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Abstract
The purpose of this article is to present a technique for the numerical solution of
Caputo time fractional superdiffusion equation. The central difference approximation
is used to discretize the time derivative, while non-polynomial quintic spline is
employed as an interpolating function in the spatial direction. The proposed method
is shown to be unconditionally stable and O(h4 +�t2) accurate. In order to check the
feasibility of the proposed technique, some test examples have been considered and
the simulation results are compared with those available in the existing literature.
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1 Introduction
In this article, we consider the following time fractional fourth order superdiffusion equa-
tion [1]:

∂αy
∂tα

+ γ
∂4y
∂z4 = f (z, t), 0 ≤ z ≤ L, 0 ≤ t ≤ T , (1)

with the initial/end conditions

y(z, 0) = φ(z), yt(z, 0) = ψ(z),

y(0, t) = y(L, t) = 0,

yzz(0, t) = yzz(L, t) = 0,

where α ∈ (1, 2] denotes the order of time fractional derivative, γ is a constant, and φ(z)
is continuous on [0, L].

Fourth order time fractional partial differential equations (PDEs) arise in mathemati-
cal modeling of several plate-like objects [2]. Most of the analytical techniques for solv-
ing fractional order PDEs are based on Laplace and Fourier transforms, while others in-
volve the separation of variables technique [3, 4]. Some semi-analytic methods have also
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been employed to explore series solution for fractional order PDEs. These included ho-
motopy analysis method [5], Adomian decomposition method [6, 7], homotopy perturba-
tion method [8], variational iteration method [9], and fractional differential transforma-
tion method [10].

In recent years, spline functions have also been frequently employed for the numerical
solution of fractional order PDEs. These functions have advantages over the usual finite
difference methods as they can provide a continuous differentiable approximation to the
unknown function in the spatial domain with good accuracy. The simple and straight-
forward application of spline functions provides enough motivation to employ them for
the numerical study of fractional PDEs. Zahra and Elkholy [11] employed cubic spline
functions combined with shooting method for solving fractional Bagley–Torvik equation.
Talaat and Danaf [12] applied the quadratic spline method for numerical investigation
of fractional diffusion equation. Siddiqi and Arshed [13] used the quintic B-spline collo-
cation method for numerical solution of time fractional fourth order PDEs. In [14], the
authors introduced new fractional order spline functions to study the numerical solution
of fractional Bagely–Torvik equation. Mohyu-Din et al. [15] investigated the extended B-
spline solution of time fractional advection diffusion equation by means of a fully implicit
finite difference scheme. Li et al. [16] developed a non-polynomial spline scheme to solve
time fractional nonlinear Schrodinger equation. In [17], Pezza and Pitolli used a fractional
spline collocation Galerkin scheme to develop series solution for time fractional diffusion
equation. Khalid et al. [18] utilized the non-polynomial quintic spline collocation method
to explore the numerical solution of fourth order fractional boundary value problem, in-
volving product terms. In [19], Amin et al. employed the quintic non-polynomial spline
collocation scheme for solving time fractional fourth order PDEs.

There are several techniques to deal with the fractional differentiation but Riemann–
Liouville’s and Caputo’s approaches are the most common. Here, we utilize Caputo’s def-
inition as it allows us to use the ordinary initial/boundary constraints. The Caputo time
fractional derivative of order α is expressed as

∂αy(z, t)
∂tα

=

⎧
⎨

⎩

1
Γ (2–α)

∫ t
0

∂2y(z,s)
∂s2

ds
(t–s)α–1 , 1 < α < 2,

∂2y(z,t)
∂t2 , α = 2.

This paper aims to develop a spline collocation approach for numerical solution of fourth
order time fractional superdiffusion problem. For spatial discretization, a non-polynomial
quintic spline interpolant, composed of trigonometric and polynomial components, is
used. For temporal discretization, a central difference approximation is used.

The outline of this paper is as follows: A short description of the non-polynomial quintic
spline technique is given in Sect. 2. The consistency relations between the spline approx-
imation and its spatial derivatives at the grid points are derived in this section. In Sect. 3,
the application of Caputo’s definition and finite central difference formulation for tempo-
ral discretization is shown. The stability and convergence of the proposed problem is dis-
cussed in Sect. 4. The discretization in space direction is given in Sect. 5. The approximate
results are discussed in Sect. 6, and the conclusion of the proposed study is given in Sect. 7.

2 Non-polynomial quintic spline functions
In this section, we construct the formulation and derive the truncation error of non-
polynomial quintic spline functions.
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2.1 Formulation
Let zi = a + ih be the grid points of a uniform partition of [0, L] dividing it into the subin-
tervals [zi, zi+1], where h = L

N and 0 ≤ i ≤ N . We consider that y(z) is sufficiently differ-
entiable in [0, L] and Y (z) is its quintic non-polynomial spline approximation. Let each
non-polynomial spline segment Si(z) have the following form [18, 19]:

Si(z) = ai cosη(z – zi) + bi sinη(z – zi) + ci(z – zi)3

+ di(z – zi)2 + ei(z – zi) + fi, 0 ≤ i ≤ N , (2)

where ai, bi, ci, di, ei, and fi are constants to be determined and η denotes the frequency
of the trigonometric functions. Moreover,

Si(z) ∈ C∞[0, L]

and

Y (z) = Si(z), ∀z ∈ [zi, zi+1], i = 0, 1, 2, . . . , N . (3)

Let

Yi = Si(zi), Mi = Y ′′(zi), Fi = Y (4)(zi).

The constants involved in Si(z) can be expressed as follows:

ai =
h4

θ4 Fi,

bi =
h4

θ4 sin(θ )
(
Fi+1 – Fi cos(θ )

)
,

ci =
1

6h
(Mi+1 – Mi) +

h
6θ2 (Fi+1 – Fi),

di =
1
2

Mi +
h2

2θ2 Fi,

ei =
1
h

(Yi+1 – Yi) +
(

h3

θ4 –
h3

3θ2

)

Fi –
(

h3

θ4 , +
h3

6θ2

)

Fi+1 –
h
6

(Mi+1 + 2Mi),

fi = Yi –
h4

θ4 Fi,

where θ = ηh and i = 0 ≤ i ≤ N . Using 1st and 3rd derivative continuities at the knots,
S(τ )

i–1(zi) = S(τ )
i (zi) for τ = 1, 3, the following important relations can be derived:

Mi+1 + 4Mi + Mi–1 =
6
h2 (Yi+1 – 2Yi + Yi–1) +

6h2

θ2

(
1

θ sin(θ )
–

1
θ2 –

1
6

)

(Fi+1 + Fi–1)

+
6h2

θ2

(
2
θ2 –

2 cos(θ )
θ sin(θ )

–
4
6

)

Fi (4)

and

Mi+1 – 2Mi + Mi–1 = h2
(

1
θ sin(θ )

–
1
θ2

)

(Fi+1 + Fi–1) + 2h2
(

1
θ2 –

cos(θ )
θ sin(θ )

)

Fi. (5)
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Solving (4) and (5) yields

Mi =
1
h2 (Yi+1 – 2Yi + Yi–1) + h2

(
1

θ3 sin(θ )
–

1
6θ sin(θ )

–
1
θ4

)

(Fi+1 + Fi–1).

+ h2
(

2
θ4 –

2 cos(θ )
θ3 sin(θ )

+
2 cos(θ )
6θ sin(θ )

–
1
θ2

)

(Fi). (6)

Using (5) and (6), we obtain the following consistency relation involving Fi and Yi for i =
2, 3, . . . , N – 2:

Yi+2 – 4Yi+1 + 6Yi – 4Yi–1 + Yi–2 = h4(μ1Fi–2 + ν1Fi–1 + κ1Fi + ν1Fi+1 + μ1Fi+2), (7)

where

μ1 =
1
θ4 +

1
6θ sin(θ )

–
1

θ3 sin(θ )
, ν1 =

2 + 2 cos(θ )
θ3 sin(θ )

+
2 – cos(θ )
3θ sin(θ )

–
4
θ4 ,

κ1 =
1 – 4 cos(θ )

3θ sin(θ )
–

2 + 4 cos(θ )
θ3 sin(θ )

+
6
θ4 .

Relation (7) produces (N – 3) algebraic equations involving (N – 1) unknowns, Yi, i =
1, 2, . . . , N – 1. In order to solve this system, we obtain two more conditions as follows:

Setting i = 1, 2 in (4), we have

M0 + 4M1 + M2 =
6
h2 (Y0 – 2Y1 + Y2) + ∼

τ (F0 + F2) + ∼
κF1 (8)

and

M1 + 4M2 + M3 =
6
h2 (Y1 – 2Y2 + Y3) + ∼

τ (F1 + F3) + ∼
κF2. (9)

Similarly, using (5), the following two expressions can be derived with i = 1, 2:

M0 – 2M1 + M2 = ≈
τ (F0 + F2) + ≈

κF1 (10)

and

M1 – 2M2 + M3 = ≈
τ (F1 + F3) + ≈

κF2, (11)

where

∼
τ =

6h2

θ2

(
1

θ sin θ
–

1
θ2 –

1
6

)

, ∼
κ =

6h2

θ2

(
2
θ2 –

2 cos(θ )
θ sin(θ )

–
4
6

)

,

≈
τ = h2

(
1

θ sin(θ )
–

1
θ2

)

and ≈
κ = 2h2

(
1
θ2 –

cos(θ )
θ sin(θ )

)

.

From (8) and (10), we have

M1 =
1
h2 (Y0 – 2Y1 + Y2) +

∼
τ – ≈

τ

6
(F0 + F2) +

∼
κ – ≈

κ

6
F1. (12)
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Similarly, using (9) and (11), we obtain

M2 =
1
h2 (Y1 – 2Y2 + Y3) +

∼
τ – ≈

τ

6
(F1 + F3) +

∼
κ – ≈

κ

6
F2. (13)

Substituting (12) and (13) into (8) for i = 1 yields

2Y0 – 5Y1 + 4Y2 – Y3 = h2M0 – h4(�0F0 + �1F1 + �2F2 + �3F3). (14)

Also, for i = n, the following relation can be established:

YN–3 – 4YN–2 + 5YN–1 – 2YN

= –h2MN + h4(�3FN–3 + �2FN–2 + �1FN–1 + �0FN ), (15)

where

�0 =
2

θ3 sin(θ )
–

2
θ4 +

4
6θ sin(θ )

–
1
θ2 , �1 =

1 – 8 cos(θ )
6θ sin(θ )

–
1 + 4 cos(θ )
θ3 sin(θ )

+
5
θ4 ,

�2 =
2 + 2 cos(θ )
θ3 sin(θ )

+
2 – cos(θ )
3θ sin(θ )

–
4
θ4 , �3 =

1
6θ sin(θ )

–
1

θ3 sin(θ )
+

1
θ4 .

2.2 Truncation error
To calculate

∼
t i, 1 ≤ i ≤ N – 1, for the current scheme, we rewrite (7), (14), and (15) as

follows:

∼
t 1 = –2y0 + 5y1 – 4y2 + y3 + h2M0 – h4(�0y(4)

0 + �1y(4)
1 + �2y(4)

2 + �3y(4)
3
)
,

∼
t i = yi–2 – 4yi–1 + 6yi – 4yi+1 + yi+2 – h4(α1y(4)

i–2 + β1y(4)
i–1 + γ1y(4)

i + β1y(4)
i+1 + α1y(4)

i+2
)
,

∼
t N–1 = yN–3 – 4yN–2 + 5yN–1 – 2yn + h2MN

+ h4(�3y(4)
N–3 + �2y(4)

N–2 + �1y(4)
N–1 + �0y(4)

N
)
.

The following relations for
∼
t i, 1 ≤ i ≤ N – 1, can be established by expanding y0,

y1, y(4)
1 , y2, y(4)

2 , y3, y(4)
3 , etc. about the points zi, 1 ≤ i ≤ N – 1, by means of Taylor’s

series:

∼
t i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 11
12 – �0 – �1 – �2 – �3)h4y(4)

i + ( 1
12 + �0 – �2 – 2�3)h5y(5)

i

+ ( 11
90 – 1

2�0 – 1
2�2 – 2�3)h6y(6)

i + ( 1
60 + 1

6�0 – 1
6�2 – 4

3�3)h7y(7)
i

+ ( 17
2240 – 1

24�0 – 1
24�2 – 2

3�3)h8y(8)
i + O(h9),

i = 1

(1 – 2α1 – 2β1 – γ1)h4y(4)
i + ( 1

6 – 4α1 – β1)h6y(6)
i

+ ( 1
180 – 4

3α1 – 1
12β1)h8y(8)

i + ( 17
30240 – 8

45α1 – 1
360β1)h10y(10)

i + O(h11),

i = 2(1)N – 2

( 11
12 – �0 – �1 – �2 – �3)h4y(4)

i + ( 1
12 + �0 – �2 – 2�3)h5y(5)

i

+ ( 11
90 – 1

2�0 – 1
2�2 – 2�3)h6y(6)

i + ( 1
60 + 1

6�0 – 1
6�2 – 4

3�3)h7y(7)
i

+ ( 17
2240 – 1

24�0 – 1
24�2 – 2

3�3)h8y(8)
i + O(h9),

i = N – 1.

(16)
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Comparing the coefficients of y(τ )
i for τ = 4, 5, 6, 7, we obtain

μ1 = –
1

720
, ν1 =

31
180

, κ1 =
79

120
, �0 =

7
90

,

�1 =
49
72

, �2 =
7

45
and �3 =

1
360

.

Finally we get

∼
t i =

⎧
⎪⎪⎨

⎪⎪⎩

– 241
60480 h8y(8)

i + O(h9), i = 1,
1

3024 h10y(10)
i + O(h11), i = 2(1)N – 2,

– 241
60480 h8y(8)

i + O(h9), i = N – 1.

(17)

Following [19], the formulation and truncation error given in Sects. 2.1 and 2.2 respec-
tively are reproduced here for the sake of completeness.

3 Time discretization
Let tm = m�t, where �t = T

K is the step size in the time direction for m = 0, 1, 2, . . . , K .
To discretize the Caputo fractional time derivative at t = tm+1, the usual central difference
approach is used as follows [20]:

∂αy(z, tm+1)
∂tα

=
1

Γ (2 – α)

∫ tk+1

0

∂2y(z, w)
∂w2 (tm+1 – w)–α+1 dw,

∂αy(z, tm+1)
∂tα

=
1

Γ (2 – α)

m∑

k=0

∫ tk+1

tk

∂2y(z, w)
∂w2 (tm+1 – w)–α+1 dw

=
1

Γ (2 – α)

m∑

k=0

y(z, tk+1) – 2y(z, tk) + y(z, tk–1)
�t2

∫ tk+1

tk

(tm+1 – w)–α+1 dw + lm+1
�t

=
1

Γ (2 – α)

m∑

k=0

y(z, tk+1) – 2y(z, tk) + y(z, tk–1)
�t2

∫ tm–k+1

tm–k

(υ)–α+1 dυ + lm+1
�t

=
1

Γ (2 – α)

m∑

k=0

y(z, tm–k+1) – 2y(z, tm–k) + y(z, tm–k–1)
�t2

∫ tk+1

tk

(υ)–α dυ + lm+1
�t

=
1

Γ (3 – α)

m∑

k=0

y(z, tm–k+1) – 2y(z, tm–k) + y(z, tm–k–1)
�tα

(
(k + 1)2–α – k2–α

)
+ lm+1

�t

=
1

Γ (3 – α)

m∑

k=0

dk
y(z, tm–k+1) – 2y(z, tm–k) + y(z, tm–k–1)

�tα
+ lm+1

�t , (18)

where dk = (k + 1)2–α – k2–α and υ = (tm+1 – w).
Now, introduce a fractional differential operator Ωα

t :

Ωα
t y(z, tk+1) =

1
Γ (3 – α)

m∑

k=0

dk
y(z, tm–k+1) – 2y(z, tm–k) + y(z, tm–k–1)

�tα
.
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Equation (18) can be rewritten as follows:

∂αy(z, tm+1)
∂tα

= Ωα
t y(z, tk+1) + lm+1

�t . (19)

Here, lm+1
�t denotes the truncation error between ∂α

∂tα y(z, tm+1) and Ωα
t y(z, tm+1). Equation

(1) can be written as

Ωα
t y(z, tm+1) + γ

∂4

∂z4 y(z, tm+1) = f (z, tm+1), (20)

where Ωα
t y(z, tm+1) denotes the Caputo fractional time derivative approximation at t =

tm+1. Using (18), expression (20) takes the following form:

ym+1(z) + βγ ym+1
xxxx = –dmy–1(z) + (2dm – dm–1)y0(z) +

m–1∑

k=1

(–dk–1 + 2dk – dk+1)ym–k(z)

+ (2d0 – d1)ym(z) + βf m+1(z), m = 1, 2, 3, . . . , K – 1, (21)

where β = Γ (3 – α)�tα and ym+1(z) = y(z, tm+1) and the initial conditions are imposed as
follows:

y(z, t0) = φ(z), 0 ≤ z ≤ L, (22)

∂y(z, t0)
∂t

= ψ(z), 0 ≤ z ≤ L. (23)

Moreover, the constants dks appearing in (18) possess the following properties:
• d0 = 1 and ∀k, dks > 0,
• (2 – d1) –

∑m–1
k=1 (dk+1 – 2dk+1 + dk–1) + (2dm – dm–1) – dm = 1.

The truncation error in (19) is bounded, i.e.,

∣
∣lm+1

�t
∣
∣≤ ζ�t2. (24)

Here, ζ is a constant depending on y.
To implement this scheme, first we calculate y–1 as follows:

y–1(z) = y(z, t0) – �tyt(z, t0),

y–1(z) = φ(z) – �tψ(z).

For m = 0, (21) takes the following form:

y1(z) + βγ y1
zzzz = –d0y–1(z) + 2d0y0(z) + βf 1(z). (25)

Now, Eqs. (21) and (25) together with initial/boundary conditions become a complete set
of semi-discrete problem for (1).

Also, lm+1, the error at t = tm+1, is given by [21]

lm+1 = β

(
∂α

∂tα
y(z, tm+1) – Gα

t y(z, tm+1)
)

. (26)
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From Eqs. (19) and (24), the above expression can be written as

∣
∣lm+1∣∣ =

∣
∣lm+1

�t
∣
∣≤ ζ�t2. (27)

Some relevant functional spaces, their inner product and standard norms are defined as
follows:

Υ 2(η) =
{

u ∈ L2(η), uz, uzz ∈ L2(η)
}

,

Υ 2
0 (η) =

{
u ∈ Υ 2(η), u|∂η = 0, uz|∂η = 0

}
,

Υ n(η) =
{

u ∈ L2(η), u(r)
z ,∀r ≤ N

}
,

where L2(η) denotes the space of those measurable functions whose squares are Lebesgue
integrable in η. The norm and inner product of L2(η) are given by

〈v, u〉 =
∫

η

vu dz, ‖u‖0 = 〈u, u〉 1
2 .

Also, for Υ 2(η), we take

〈v, u〉2 = 〈v, u〉 + 〈vz, uz〉 + 〈vzz, uzz〉, ‖u‖2 =
√〈u, u〉2.

The norm ‖ · ‖ of the space Υ N (η) is defined as

‖u‖N =

√
√
√
√

N∑

r=0

∥
∥u(r)

x
∥
∥2

0. (28)

‖ · ‖2 is defined as

‖u‖2 =
√

‖u‖2
0 + βγ

∥
∥u(2)

x
∥
∥2

0. (29)

Now, to carry out the stability and convergence analysis, we need to find ym+1 ∈ Υ 2
0 (η)

such that ∀u ∈ Υ 2
0 (η). From (21) and (25), we have

〈
ym+1, u

〉
+ βγ

〈
ym+1

zzzz , u
〉

= –dm
〈
y–1, u

〉
+ (2dm – dm–1)

〈
y0, u

〉

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
〈
ym–k , u

〉
+ (2d0 – d1)

〈
ym, u

〉
+ β
〈
f m+1, u

〉
(30)

and

〈
y1, u

〉
+ βγ

〈
y1

zzzz, u
〉

= –d0
〈
y–1, u

〉
+ 2d0

〈
y0, u

〉
+ β
〈
f 1, u

〉
. (31)

Definition 1 Let gm and hm, m = 1, 2, . . . , N , be the sequences which satisfy the inequality

gm ≤
(m–1∑

i=1

gihi + κ

)

, m = 1, 2, . . . , N ,



Amin et al. Advances in Difference Equations        (2019) 2019:514 Page 9 of 21

where gm ≥ 0, κ ≥ 0, then the following discrete Gronwall inequality holds:

gm ≤ κ . exp

(m–1∑

i=1

gi

)

, m = 1, 2, . . . , N . (32)

4 Stability and convergence
The approach used in this section follows the general approach used in [19]. The stability
and convergence analysis for semi-discrete problem are described in the following Theo-
rems 1 and 2, respectively.

Theorem 1 ∀�t > 0, the semi-discrete problem is unconditionally stable if

∥
∥ym+1∥∥

2 ≤ c
(‖φ‖0 + �t‖ψ‖0 + β

∥
∥f k+1∥∥

0

)
, 0 ≤ m ≤ K – 1. (33)

Proof We apply mathematical induction to prove this theorem.
For m = 0 and u = y1, Eq. (30) can be expressed as

〈
y1, y1〉 + βγ

〈
y1

xxxx, y1〉 = –d0
〈
y–1, y1〉 + 2

〈
y0, y1〉 + β

〈
f 1, y1〉

or

〈
y1, y1〉 + βγ

〈
y1

zz, y1
zz
〉

= –d0
〈
y–1, y1〉 + 2d0

〈
y0, y1〉 + β

〈
f 1, y1〉. (34)

Here, all the boundary related contributions vanish because of the boundary constraints
on u. Using ‖u‖0 ≤ ‖u‖2 and Schwarz’s inequality, Eq. (34) becomes

∥
∥y1∥∥2

2 ≤ ∥∥y–1∥∥
0

∥
∥y1∥∥

0 + 2
∥
∥y0∥∥

0

∥
∥y1∥∥

0 + β
∥
∥f 1∥∥

0

∥
∥y1∥∥

0

≤ ∥∥y–1∥∥
0

∥
∥y1∥∥

2 + 2
∥
∥y0∥∥

0

∥
∥y1∥∥

2 + β
∥
∥f 1∥∥

0

∥
∥y1∥∥

2,
∥
∥y1∥∥

2 ≤ ∥∥y–1∥∥
0 + 2

∥
∥y0∥∥

0 + β
∥
∥f 1∥∥

0,
∥
∥y1∥∥

2 ≤ (‖φ‖0 – �t‖ψ‖0
)

+ 2‖φ0‖0 + β
∥
∥f 1∥∥

0,
∥
∥y1∥∥

2 ≤ 3
(‖φ‖0 – �t‖ψ‖0 + β

∥
∥f 1∥∥

0

)
.

Hence

∥
∥y1∥∥

2 ≤ c
(‖φ‖0 – �t‖ψ‖0 + β

∥
∥f 1∥∥

0

)
.

We assume that the result is true for u = yk , i.e.,

∥
∥yk∥∥

2 ≤ c
(‖φ0‖0 + �t‖ψ0‖0 + β

∥
∥f k∥∥

0

)
, k = 2, 3, . . . , m. (35)

Let u = ym+1 in Eq. (30)

〈
ym+1, ym+1〉 + βγ

〈
ym+1

zzzz , ym+1〉

= –dm
〈
y–1, ym+1〉 + (2dm – dm–1)

〈
y0, ym+1〉

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
〈
ym–k , ym+1〉 + (2d0 – d1)

〈
ym, ym+1〉 + β

〈
f m+1, ym+1〉. (36)
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Integrating by parts gives

〈
ym+1, ym+1〉 + βγ

〈
ym+1

zz , ym+1
zz
〉

= –dm
〈
y–1, ym+1〉 + (2dm – dm–1)

〈
y0, ym+1〉

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
〈
ym–k , ym+1〉 + (2d0 – d1)

〈
ym, ym+1〉 + β

〈
f m+1, ym+1〉. (37)

Using ‖u‖0 ≤ ‖u‖2 and Schwarz’s inequality, the above expression then takes the following
form:

∥
∥ym+1∥∥2

2 ≤ dm
∥
∥y–1∥∥

0

∥
∥ym+1∥∥

0 + (2dm – dm–1)
∥
∥y0∥∥

0

∥
∥ym+1∥∥

0 +
m–1∑

k=1

(–dk–1 + 2dk

– dk+1)
∥
∥ym–k∥∥

0

∥
∥ym+1∥∥

0 + (2d0 – d1)
∥
∥ym∥∥

0

∥
∥ym+1∥∥

0 + β
∥
∥f k+1∥∥

0

∥
∥ym+1∥∥

0,

or

∥
∥ym+1∥∥2

2 ≤ dm
∥
∥y–1∥∥

0

∥
∥ym+1∥∥

2 + (2dm – dm–1)
∥
∥y0∥∥

0

∥
∥ym+1∥∥

2 +
m–1∑

k=1

(–dk–1 + 2dk

– dk+1)
∥
∥ym–k∥∥

0

∥
∥ym+1∥∥

2 + (2d0 – d1)
∥
∥ym∥∥

0

∥
∥ym+1∥∥

2 + β
∥
∥f k+1∥∥

0

∥
∥ym+1∥∥

2,

∥
∥ym+1∥∥2 ≤ dm

∥
∥y–1∥∥

0 + (2dm – dm–1)
∥
∥y0∥∥

0 +
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
∥
∥ym–k∥∥

0

+ (2d0 – d1)
∥
∥ym∥∥

0 + β
∥
∥f k+1∥∥

0.

Using (32), the above relation can be written as follows:

∥
∥ym+1∥∥

2 ≤ ((2dm – dm–1)
∥
∥y0∥∥

0 + dm
∥
∥y–1∥∥

0 + β
∥
∥f m+1∥∥

0

)
exp

[

(2d0 – d1)

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)

]

,

∥
∥ym+1∥∥

2 ≤ (∥∥y0∥∥
0 +
∥
∥y–1∥∥

0 + β
∥
∥f k+1∥∥

0

)
exp(1 + dm–1 – dm),

∥
∥ym+1∥∥

2 ≤ (‖φ‖0 + ‖φ‖0 – �t‖ψ‖0 + β
∥
∥f k+1∥∥

0

)
exp(1 + dm–1 – dm),

∥
∥ym+1∥∥

2 ≤ c
(‖φ‖0 – �t‖ψ‖0 + β

∥
∥f k+1∥∥

0

)
. �

Theorem 2 The numerical solution obtained by the proposed method converges to the
exact solution if the following relation holds:

∥
∥y(tm) – ym∥∥

2 ≤ ζ�t2, m = 1, 2, . . . , K , (38)

where ζ is constant and ζ = (1 + dm–1) exp(1 + dm–1 – dm).

Proof Consider em = y(z, tm) – ym(z) for m = 1, using Eqs. (1) and (30), we have

〈
e1, u

〉
+ βγ

〈
e1

zz, uzz
〉

=
〈
e–1, u

〉
+ 2d0

〈
e0, u

〉
+
〈
l1, u

〉
, ∀u ∈ H2

0 (η).
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Again using ‖u‖0 ≤ ‖u‖2, Schwarz’s inequality, u = e1, and e0 = 0, we get

∥
∥e1∥∥2

2 ≤ ∥∥e–1∥∥
0 +
∥
∥e1∥∥

0 +
∥
∥l1∥∥

0

∥
∥e1∥∥

0,
∥
∥e1∥∥2

2 ≤ ∥∥e–1∥∥
0 +
∥
∥e1∥∥

2 +
∥
∥l1∥∥

0

∥
∥e1∥∥

2,
∥
∥e1∥∥

2 ≤ ∥∥e–1∥∥
0 +
∥
∥l1∥∥

0.

Since ‖e–1‖ ≤ �t2, using Eq. (27) leads to

∥
∥y(t1) – y1∥∥

2 ≤ 2�t2,
∥
∥y(t1) – y1∥∥

2 ≤ ζ�t2.

For m = 1, Eq. (38) is true.
Now, consider (38) is satisfied for m = (1)r, i.e.,

∥
∥y(tm) – ym∥∥

2 ≤ ζ�t2. (39)

Using (1), (29), (30) and for m = r + 1, the error equation is derived as follows:

〈
em+1, u

〉
+ βγ

〈
em+1

zz , uzz
〉

= –dm
〈
e–1, u

〉
+ (2dm – dm–1)

〈
e0, u

〉

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
〈
em–k , u

〉
+ (2d0 – d1)

〈
em, u

〉
+
〈
lm+1, u

〉
. (40)

Now, using the induction assumption and taking u = em+1, Eq. (40) can be written as fol-
lows:

∥
∥em+1∥∥2

2 ≤ –dm
∥
∥e–1∥∥

0

∥
∥em+1∥∥

0 + (2dm – dm–1) +
∥
∥e0∥∥

0

∥
∥em+1∥∥

0

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
∥
∥em–k∥∥

0

∥
∥em+1∥∥

0 + (2d0 – d1)
∥
∥em∥∥

0

∥
∥em+1∥∥

0

+
∥
∥lm+1∥∥

0

∥
∥em+1∥∥

0,

∥
∥em+1∥∥

2 ≤ –dm
∥
∥e–1∥∥

0 +
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
∥
∥em–k∥∥

2 + (2d0 – d1)
∥
∥em∥∥

2 +
∥
∥lm+1∥∥

0.

Using (34), we have

∥
∥em+1∥∥

2 ≤ (dm
∥
∥e–1∥∥

0 +
∥
∥lm+1∥∥

0

)
exp

[m–1∑

k=1

(–dk–1 + 2dk – dk+1) + 2d0 – d1

]

,

or

∥
∥em+1∥∥

2 ≤ (dm
∥
∥e–1∥∥

0 +
∥
∥lm+1∥∥

0

)
exp(1 + dk–1 – dk),

∥
∥em+1∥∥

2 ≤ (dm�t2 + �t2) + exp(1 + dk–1 – dk),
∥
∥em+1∥∥

2 ≤ ζ�t2.

Hence, proved. �
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5 Spatial discretization
The approach used in this section follows the general approach used in [19].

Let (zi, tm) be the grid points of a uniform mesh to discretize the region [0, L] × [0, T],
where zi = ih, i = 0, 1, 2, . . . , N , and h = L

N . The spatial discretization of Eq. (21) using quintic
non-polynomial spline is formulated as follows:

Y m+1
i (z) + βγ Fm+1

= –dmY –1(z) + (2dm – dm–1)Y 0(z) +
m–1∑

k=1

(–dk–1 + 2dk – dk+1)Y m–k(z)

+ (2d0 – d1)Y m(z) + βf m+1(z), m = 1, 2, 3, . . . , K – 1. (41)

The operator ϕ is defined as

ϕYk = μ1Yk–2 + ν1Yk–1 + κ1Yk + ν1Yk+1 + μ1Yk+2. (42)

Now, Eq. (7) takes the following form:

ϕFi =
1
h4 (Yi–2 – 4Yi–1 + 6Yi – 4Yi+1 + Yi+2). (43)

Applying ϕ on Eq. (41), we obtain

(
μ1Y m+1

i–2 + ν1Y m+1
i–1 + κ1Y m+1

i + ν1Y m+1
i+1 + μ1Y m+1

i+2
)

+
βγ

h4

(
Y m+1

i–2 – 4Y m+1
i–1 + 6Y m+1

i

– 4Y m+1
i+1 + Y m+1

i+2
)

= –dm
(
μ1Y –1

i–2 + ν1Y –1
i–1 + κ1Y –1

i + ν1Y –1
i+1 + μ1Y –1

i+2
)

+ (2dm

– dm–1)
(
μ1Y 0

i–2 + ν1Y 0
i–1 + κ1Y 0

i + ν1Y 0
i+1 + μ1Y 0

i+2
)

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
(
μ1Y m–k

i–2

+ ν1Y m–k
i–1 + κ1Y m–k

i + ν1Y m–k
i+1 + μ1Y m–k

i+2
)

+ (2d0 – d1)
(
μ1Y m

i–2 + ν1Y m
i–1 + κ1Y m

i + ν1Y m
i+1

+ μ1Y m
i+2
)

+ β
(
μ1f m+1

i–2 + ν1f m+1
i–1 + κ1f m+1

i + ν1f m+1
i+1 + μ1f m+1

i+2
)
,

1 ≤ m ≤ K – 1. (44)

After simplification, (44) takes the following form:

(

μ1 +
βγ

h4

)

Y m+1
i–2 +

(

ν1 – 4
βγ

h4

)

Y m+1
i–1 +

(

κ1 + 6
βγ

h4

)

Y m+1
i

+
(

ν1 – 4
βγ

h4

)

Y m+1
i+1 +

(

μ1 +
βγ

h4

)

Y m+1
i+2

= Qi, 2 ≤ i ≤ N – 2, 1 ≤ m ≤ K – 1, (45)
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where

Qi = –dm
(
μ1Y –1

i–2 + ν1Y –1
i–1 + κ1Y –1

i + ν1Y –1
i+1 + μ1Y –1

i+2
)

+ (2dm – dm–1)
(
μ1Y 0

i–2

+ ν1Y 0
i–1 + κ1Y 0

i + ν1Y 0
i+1 + μ1Y 0

i+2
)

+
m–1∑

k=1

(–dk–1 + 2dk – dk+1)
(
μ1Y m–k

i–2 + ν1Y m–k
i–1

+ κ1Y m–k
i + ν1Y m–k

i+1 + μ1Y m–k
i+2
)

+ (2d0 – d1)
(
μ1Y m

i–2 + ν1Y m
i–1 + κ1Y m

i + ν1Y m
i+1

+ μ1Y m
i+2
)

+ β
(
μ1f m+1

i–2 + ν1f m+1
i–1 + κ1f m+1

i + ν1f m+1
i+1 + μ1f m+1

i+2
)
, 1 ≤ m ≤ K – 1.

The above system yields (N –3) equations involving (N –1) unknowns Y m+1
i , 1 ≤ i ≤ N –1.

We extract two more equations from boundary conditions as follows:

(

�0 – 2
βγ

h4

)

Y m+1
0 +

(

�1 + 5
βγ

h4

)

Y m+1
1 +

(

�2 – 4
βγ

h4

)

Y m+1
2 +

(

�3 +
βγ

h4

)

Y m+1
3

= (2d0 – d1)
(
�0Y m

0 + �1Y m
1 + �2Y m

2 + �3Y m
3
)

+
m–1∑

k=1

(dk – dk+1)
(
�0Y m–k

0 + �1Y m–k
1 + �2Y m–k

2 + �3Y m–k
3
)

+ (dm – dm–1)(�0φ0 + �1φ1 + �2φ2 + �3φ3)

+ �dm(�0ψ0 + �1ψ1 + �2ψ2 + �3ψ3)

+ β
(
�0f m+1

0 + �1f m+1
1 + �2f m+1

2 + �3f m+1
3
)
. (46)

Similarly,

(

�3 +
βγ

h4

)

Y m+1
N–3 +

(

�2 – 4
βγ

h4

)

Y m+1
N–2 +

(

�15
βγ

h4

)

Y m+1
N–1 +

(

�0 – 2
βγ

h4

)

Y m+1
N

= (2d0 – d1)
(
�3Y m

N–3 + �2Y m
N–2 + �1Y m

N–1 + �0Y m
N
)

+
m–1∑

k=1

(dk – dk+1)
(
�3Y m–k

N–3 + �2Y m–k
N–2 + �1Y m–k

N–1 + �0Y m–k
N
)

+ (dm – dm–1)(�3φN–3 + �2φN–2 + �1φN–1 + �0φN )

+ �dm(�3ψN–3 + �2ψN–2 + �1ψN–1

+ �0ψN ) + β
(
�3f m+1

N–3 + �2f m+1
N–2 + �1f m+1

N–1 + �0f m+1
N
)
. (47)

In order to apply this scheme, Y 2 = [Y 2
1 , Y 2

2 , Y 2
3 , . . . , Y 2

N–1]T and Y 1 = [Y 1
1 , Y 1

2 , Y 1
3 , . . . ,

Y 1
N–1]T are required. Solving (25) and utilizing the quintic non-polynomial spline, Y 1 is

calculated as follows:

(

μ1 +
βγ

h4

)

Y 1
i–2 +

(

ν1 – 4
βγ

h4

)

Y 1
i–1 +

(

κ1 + 6
βγ

h4

)

Y 1
i +
(

ν1 – 4
βγ

h4

)

Y 1
i+1

+
(

μ1 +
βγ

h4

)

Y 1
i+2 = Ji, 2 ≤ i ≤ N – 2, (48)
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where

Ji = (μ1φi–2 + ν1φi–1 + κ1φi + ν1φi+1 + μ1φi+2) + �t
(
μ1ψ

1
i–2 + ν1ψ

1
i–1 + κ1ψ

1
i

+ ν1ψ
1
i+1 + μ1ψ

1
i+2
)

+ β
(
μ1f 1

i–2 + ν1f 1
i–1 + κ1f 1

i + ν1f 1
i+1 + μ1f 1

i+2
)
.

System (48) contains (N – 1) unknowns Y 1
i , 1 ≤ i ≤ N – 1, involved in (N – 3) equations.

We extract two more equations from the end conditions as follows:

(

�0 – 2
βγ

h4

)

Y 1
0 +
(

�1 + 5
βγ

h4

)

Y 1
1 +
(

�2 – 4
βγ

h4

)

Y 1
2 +
(

�3 +
βγ

h4

)

Y 1
3

= (�0φ0 + �1φ1 + �2φ2 + �3φ3) + �t(�0ψ0 + �1ψ1 + �2ψ2 + �3ψ3)

+ β
(
�0f 1

0 + �1f 1
1 + �2f 1

2 + �3f 1
3
)

(49)

and

(

�3 +
βγ

h4

)

Y 1
N–3 +

(

�2 – 4
βγ

h4

)

Y 1
N–2 +

(

�1 + 5
βγ

h4

)

Y 1
N–1 +

(

�0 – 2
βγ

h4

)

Y 1
N

= (�3φN–3 + �2φN–2 + �1φN–1 + �0φN ) + �t(�3ψN–3 + �2ψN–2

+ �1ψN–1 + �0ψN ) + β
(
�3f 1

N–3 + �2f 1
N–2 + �1f 1

N–1 + �0f 1
N
)
. (50)

Suppose φ = [φ1,φ2, . . . ,φN–1]T , f = [f1, f2, . . . , fN–1]T ,
∼
φ = [φ0, 0, . . . , 0,φN ]T , and

∼
f = [f0, 0,

. . . , 0, fN ]T are column matrices with (N – 1) entries. The system in (48)–(50) can be ex-
pressed as

AY 1 = B
(
φ + �tψ + βf 1) + C(

∼
φ + �t

∼
ψ + β

∼
f ) – D. (51)

Here, A,B, and C are square matrices of order n – 1.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 + 5 βγ

h4 �2 – 4 βγ

h4 �3 + βγ

h4 0 0 0 · · · 0

ν1 – 4 βγ

h4 κ1 + 6 βγ

h4 ν1 – 4 βγ

h4 μ1 + βγ

h4 0 0 · · · 0

μ1 + βγ

h4 ν1 – 4 βγ

h4 κ1 + 6 βγ

h4 ν1 – 4 βγ

h4 μ1 + βγ

h4 0 · · · 0

. . .
. . .

. . .

0 · · · 0 μ1 + βγ

h4 ν1 – 4 βγ

h4 κ1 + 6 βγ

h4 0ν1 – 4 βγ

h4 μ1 + βγ

h4

0 · · · 0 μ1 + βγ

h4 ν1 – 4 βγ

h4 κ1 + 6 βγ

h4 ν1 – 4 βγ

h4

0 · · · 0 0 0 �3 + βγ

h4 �2 – 4 βγ

h4 �1 + 5 βγ

h4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 �2 �3 0 0 0 · · · 0
ν1 κ1 ν1 μ1 0 0 · · · 0
μ1 ν1 κ1 ν1 μ1 0 · · · 0

. . . . . . . . .
0 · · · 0 μ1 ν1 κ1 ν1 μ1

0 · · · 0 0 μ1 ν1 κ1 ν1

0 · · · 0 0 0 �3 �2 �1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and
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C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�0 0 0 0 0 0 0 · · · 0
1 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0

. . . . . . . . .
0 · · · 0 0 0 0 0 0 0
0 · · · 0 0 0 0 0 0 1
0 · · · 0 0 0 0 0 0 �0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

D =
[
–M0h2, 0, 0, 0, . . . , –MN h2]T .

6 Numerical results and discussion
In this section, we present the simulation results for two test examples in order to validate
the proposed numerical algorithm. All calculations are performed in Mathematica 10.0.
The accuracy of the current scheme is verified by the error norms L∞, L2 and experimental
order of convergence (EOC) [22, 23]:

L∞ = max |yj – Yj|, L2 =

√
√
√
√

∑N
j=0 |yj – Yj|2
∑N

j=0 |yj|2
, EOC =

1
log(2)

log

[
L∞(2N)
L∞(N)

]

,

where yj, Yj are the exact analytical and quintic non-polynomial spline solutions at jth
nodal point respectively.

Problem 1 Consider problem (1) with γ = 0.05 [1].
The exact analytical solution of this problem is

y(z, t) = 2(t + 1) sin2(z).

The maximum and Euclidean error norms corresponding to four different values of �t
are reported in Table 1 using N = 100 and α = 1.75. It is clear that the presented scheme
approximates the exact analytical solution more precisely as compared to the method used

Table 1 Error norms for Problem 1 at t = 1 with N = 100, α = 1.75

�t Method in [1] Proposed method

L∞ L2 L∞ L2

0.001 1.8221× 10–3 1.1556× 10–4 1.5535× 10–6 2.3182× 10–7

0.0005 5.6177× 10–4 2.9965× 10–5 5.3380× 10–7 6.2981× 10–8

0.00025 1.5380× 10–4 9.9200× 10–6 1.9124× 10–7 2.1050× 10–8

0.000125 3.9312× 10–5 1.9910× 10–6 5.6215× 10–8 6.4940× 10–9

Table 2 Error norms for Problem 1, with N = 80 and �t = 0.001

α t = 0.25 t = 0.5 t = 1

1.25 L2 2.5869× 10–7 2.0680× 10–7 1.5465× 10–7

L∞ 2.0113× 10–6 1.4491× 10–6 9.9176× 10–7

1.50 L2 2.4923× 10–7 2.2555× 10–7 1.9223× 10–7

L∞ 2.0700× 10–6 1.6562× 10–6 1.2714× 10–6

1.75 L2 2.3392× 10–7 2.3887× 10–7 2.3182× 10–7

L∞ 2.0669× 10–6 1.8185× 10–6 1.5535× 10–6
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Table 3 Experimental order of convergence for Problem 1, when α = 1.50, N = 80, �t = 0.001

N L∞ EOC L2 EOC

10 9.8950× 10–2 – 2.5950× 10–2 –
20 6.0451× 10–3 4.0329 1.4778× 10–3 4.1342
40 3.7842× 10–4 3.9977 8.5142× 10–5 4.1174
80 2.1927× 10–5 4.1092 6.0168× 10–6 3.8228

Figure 1 Approximate solution for Problem 1 at different time levels when �t = 0.001, N = 80, α = 1.75

Figure 2 Exact and numerical solution for Problem 1 with N = 80, �t = 0.001, and α = 1.50

in [1]. In Table 2, the error norms L∞ and L2 are listed at t = 0.25, 0.5, 1 using different val-
ues of α. The calculations of slope rate of convergence in spatial direction are presented
in Table 3 when error norms are calculated for �t = 0.001, α = 1.50. The computational
rate of convergence of the proposed method in spatial direction is in line with theoretical
results even with a larger time step. Figure 1 displays the physical behaviour of numeri-
cally approximated solution at various time stages. The three-dimensional visuals of exact
analytical and non-polynomial quintic spline solutions are shown in Fig. 2 using α = 1.50,
N = 100, and �t = 0.001. From Fig. 2, it is clear that the numerical solution is consistent
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Figure 3 Absolute error for Problem 1 when N = 100, α = 1.75, and �t = 0.0005

Figure 4 Absolute error for Problem 1 when N = 100, α = 1.5 and t = 1

with the exact solution, which indicates that the proposed method is effective. Figure 3
displays the absolute error at t = 1 with α = 1.75 and N = 100, whereas Fig. 4 represents
3D error plot using N = 100, α = 1.5, and �t = 0.001.

Problem 2 As a second experiment, consider the following fourth order superdiffusion
equation [1]:

∂αy
∂tα

+ γ
∂4y
∂z4 = f (z, t), z ∈ [0, 1], t ∈ [0, T],

the initial/end conditions are

y(z, 0) =
1
π5

(
π10 sin(πz) + cos(πz) – cos(3πz)

)
,

y(0, t) = y(1, t) = 0,

yzz(0, t) =
1
π3 8(1 + t), yzz(1, t) = –

1
π3 8(1 + t).
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Table 4 Error norms for Problem 2 at t = 1 with N = 80, α = 1.50

�t Method in [1] Proposed method

L∞ L2 L∞ L2

0.001 1.8221× 10–3 1.1556× 10–4 7.4454× 10–8 5.2661× 10–8

0.0005 5.6177× 10–4 2.9965× 10–5 2.1479× 10–8 1.6911× 10–8

0.00025 1.5380× 10–4 9.9200× 10–6 5.4476× 10–9 5.1349× 10–9

0.000125 3.9312× 10–5 1.9910× 10–6 1.9831× 10–9 1.4734× 10–9

Table 5 Error norms for Problem 2, when N = 80 and �t = 0.001

α t = 0.25 t = 0.50 t = 1

1.25 L∞ 2.8042× 10–9 5.0116× 10–9 7.8473× 10–9

L2 1.8445× 10–9 3.4181× 10–9 5.3792× 10–9

1.50 L∞ 2.4671× 10–8 3.8931× 10–8 7.4454× 10–8

L2 1.4233× 10–8 2.7534× 10–8 5.2661× 10–8

1.75 L∞ 2.1815× 10–8 6.7973× 10–8 1.7391× 10–8

L2 1.4870× 10–8 4.7793× 10–8 1.2290× 10–7

Table 6 Experimental order of convergence for Problem 2, when N = 80, α = 1.50, �t = 0.001

N L∞ EOC L2 EOC

10 4.2119× 10–4 – 1.6769× 10–4 –
20 2.2034× 10–5 4.2566 9.9991× 10–6 4.0678
40 1.8694× 10–6 4.1846 6.9693× 10–7 3.8452
80 7.4454× 10–8 4.0245 5.2661× 10–8 3.8605

The exact analytical solution to this problem is

y(z, t) =
1
π5

(
π10 sin(πz) + cos(πz) – cos(3πz)

)
(t + 1).

The computational error norms corresponding to four different selections of �t are
given in Table 4 with γ = 0.05 and N = 80. It can be seen that our presented computa-
tional strategy yields more accurate solutions as compared to the technique used in [1].
Table 5 shows the maximum and Euclidian error norms at different time levels. The ex-
perimental rate of convergence is tabulated in Table 6 when error norms are calculated
for N = 80, α = 1.50, and �t = 0.001. It is clear that the experimental results support the
theoretical estimation. Figure 5 displays the approximate solution at t = 1, 2, 3, 4, 5. The
three-dimensional plots of analytical exact and numerical solutions are portrayed in Fig. 6
in order to showcase their physical behaviour. In Fig. 7, the absolute computational error
is presented at t = 1 using α = 1.50 and N = 80.

7 Conclusion
1. An algorithm utilizing quintic non-polynomial spline functions has been developed

for the numerical treatment of time fractional fourth order superdiffusion equation.
2. The discretization in space and time directions has been achieved by using quintic

non-polynomial spline functions and finite central difference formulation
respectively.

3. The unconditional stability of the proposed scheme in temporal direction has been
proved.

4. Theoretically, the presented technique is proved to be O(h4 + �t2) accurate.
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Figure 5 Approximate solution for Problem 2 at different time levels when �t = 0.001, N = 60, α = 1.25

Figure 6 Exact and numerical solution for Problem 2 when N = 80, α = 1.25, �t = 0.001

Figure 7 Absolute error for Problem 2 when N = 80,
�t = 0.001 and α = 1.25

5. The experimental order of convergence is found to conform with the theoretical
expectations.

6. The comparison of maximum and Euclidian error norms indicates the superiority
of the present scheme over the method used in [1] even with larger grid spacing in
time direction.
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