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Abstract. In the present paper, we study the dynamics of tuberculosis model

using fractional order derivative in Caputo-Fabrizio sense. The number of con-
firmed notified cases reported by national TB program Khyber Pakhtunkhwa,

Pakistan, from the year 2002 to 2017 are used for our analysis and estimation

of the model biological parameters. The threshold quantity R0 and equilibria
of the model are determined. We prove the existence of the solution via fixed-

point theory and further examine the uniqueness of the model variables. An

iterative solution of the model is computed using fractional Adams-Bashforth
technique. Finally, the numerical results are presented by using the estimated

values of model parameters to justify the significance of the arbitrary fractional
order derivative. The graphical results show that the fractional model of TB

in Caputo-Fabrizio sense gives useful information about the complexity of the

model and one can get reliable information about the model at any integer or
non-integer case.

1. Introduction. Tuberculosis (TB) is a serious public health problem not only
for developing countries but also for developed one. This infection is the leading
cause of deaths due to which it is ranked 10th and after HIV infection it is regard-
ing the 2nd leading cause of mortality worldwide. It is a bacterial infectious dis-
ease caused by bacillus Mycobacterium tuberculosis (MTB). It mainly infects lungs
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(called pulmonary TB) and seldomly damage some other human body parts such
as spine, central nervous system, kidneys and brain (called extra pulmonary TB).
The bacteria of TB is transfer from infected person to the healthy person through
air during coughing, spiting or sneezing. According to World Health Organization
(WHO) reports, 10.4 million people are TB infected out of which approximately
1.7 million died each year form this infection and associated to this infection, ap-
proximately 0.36 million patients are HIV infected [1]. Around the globe about
10% of extrapulmonary cases are reported and more than 50% of TB infected peo-
ple are reported with HIV co-infection every year. Mostly the TB infected people
and mortality are reported in the countries like sub-continent, Philippines, Nigeria,
Pakistan, China and South Africa and these countries share more than 60% of the
TB burden worldwide [1].

Mathematical models play a key role and have been used extensively to analyze
the dynamics and to provide useful techniques to eradicate the infectious diseases
from the community. These models explore both qualitative and quantitative anal-
ysis of the disease. In the disease epidemiology, the first attempt to TB modeling
goes to Waaler et al. [40]. Later on, in 1967, a mathematical model of TB infection
which depends on the proportion of its prevalence is developed in [33]. A two strain
and an age structure TB models with time delay were studied by Castillo et al.
[17, 20]. The TB model with global stability results was discussed by Liu et al. in
[28]. Egonmwan et al. [19] developed a new TB model to explore the impact of
treatment and diagnoses for both latent and active TB infective population. Zhang
et al. [42] proposed the TB mathematical model with hospitalized and non hos-
pitalized infective classes and implemented the TB data of China to simulate the
model. The TB model with effect of relapse and reinfection is analyzed by Robert
[41]. Kim et al. studied TB dynamics with optimal control strategies and used the
actual data of the Philippines population to simulate the mathematical model [27].

Fractional calculus generalized the classical integer calculus. Fractional order
(FO) derivatives and fractional integrals are important concept in the study of
fractional calculus because of having hereditary properties and provides a good
description of the memory. Mathematical modeling with FO derivatives is the
emerging field and were used as a powerful tool to explore the complex dynamics of
various real phenomena in different areas of science such as [30, 31, 38, 11, 22, 23, 24].
In literature several fractional operators of order α ∈ [0, 1] are presented. The
concept of most common Caputo FO derivative and related theories are developed
in [36, 35]. In 2015, a new fractional order derivative based on the exponential kernel
has been introduced in [16], know as Caputo-Fabrizio (CF) fractional derivative.
Recently, a modification in the concept of CF fractional derivative and some of its
applications have been presented in [32]. The CF derivative [16] has been applied in
expressing a number of problems in various fields which can be found [34, 3, 2, 37].
In [4, 5] Abdeljawad et al. proposed a discrete version of CF fractional derivative
and developed related results. In 2016, a new fractional operator with generalized
Mittag-Leffler as kernel was proposed by Atangana and Baleanu [13]. The operator
developed in [13] has been applied to express the complex and crossover behavior of
real word phenomena [14, 26, 39]. A fractional operator with generalized discrete
Mittag-Leffler function, related theories and its applications to difference equations
is proposed in [6, 7, 8, 9, 12, 10, 21, 25]. All these works on fractional modeling
utilized different fractional approaches to different areas of science and engineering.
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Due to the recent progress on fractional calculus and its wide applications, we aim
to formulate and analyzed a TB model with fractional CF fractional derivative.

Pakistan bears the highest burden of TB infection and is ranked 5th in the list
of 22 countries with high TB infected cases. Increasing reported number of the TB
infective cases is a serious health issue in Pakistan. In 2016, a total of 0.35 million
new infected TB cases were notified which are greater than the number of TB cases
reported in 2015 [1, 43]. More than seventy thousand of the population die due TB
infection and about 0.5 million TB confirm new cases along with 15000 children
are reported each year in Pakistan. In Khyber Pakhtunkhwa, Pakistan, more than
462920 people having TB infection are reported during 2002 to 2017 [43]. In this
investigation we explore the dynamics of TB infection in t Khyber Pakhtunkhwa
through a fractional compartmental model with CF derivative of order τ ∈ [0, 1].
Further, the parameter values are fitted trough real data of TB infective people
registered from 2002 till 2017 in Khyber Pakhtunkhwa obtained from the website
of NTP [43]. The remaining sections of the manuscript are arranged as: In section
2, the basic results and definitions regarding CF derivative are stated. The model
construction using fractional calculus, its equilibria and reproduction number are
given in section 3. Existence and uniqueness results for the model variables are given
in section 4. A numerical scheme based on Adams-Bashforth technique is presented
in section 5. Further, in this section we present the numerical simulations of the
model. At the end we give a brief conclusion in section 6.

2. Preliminaries.

Definition 2.1. The fractional derivative in CF sense for the function χ ∈ H1(a, b),
b > a, τ ∈ [0, 1] [16] is defined as

Dτ
t (χ(t)) =

M(τ)

1− τ

∫ t

a

χ′(x) exp
[
− τ t− x

1− τ

]
dx. (1)

M(τ) is the normalized function satisfying M(0) = M(1) = 1 [16]. For the case
when χ /∈ H1(a, b) the above CF derivative can be expressed as

Dτ
t (χ(t)) =

τM(τ)

1− τ

∫ t

a

(χ(t)− χ(x)) exp
[
− τ t− x

1− τ

]
dx. (2)

Remark 1.

If α = 1−τ
τ ∈ [0,∞), τ = 1

1+α ∈ [0, 1], then Eq. (2) can be written as below

Dα
t (χ(t)) =

N(α)

τ

∫ t

a

χ′(x) exp
[
− t− x

α

]
dx, N(0) = N(∞) = 1. (3)

Moreover,

lim
α−→0

1

α
exp

[
− t− x

α

]
= δ(x− t). (4)

The integral regarding to CF derivative is defined as below [29].

Definition 2.2. Let 0 < τ < 1, and consider the fractional derivative given below

Dτ
t (χ(t)) = g(t), (5)

then the corresponding integral of FO τ is expressed as

Iτt (χ(t)) =
2(1− τ)

(2− τ)M(τ)
g(t) +

2τ

(2− τ)M(τ)

∫ t

0

g(s)ds, t ≥ 0. (6)
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Remark 2. Using the result

2

2M(τ)− τM(τ)
= 1, (7)

which gives M(τ) = 2
2−τ , 0 < τ < 1, the authors in [29] give the new CF fractional

derivative of order 0 < τ < 1 which is defined as below:

Dτ
t (χ(t)) =

1

1− τ

∫ t

0

χ′(x) exp
[
− τ t− x

1− τ

]
dx. (8)

3. Formulation of fractional TB model. In the current section the mathemat-
ical model of TB infection using CF derivative of non-integer order τ is formulated.
To construct the proposed model, we consider five epidemiological sub-classes that
is, S, L, I, T , R, which is respectively show, the susceptible, latent, infected, under
treatment and the recovered individuals and N = S + L + I + T + R, where N
is the total population. The proposed TB model in CF sense is composed of the
equations in fractional systems given below:

CF
0 Dτ

t S = Λ− βSI

N
− µS,

CF
0 Dτ

t L =
βSI

N
− (µ+ ε)L+ (1− η)δT,

CF
0 Dτ

t I = εL+ ηδT − (µ+ γ + τ1)I,

CF
0 Dτ

t T = γI − (µ+ δ + τ2 + α)T,

CF
0 Dτ

tR = αT − µR, (9)

and the initial conditions involved in (9) are

S(0) = n1, L(0) = n2, I(0) = n3, T (0) = n4, and R(0) = n5.

In (9), Λ is the birth rate while β is the disease contact rate of infected people
with suspectable people. The latent individuals become infected at the rate ε and
move to I. The TB infected individuals are treated and join the class T at the rate
γ and then goes to R class at the rate α after successful treatment. The rate at
which the individual leave the class T is δ and enter to either class L or I due to
treatment failure. The parameter η is the treatment failure rate and µ denotes the
natural death rate. Whereas τ1 and τ2 are disease related rates in I and T classes
respectively. The details of the models parameters estimations, we refer the reader
to the see [43, 44], are obtained and is tabulated in Table 1. The total dynamics of
the fractional TB model are obtained by (9) and is given by the following equation:

N ′(t) = Λ− µN − τ1I + τ2T,

≤ Λ− µN,

when t goes ∞, then, we can get, N → Λ
µ . So, the biological feasible region for

the fractional Caputo-Fabrizio model where the dynamics of the model and their
existence and other epidemiological properties holds:

Ξ =
[
(S,L, I, T,R) ∈ R5

+ : 0 ≤ S + L+ I + T +R ≤ Λ

µ

]
.



A CF FRACTIONAL ORDER TUBERCULOSIS MODEL 979

Years
2002 2004 2006 2008 2010 2012 2014 2016 2018

T
ub

er
cu

lo
si

s 
 In

ci
de

nc
e 

D
at

a

×104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 1: The incidence data of TB from Khyber Pakhtunkhwa, Pakistan

Parameter Definition value Ref.
Λ Birth rate 450,862.20088626 Estimated
β Disease contact rate 0.5433 Fitted
α Progression from T class to R 0.3968 Fitted
γ Transmission from I class to T 0.2873 Fitted
µ Natural mortality rate 1/67.7 [44]
τ1 Disease related motility rate of infected individuals 0.2202 Fitted
τ2 Disease related death rate in T 0.0550 Fitted
δ Leaving rate of the individuals from class T 1.1996 Fitted
η Treatment failure rate 0.1500 Fitted
ε Moving rate from L class to I 0.2007 Fitted

Table 1: Fitting of the model parameters and its estimations for The TB infected
cases of Khyber Pakhtunkhwa, Pakistan.

The parameters and their definitions are presented in Table 1, which are param-
eterized by using the curve fitting technique to the differential equations, namely,
the least square curve fitting. In these setting we mentioned the Table 1 some
parameters that are obtained from the literature and others are fitted. The TB
cases are shown in Figure 1 represent the annual cases of TB occurred in Khyber
Pakhtunkhwa, province Pakistan. Figure 2 is the curve fitting to the realistic data
of TB which shows that the model behavior to the realistic data is reasonable. Fur-
ther, we give a long time behavior of the TB cases vs time (years) in Figure 3.
Here, from Figure 3, we can see that the data is accurately fit to the model curve
and further, one can observe that the cases with time on long term behavior grows
exponentially. This case could be alarming that the incidence may increases fur-
ther in the coming years if the health department not applied the proper treatment
strategies for the TB elimination.
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Figure 2: The incidence data of TB from Khyber Pakhtunkhwa, Pakistan and the
model fit for τ = 1.
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Figure 3: Long term behavior of the CF model with realistic data when τ = 1.

Next, we present the basic properties associated to the fractional CF model (9).

3.1. Equilibria and threshold number. The disease free equilibrium (DFE)
denoted by K0 of fractional order TB model (1) is evaluated by solving the following
equations:

CF
0 Dτ

t S =CF
0 Dτ

t L =CF
0 Dτ

t I =CF
0 Dτ

t T =CF
0 Dτ

tR = 0,
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and is given as below.

K0 = (S0, 0, 0, 0, 0),

where S0 = Λ
µ . By applying the next generation technique presented in [18], the

basic reproduction number R0 is obtained as follows.

R0 =
βε(µ+ δ + τ2 + α) + (1− η)γδε+ (µ+ ε)γδη

(µ+ γ + τ1)(µ+ ε)(µ+ δ + τ2 + α)
.

A unique endemic equilibria K1(S∗, L∗, I∗, T ∗) of the model (9) exists if R0 > 1
and is given below.

S∗ = N∗

R0
,

L∗ = ((µ+τ1)+γ(µ+τ2+α)+γδ(1−η))N∗(R0−1)
R0{(µ+τ1)+γ(µ+τ2+α)+γδ(1−η)+ε(γ+µ+δ+τ2+α)} ,

I∗ = εk3N
∗(R0−1)

R0{(µ+τ1)+γ(µ+τ2+α)+γδ(1−η)+ε(γ++µ+δ+τ2+α)} ,

T ∗ = εγN∗(R0−1)
R0{(µ+τ1)+γ(µ+τ2+α)+γδ(1−η)+ε(γ++µ+δ+τ2+α)} .

4. Existence and uniqueness. The present section aims to show the existence
and then uniqueness of the model (9) solution by applying fixed-point results. For
convenience the proposed system (9) can be re-write in the equivalent form given
below.

CF
0 Dτ

t [S(t)] = F1(t, S),

CF
0 Dτ

t [L(t)] = F2(t, L),

CF
0 Dτ

t [I(t)] = F3(t, I),

CF
0 Dτ

t [T (t)] = F4(t, T ),

CF
0 Dτ

t [R(t)] = F5(t, R). (10)

By applying the definition of CF fractional integral operator given in [29], the above
system (10), reduces to the following integral equation of Volterra type with the CF
fractional integral of order 0 < τ < 1.

S(t)− S(0) = 2
(1− τ)

(2− τ)M(τ)
F1(t, S) + 2

τ

(2− τ)M(τ)

∫ t

0

F1(ζ, S)dζ,

L(t)− L(0) = 2
(1− τ)

(2− τ)M(τ)
F2(t, L) + 2

τ

(2− τ)M(τ)

∫ t

0

F2(ζ, L)dζ,

I(t)− I(0) = 2
(1− τ)

(2− τ)M(τ)
F3(t, I) + 2

τ

(2− τ)M(τ)

∫ t

0

F3(ζ, I)dζ,

T (t)− T (0) = 2
(1− τ)

(2− τ)M(τ)
F4(t, T ),+2

τ

(2− τ)M(τ)

∫ t

0

F4(ζ, T )dζ,

R(t)−R(0) = 2
(1− τ)

(2− τ)M(τ)
F5(t, R) + 2

τ

(2− τ)M(τ)

∫ t

0

F5(ζ,R)dζ. (11)
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Now we prove that the kernels F1, F2, F3, F4, and F5 fulfill the Lipchitz condition
and contraction under some assumptions. In the following theorem we prove for F1

and can proceeds for the rest in a similar patron.

Theorem 4.1. The kernel F1 satisfies the Lipchitz condition and contraction if the
inequality given below holds

0 ≤ (βς1 + µ) < 1.

Proof. For S and S1 we proceed as below:

‖F1(t, S)−F1(t, S1)‖ = ‖ − βI

N
(S(t)− S(t1))− µ(S(t)− S(t1))‖

≤ β‖I(t)‖‖{S(t)− S(t1)}‖+ µ‖{S(t)− S(t1)}‖

≤ {βς1 + µ}|{S(t)− S(t1)}‖

≤ l1‖{S(t)− S(t1)}‖. (12)

Taking l1 = {βς1 + µ}, where ‖I(t)‖ ≤ ς1 is bounded function, which implies that

‖F1(t, S)−F1(t, S1)‖ ≤ l1‖S(t)− S(t1)‖. (13)

Hence, for F1 the Lipschitz condition is obtained and if an additionally 0 ≤ (βς1 +
µ) < 1 which gives a contraction. The Lipschitz condition can be easily verified for
the rest of the cases and given as follows:

‖F2(t, L)−F2(t, L1)‖ ≤ l2‖L(t)− L(t1)‖,

‖F3(t, I)−F3(t, I1)‖ ≤ l3‖I(t)− I(t1)‖,

‖F4(t, T )−F4(t, T1)‖ ≤ l4‖T (t)− T (t1)‖,

‖F5(t, R)−F5(t, R1)‖ ≤ l5‖R(t)−R(t1)‖. (14)

The difference between successive terms of system (9) in recursive form is given
below:

φ1n(t) = Sn(t)− Sn−1(t) =
2(1− τ)

(2− τ)M(τ)
(F1(t, Sn−1)−F1(t, Sn−2))

+2
τ

(2− τ)M(τ)

∫ t

0

(F1(ζ, Sn−1)−F1(ζ, Sn−2))dζ,

φ2n(t) = Ln(t)− Ln−1(t) = 2
(1− τ)

(2− τ)M(τ)
(F2(t, Ln−1)−F2(t, Ln−2))+

2
τ

(2− τ)M(τ)

∫ t

0

(F2(ζ, Ln−1)−F2(ζ, Ln−2))dζ,

φ3n(t) = In(t)− In−1(t) = 2
(1− τ)

(2− τ)M(τ)
(F3(t, In−1)−F3(t, In−2))+

2
τ

(2− τ)M(τ)

∫ t

0

(F3(ζ, In−1)−F3(ζ, In−2))dζ,

φ4n(t) = Tn(t)− Tn−1(t) = 2
(1− τ)

(2− τ)M(τ)
(F4(t, Tn−1)−F4(t, Tn−2))+
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2τ

(2− τ)M(τ)

∫ t

0

(F4(ζ, Tn−1)−F4(ζ, Tn−2))dζ,

φ5n(t) = Rn(t)−Rn−1(t) = 2
(1− τ)

(2− τ)M(τ)
(F5(t, Rn−1)−F5(t, Rn−2))+

2
τ

(2− τ)M(τ)

∫ t

0

(F5(ζ,Rn−1)−F5(ζ,Rn−2))dζ. (15)

With below initial conditions

S0(t) = S(0), L0(t) = L(0), I0(t) = I(0), T0(t) = T (0), R0(t) = R(0).

Taking norm of the first equation in system (15)

‖φ1n(t)|| = ‖Sn(t)− Sn−1(t)‖ = ‖ 2(1− τ)

(2− τ)M(τ)
(F1(t, Sn−1)−F1(t, Sn−2))

+
2τ

M(τ)(2− τ)

∫ t

0

(F1(ζ, Sn−1)−F1(ζ, Sn−2))dζ‖. (16)

Applying the triangular inequality, Eq. (16) gives

‖Sn(t)− Sn−1(t)‖ ≤ 2(1− τ)

(2− τ)M(τ)
‖(F1(t, Sn−1)−F1(t, Sn−2))‖ (17)

+
2τ

M(τ)(2− τ)
‖
∫ t

0

(F1(ζ, Sn−1)−F1(ζ, Sn−2))dζ‖.

Using Lipschitz condition (13) we obtained

‖Sn(t)− Sn−1(t)‖ ≤ 2(1− τ)

(2− τ)M(τ)
l1‖Sn−1 − Sn−2‖+

2τ

(2− τ)M(τ)
l1

×
∫ t

0

‖Sn−1 − Sn−2‖dζ. (18)

Thus, we have

‖φ1n(t)|| ≤ 2(1− τ)

(2− τ)M(τ)
l1‖φn−1(t)‖+

2τ

(2− τ)M(τ)
l1

∫ t

0

‖φ1(n−1)(ζ)‖dζ. (19)

Similarly, for the rest of equations in system (15) we obtained

‖φ2n(t)‖ ≤ 2(1− τ)
(2− τ)M(τ)

l2‖φ2(n−1)(t)‖+
2τ

M(τ)(2− τ) l2
∫ t

0

‖φ2(n−1)(ζ)‖dζ,

‖φ3n(t)‖ ≤ 2(1− τ)
(2− τ)M(τ)

l3‖φ3(n−1)(t)‖+
2τ

M(τ)(2− τ) l3
∫ t

0

‖φ3(n−1)(ζ)‖dζ,

‖φ4n(t)‖ ≤ 2(1− τ)
(2− τ)M(τ)

l4‖φ4(n−1)(t)‖+
2τ

M(τ)(2− τ) l4
∫ t

0

‖φ4(n−1)(ζ)‖dζ,

‖φ5n(t)‖ ≤ 2(1− τ)
(2− τ)M(τ)

l5‖φ5(n−1)(t)‖+
2τ

M(τ)(2− τ) l5
∫ t

0

‖φ5(n−1)(ζ)‖dζ. (20)
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From above we can write that

Sn(t) =
∑n
i=1 φ1i(t),

Ln(t) =
∑n
i=1 φ2i(t),

In(t) =
∑n
i=1 φ3i(t),

Tn(t) =
∑n
i=1 φ4i(t),

Rn(t) =
∑n
i=1 φ5i(t).

(21)

Hence, in order to confirm solution existence we state the below theorem.

Theorem 4.2. A system of solutions given by the fractional TB model (9) exist if
one can find t1 for which the following inequality holds

2(1− τ)

(2− τ)M(τ)
li +

2τt1
(2− τ)M(τ)

li < 1,

for i=1,2,..,5.

Proof. As we have shown that the kernels condition given in (13) holds. So, by
considering the Eqs. (19) and (20), and by applying the recursive technique we
obtained the succeeding results as below:

‖φ1n(t)|| ≤ ‖Sn(0)‖
[( 2(1− τ)

M(τ)(2− τ)
l1

)
+
( 2τ

M(τ)(2− τ)
l1t
)]n

,

‖φ2n(t)|| ≤ ‖Ln(0)‖
[( 2(1− τ)

M(τ)(2− τ)
l2

)
+
( 2τ

M(τ)(2− τ)
l2t
)]n

,

‖φ3n(t)|| ≤ ‖In(0)‖
[( 2(1− τ)

M(τ)(2− τ)
l3

)
+
( 2τ

M(τ)(2− τ)
l3t
)]n

,

‖φ4n(t)|| ≤ ‖Tn(0)‖
[( 2(1− τ)

M(τ)(2− τ)
l4

)
+
( 2τ

M(τ)(2− τ)
l4t
)]n

,

‖φ5n(t)|| ≤ ‖Rn(0)‖
[( 2(1− τ)

M(τ)(2− τ)
l5

)
+
( 2τ

M(τ)(2− τ)
l5t
)]n

. (22)

Hence, the system solution exists and also it is continuous. In order to confirm that
above functions construct solution for the model (9), we consider as

S(t)− S(0) = Sn(t)−A1n(t),

L(t)− L(0) = Ln(t)−A2n(t),

I(t)− I(0) = In(t)−A3n(t),

T (t)− T (0) = Tn(t)−A4n(t),

R(t)−R(0) = Rn(t)−A5n(t). (23)

Therefore, we get

‖A1n(t)‖

=
∣∣∣∣∣∣ 2(1− τ)

M(τ)(2− τ)
(F1(t, S)−F1(t, Sn−1)) +

2τ

M(τ)(2− τ)

∫ t

0
(F1(ζ, S)−F1(ζ, Sn−1))dζ

∣∣∣∣∣∣,
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≤
2(1− τ)

(2− τ)M(τ)
||(F1(t, S)−F1(t, Sn−1))‖+

2τ

(2− τ)M(τ)

∫ t

0
‖(F1(ζ, S)−F1(ζ, Sn−1))‖dζ,

≤
2(1− τ)

(2− τ)M(τ)
l1‖S − Sn−1‖+

2τ

(2− τ)M(τ)
l1‖S − Sn−1‖t. (24)

On repeating the same procedure we obtained

‖A1n(t)‖ ≤
( 2(1− τ)

2M(τ)− τM(τ)
+

2τ

2M(τ)− τM(τ)
t
)n+1

ln+1
1 b. (25)

At t1, we have

‖A1n(t)‖ ≤
( 2(1− τ)

M(τ)(2− τ)
+

2τ

M(τ)(2− τ)
t1

)n+1

ln+1
1 b. (26)

Applying limit on Eq. (25) as n approaches to ∞, we get ‖A1n(t)‖ → 0. In similar
way we can proceed to show that

‖A2n(t)‖ → 0, ‖A3n(t)‖ → 0, ‖A4n(t)‖ → 0, ‖A5n(t)‖ → 0.

Further for uniqueness of the solution let suppose that there exists another solu-
tion of the proposed model say S1(t), L1(t), I1(t), T1(t), and R1(t) then proceeds
as follows:

S(t)− S1(t) =
2(1− τ)

(2− τ)M(τ)
(F1(t, S)−F1(t, S1)) +

2τ

(2− τ)M(τ)
×∫ t

0

(F1(ζ, S)−F1(ζ, S1))dζ. (27)

By taking norm of Eq. (27), we obtained

‖S(t)− S1(t)‖ ≤ 2(1− τ)

(2− τ)M(τ)
‖F1(t, S)−F1(t, S1)‖+

2τ

(2− τ)M(τ)
×∫ t

0

‖F1(ζ, S)−F1(ζ, S1)‖dζ. (28)

Using Lipschitz condition (13) it simplifies to

‖S(t)− S1(t)‖ ≤ 2(1− τ)

(2− τ)M(τ)
l1‖S(t)− S1(t)‖+

2τ

(2− τ)M(τ)
×

l1t‖S(t)− S1(t)‖. (29)

It simplifies to

‖S(t)− S1(t)‖
(

1− 2(1− τ)

(2− τ)M(τ)
l1 −

2τ

(2− τ)M(τ)
l1t
)
≤ 0. (30)

Theorem 4.3. If the condition given below holds(
1− 2(1− τ)

(2− τ)M(τ)
l1 −

2τ

(2− τ)M(τ)
l1t
)
> 0,

then the model solution will be unique.

Proof. Let the condition given by (30) holds, so

‖S(t)− S1(t)‖
(

1− 2(1− τ)

(2− τ)M(τ)
l1 −

2τ

(2− τ)M(τ)
l1t
)
≤ 0. (31)
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Implies that

‖S(t)− S1(t)‖ = 0. (32)

Then, we get

S(t) = S1(t). (33)

A similar equality can be shown for the rest. Hence, the model solution is unique.

5. Numerical scheme and simulations. The present part of the paper provides
an approximate solution for the fractional order TB model (9) using two-step frac-
tional Adams-Bashforth technique for the CF fractional derivative [15]. The system
is written in fractional Volterra type using fundamental theorem of integration. To
obtain the desired iterative scheme first we consider only the first equation of system
(9) and proceeds as below. With the help of fundamental theorem of integration
we get the following from the first equation of system (10)

S(t)− S(0) =
(1− τ)

M(τ)
F1(t, S) +

τ

M(τ)

∫ t

0

F1(ζ, S)dζ. (34)

For t = tn+1, n = 0, 1, 2, ..., we obtain

S(tn+1)− S0 =
1− τ
M(τ)

F1(tn, Sn) +
τ

M(τ)

∫ tn+1

0

F1(t, S)dt. (35)

The successive terms difference is given as follows:

Sn+1 − Sn =
1− τ
M(τ)

{F1(tn, Sn)−F1(tn−1, Sn−1)}+
τ

M(τ)

∫ tn+1

tn

F1(t, S)dt. (36)

Over the close interval [tk, t(k+1)], the function F1(t, S) can be approximated by
the interpolation polynomial

Pk(t) ∼=
f(tk, yk)

h
(t− tk−1)− f(tk−1, yk−1).

h
(t− tk), (37)

where h = tn − tn−1. Calculating the integral in (36) using above polynomial ap-
proximation we get∫ tn+1

tn

F1(t, S)dt =

∫ tn+1

tn

F1(tn, Sn)

h
(t− tn−1)− F1(tn−1, Sn−1)

h
(t− tn)dt

=
3h

2
F1(tn, Sn)− h

2
F1(tn−1, Sn−1). (38)

Putting (38) in (36) and after simplification we obtained

Sn+1 = Sn +

(
1− τ
M(τ)

+
3h

2M(τ)

)
F1(tn, Sn)−

(
1− τ
M(τ)

+
τh

2M(τ)

)
F1(tn−1, Sn−1).

(39)

In similar way for the rest of equations of system (10) we obtained the recursive
formulae as below

Ln+1 =L0 +

(
1− τ
M(τ)

+
3h

2M(τ)

)
F2(tn, Ln)−

(
1− τ
M(τ)

+
τh

2M(τ)

)
F2(tn−1, Ln−1),
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In+1 =I0 +

(
1− τ
M(τ)

+
3h

2M(τ)

)
F3(tn, In)−

(
1− τ
M(τ)

+
τh

2M(τ)

)
F3(tn−1, In−1),

Tn+1 =T0 +

(
1− τ
M(τ)

+
3h

2M(τ)

)
F4(tn, Tn)−

(
1− τ
M(τ)

+
τh

2M(τ)

)
F4(tn−1, Tn−1),

Rn+1 =R0 +

(
1− τ
M(τ)

+
3h

2M(τ)

)
F5(tn, Rn)−

(
1− τ
M(τ)

+
τh

2M(τ)

)
F5(tn−1, Rn−1).

(40)

Moreover, we describe the numerical simulations to observe the dynamics of propose
model stated in (9) for various values of arbitrary order of CF derivative τ ∈ [0, 1]
and model relevant parameters. The incidence of TB cases and its comparison with
the proposed model (9) when the fractional order parameter is τ = 1, is depicted
in Figure 1 and 2 and Figure 3 is the behavior of infected TB individuals with
the realistic data for the long term and shows that the that at a long term level
the model curve is accurately match to the realistic data. The numerical values
used in the solution of the fractional TB Caputo-Fabrizio model (9) are given in
Table 1 where some of the parameter values are considered from the literature. We
implement the above scheme presented in Eqs. (39) and (40). The time interval
taken in the simulations are considered up to 100 unit (years). In Fig 4, we shown
the dynamics of the susceptible susceptible individuals by considering various values
of the fractional order parameter τ . Clearly, the susceptible population increases
with the decreasing values of the fractional parameter τ . Figures 5-8 show the
influence of the variation in the fractional order τ on the biological behavior of the
rest of classes of model 9. It is noted from these Figures that population in all
the infected classes of the model have a decreasing effect when we decrease τ . The
behavior of cumulative TB infective for various values of τ is addressed in Fig 9. It
is clear that the total TB infective decrease significantly when the fractional order
decreases. The impact of treatment rate (denoted by parameter γ) and fractional
order τ on the behavior of total TB infected individuals is despite in Fig 10. Form
here we analyzed that if we increase the value of γ and decrease τ , the TB infective
people decreases at significant rate. Finally, Fig 11 shows the impact of treatment
failure rate (denoted by parameter η) and fractional parameter τ on the behavior
of cumulative TB active population of Khyber Pakhtunkhwa. Decrease in both
parameters η and τ also decreases the total TB infected individuals.

6. Conclusion. A fractional order transmission model using CF derivative for the
TB dynamics is analyzed. The equilibria and threshold number R0 of the model are
determined. We examine the existence of the variables of the model and proved its
uniqueness. Using two-step Adams-Bashforth technique [15] for the CF fractional
derivative is implemented to derived an iterative solution of the propose TB model
of fractional order τ ∈ [0, 1]. Finally, the numerical simulations of the model are
plotted and discussed briefly for various values of the fractional order τ . From the
graphical results we conclude that the fractional order derivative of CF type provide
more realistic analysis than the classical integer-order TB model. From the data
reported by NTP Pakistan we parameterized the parameters and give useful infor-
mation about the nature of the disease spread and control. The present situation
of the TB infected plot is threatening and a serious health issue of population of
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Figure 4: Simulation of S with τ .
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Figure 5: Simulation of L with τ .

Khyber Pakhtunkhwa. The main reasons of the current situation of this infection
includes lack of awareness in the community, treatment failure and lack of proper
follow up of under treatment patients. The main goal of the present study is to help
the government of Pakistan to initiate various programs to eliminate TB infection
in the community.
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Figure 6: Simulation of I with τ .
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Figure 7: Simulation of T with τ .
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Figure 8: Simulation of R with τ .
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Figure 9: Simulation of cumulative TB infected people with τ .
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Figure 10: The graphical result of the total infected people for several values of
the parameter γ (treatment rate) and τ (fractional parameter).
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Figure 11: The graphical result of the total infective with TB individuals for various
values of the parameter η (treatment failure rate) and τ (fractional parameter).
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