)
)
( |γ (δ)| pαω

X – |γ (δ)|pα

log( 1
γ (δ) )

) 1
p

,

where

C(α, p,X ,ρ0, K̃) = max

{

2
X
pα

exp

{X 2

ρ0
K̃
}

;
√

6
X
pα

exp

{
3
2
X 2K̃
}}

.

The proof of the theorem is completed. �

4 Numerical test
In this section, we show a numerical simulation for the following inverse sideways heat
equation by the filter method:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = ∂2u

∂x2 + f (u)G(x, t; u), (x, t) ∈ (0,X ) ×R,

u(x, t)|t→±∞ = 0, (x, t) ∈ (0,X ) ×R,

u(X , t) = φ(t), t ∈R,
∂u
∂x (X , t) = ψ(t), t ∈R.

(4.1)

The tests are performed using software MATLAB R2014b (version 64-bit). Problem (4.1)
is considered for (x, t) ∈ (0, 1) × (–∞, +∞) and the functions are

f = u, G = 1 – 2t, (4.2)

φ = exp
(
–t2) sin(1), ψ = exp

(
–t2) cos(1). (4.3)
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Based on the Fourier transform, for F ∈ L2(R), we have

F̂ (ξ ) =
1√
2π

∫ ∞

–∞
F (t)e–iξ t dt, ξ ∈R.

The exact solution of problem (4.1)–(4.3) is given by

u(x, t) =
1√
2π

∫ ∞

–∞

(
cosh
(
(X – x)

√
iξ
)
φ̂(ξ )
)
eiξ t dξ

–
1√
2π

∫ ∞

–∞

(
sinh((X – x)

√
iξ )√

iξ
ψ̂(ξ )
)

eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ X

x

sinh((z – x)
√

iξ )√
iξ

Ŵ(u)(z, ξ ) dz
)

eiξ t dξ . (4.4)

The data φ,ψ ∈ L2(R) are noisy and are represented by the observation data φδ ,ψδ ∈
L2(R) satisfying

∥
∥φδ – φ

∥
∥

L2(R) ≤ δ,
∥
∥ψδ – ψ

∥
∥

L2(R) ≤ δ, (4.5)

here δ > 0 is a small positive number representing the level of noise (δ → 0+).
We recall the regularized solution Uδ

γ (δ) obtained by

Uδ
γ (δ)(x, t)

=
1√
2π

∫ ∞

–∞

(
coshγ (δ)((X – x)

√
iξ
)
φ̂δ(ξ )
)
eiξ t dξ

–
1√
2π

∫ ∞

–∞

(
sinhγ (δ)((X – x)

√
iξ )√

iξ
ψ̂δ(ξ )
)

eiξ t dξ

–
1√
2π

∫ ∞

–∞

(∫ X

x

sinhγ (δ)((z – x)
√

iξ )√
iξ

Ŵ
(
Uδ

γ (δ)
)
(z, ξ ) dz

)

eiξ t dξ . (4.6)

Here coshγ (δ)(y
√

iξ ), sinhγ (δ)(y
√

iξ ) are defined for all 0 ≤ y ≤X and ξ ∈R in the following:

coshγ (δ)(y
√

iξ ) = cosh(y
√

iξ ) +
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e
√

iξy, (4.7)

sinhγ (δ)(y
√

iξ ) = sinh(y
√

iξ ) +
1
2
(
Fα

γ (δ)(X , ξ ) – 1
)
e
√

iξy, (4.8)

where

Fα
γ (δ)(X , ξ ) =

(
1 + γ (δ)e

√|ξ |/2X )–α for α ∈N
∗. (4.9)

Next, we consider the problem of computing the Fourier transform as follows:
Let m, n ∈R, m < n and assume that

F (t) =

⎧
⎨

⎩

F (t) if m < t < n,

0 otherwise.
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Figure 1 The solutions and errors at δ = 0.01 with (x, t) ∈ {0.3} × (–10, 10)

Put ht = n–m
Nt

, ti = iht + n, i = 1, Nt , respectively. Noting that ξk = 2π (k– Nt
2 )

n–m , k = 1, Nt , we
obtain

F̂ (ξk) =
1√
2π

∫ n

m
F (t)e–iξk t dt =

1√
2π

Nt∑

i=1

F (ti)e–iξkti ht . (4.10)

We set up a uniform Cartesian grid (x, t) ∈ (0, 1) × (T1, T2), which can be generated as
follows:

xp = p�x, p = 0, Px,�x =
1
Px

,

tq = q�t + T1, q = 0, Qt ,�t =
T2 – T1

Qt
.
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Figure 2 The solutions and errors at δ = 0.001 with (x, t) ∈ {0.3} × (–10, 10)

To illustrate the theoretical results, we consider this example with some conditions given
by

Px = 200, Qt = Nt = 200, m = –100, n = 100,

α = 2, T1 = –10, T2 = 10,

γ (δ) = δ1/3, δ ∈ {10–2, 10–3, 10–4}.

The error between the exact and regularized solutions is evaluated by

Err =

√
√
√
√ 1

Qt + 1

Qt∑

q=0

[
Uδ

γ (δ)(·, tq) – u(·, tq)
]2. (4.11)

Figures 1(a), 2(a), 3(a) show the graphs of the exact and regularized solutions at x ∈
{0.3, 0.5, 0.8} for δ ∈ {10–2, 10–3, 10–4}. The errors between u and Uδ

γ (δ) at x ∈ {0.3, 0.5, 0.8}
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Figure 3 The solutions and errors at δ = 0.0001 with (x, t) ∈ {0.3} × (–10, 10)

Table 1 The error between the exact and regularized solutions at δ ∈ {0.01, 0.001, 0.0001} and
x ∈ {0.3, 0.5, 0.8}

Err(x) δ = 10–2 δ = 10–3 δ = 10–4

Err(0.3) 0.002012711736159 0.001389166469924 0.000721673458996
Err(0.5) 0.003399412278741 0.002346838740302 0.001219296599176
Err(0.8) 0.005590567951672 0.003862720100876 0.002007822431434

for various amounts of noise δ ∈ {10–2, 10–3, 10–4} are shown in Table 1. For convenience
of comparison, we give the contour graphs between the exact and regularized solutions
(see Figs. 1(b), 2(b), 3(b)).

From them, we observe that the errors at δ = 0.001 are greater than those at δ = 0.0001
and smaller than those at δ = 0.01. Furthermore, with the smaller errors of input data, the
results obtained are more accurate, which verifies the theoretical results.
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