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1. INTRODUCTION

The problem of inversion of Fourier transforms is a frequently discussed topic in the

theory of PDEs, Stochastic Processes and many other branches of Analysis. We consider

here in more details an application of a method proposed in Financial Modeling. As

a motivating example consider a frictionless market with no arbitrage opportunities

and a constant riskless interest rate r > 0. Assuming the existence of a risk-neutral

equivalent martingale measure Q, we get the option value V = e−rTEQ[ϕ] at time 0

and maturity T > 0, where ϕ is a reward function and the expectation EQ is taken with

respect to the equivalent martingale measure Q. Usually, the reward function ϕ has a

simple structure. Hence, the main problem is to approximate properly the respective

density function and then to approximate EQ [ϕ]. Here we offer an approximant for

the density function without proof of any convergence results. These problems will be

considered in details in our future publications.
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2. THE RESULTS

Let x and y be two vectors in Rn, 〈x,y〉 :=
∑n

k=1
xkyk be the usual scalar product and

|x| := 〈x,x〉1/2. For f(x) ∈ L1 (R
n) define its Fourier transform

Ff(y) =

∫

Rn

exp (−i 〈x,y〉) f(x)dx

and its formal inverse as

(
F−1f

)
(x) = (2π)−n

∫

Rn

exp (i 〈x,y〉) f(y)dy.

We will need the following well-known result (see e.g. [7]).

Theorem 1. (Plancherel’s theorem) The Fourier transform is a linear continu-

ous operator from L2 (R
n) onto L2 (R

n) . The inverse Fourier transform, F−1, can be

obtained by letting (
F−1g

)
(y) = (2π)−n (Fg) (−y)

for any g ∈ L2 (R
n) .

The density function pQt of any Lévy process X = {Xt}t∈R+
can be expressed in

terms of the characteristic function ΦQ (x,t) = exp
(
−tψQ (y)

)
of the distribution of X

as pQt = (2π)−n
F
(
ΦQ (x,t)

)
, where ψQ (y) is the characteristic exponent. According

to the Khintchine-Lévy formula, for any Lévy process X, the characteristic exponent

ψ admits the representation

ψ (y) = 〈Lx,x〉 − i 〈h,x〉 −

∫

Rn

(1− exp (i 〈x, z〉)− i 〈x, z〉χD (x)) Π (dx) (1)

where χD (y) is the characteristic function of the unit ball in Rn, h ∈ Rn, L is a

symmetric nonnegative-definite matrix and Π (dy) is a measure such that

∫

Rn

min {1, 〈x,x〉}Π(dy) <∞,Π({0}) = 0.

See [6] for more details. For simplicity we assume absolute convergence of multiple

series under consideration which is sufficient for our applications. Let K : Rn → R be

a fixed kernel function and A be a nonsingular n× n matrix.

Definition 2. We say that K ∈ K if the series

Υ−1 (y, z) :=
∑

m∈Zn

F (K)
(
z+ 2π

(
y−1

)T
m
)

(2)

converges absolutely and Υ (y, z)F (K) (z) ∈ L1 (R
n).
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The set K is sufficiently large for our applications. In particular, if K (z) > 0,

∀z ∈ Rn then instead of Υ (z)F (K) (z) ∈ L1 (R
n) we may just clime that F (K) (z) ∈

L1 (R
n). A typical example of K ∈ K is given by a Gaussian of the form K (y) =

exp
(
− |By|2

)
, where B is a nonsingular matrix. In this case K (y) > 0 and the

condition (2) is easily verifiable. Fix a kernel function K ∈ K. Consider the function

s̃k (y) :=
det (A)

(2π)n

∫

Rn

Υ(y, z)F (K) (z) exp (i 〈y, z〉) dz

which we call the fundamental sk-spline. It is possible to show that

s̃k (Am) =

{
1, mk = 0, 1 ≤ k ≤ n,

0, otherwise.
.

for any m ∈ Zn if K ∈ K [5] . The functions s̃k (y) are analogs of periodic fundamental

splines introduced in [3, 4]

s̃k(x) =
1

n
+

1

n

n−1∑

j=1

Reλj(x)Reλj(y) + Imλj(x)Imλj(y)

|λj(y)|
2

,

where λj(y) =
∑n

ν=1
exp

(
2πiνj
n

)
K
(
y − 2πν

n

)
6= 0, 1 ≤ j ≤ n − 1 and K ∈ C

(
T1
)
is a

fixed kernel function. Observe that

s̃k(y + 2πj/n) =

{
1, j = 0mod(n),

0 otherwise.

Fundamental sk-splines on parallelepipedal grids in Td (see [2]) were considered in [1].

To construct an approximant q (·) for the density function pQt (·) defined by ΦQ (x, t) in

(1) we assume that K ∈ K ∩ L2 (R
n). Consequently, by Plancherel theorem we get

pQt (·) =
F
(
ΦQ (x, t)

)
(·)

(2π)n

≈F

(
∑

m∈Zn

ΦQ(Am,t)s̃k(x−Am)

(2π)n

)
(·)

=F


 ∑

m∈Zn

F−1


 det (A)ΦQ (Am,t)F (K) (z)

(2π)n
∑

s∈Zn F (K)
(
z+2π (y−1)T s

)


 (x−Am)


 (·)

=
det (A)F (K) (·)

∑
m∈Zn ΦQ (−Am,t) exp (i 〈·,Am〉)

(2π)n
∑

s∈Zn F (K)
(
·+ 2π (y−1)T s

) .

Assume that for some domain Ω ⊂ Rn, Ω ∋ 0 the sum
∑

s∈Zn\0

F (K)
(
·+ 2π

(
y−1

)T
s
)
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is ”relatively small” for any z ∈ Ω. Then
∑

s∈Zn

F (K)
(
·+ 2π

(
y−1

)T
s
)
≈ F (K) (·).

Hence

pQt (·) ≈ q(·) =
det (A)

(2π)n
∑

m∈Zn

ΦQ (−Am,t) exp (i 〈·,Am〉) .

Let mk, k ∈ N corresponds to the nonincreasing rearrangement of
∣∣ΦQ (−Am,t)

∣∣,
m ∈ Zn. Hence for a fixed N = N

(
ΦQ,y, t,

)
we get

Theorem 3. In our notations the approximant q(z) for the density function pQt (z)

has the form

q(z) =
det (A)

(2π)n

N∑

k=1

ΦQ (−Amk, t) exp (i 〈z,Amk〉) .

Example 4. Let n = 2 and p(y) = p(x1, x2) = π−1 exp
(
−x2

1
− x2

2

)
be Gaus-

sian density. Then Φ (y) = Fp (−y) = exp
(
−
(
x2
1
+ x2

2

)
/4
)
. Let P and M be

fixed parameters. In the case of the square grid (2πk/P, 2πs/P ), (k, s) ∈ Z2 we get

y = diag (2π/P, 2π/P ), det(y) = (2π/P )2. Hence the approximant q(y) takes the form

q(y) =q(x1, x2)

=
(2π/P )2

(2π)2

∑

|k|≤M

∑

|s|≤M

Φ

(
−
2πk

P
,−

2πs

P

)
exp

(
2πki

P
x1 +

2πsi

P
x2

)

=
1

P 2

∑

|k|≤M

∑

|s|≤M

exp

(
−

(
2π

P

)
2
(
k2 + s2

4

))
exp

(
2πikx1
P

+
2πisx2
P

)
.

Let d (P,M, a) := max {x ∈ [−a/2, a/2] × [−a/2, a/2] | |p(y) − q(y)|}. Numerical ex-

amples show that d (5, 4, 1) = 2.36 × 10−5, d (5, 6, 1) = 1.8 × 10−8.
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