International Journal of Differential Equations and Applications

Volume **18**, No. 1 (2019), pages: 25-29 ISSN (Print): 1311-2872; ISSN (Online): 1314-6084; url: https://www.ijdea.eu

A METHOD OF INVERSION OF FOURIER TRANSFORMS ANS ITS APPLICATIONS

A. Kushpel

Department of Mathematics Çankaya University Ankara, TURKEY

AMS Subject Classification: 41A05, 42B05 **Key Words:** Fourier transform, PDE, *sk*-spline, Lévy process, density function

Received:	November 10, 2018	Revised:	March 20, 2019
Published:	March 23, 2019	doi:	10.12732/ijdea.v18i1.3
Academic Publications, Ltd.			https://acadpubl.eu

1. INTRODUCTION

The problem of inversion of Fourier transforms is a frequently discussed topic in the theory of PDEs, Stochastic Processes and many other branches of Analysis. We consider here in more details an application of a method proposed in Financial Modeling. As a motivating example consider a frictionless market with no arbitrage opportunities and a constant riskless interest rate r > 0. Assuming the existence of a risk-neutral equivalent martingale measure \mathbb{Q} , we get the option value $V = e^{-rT} \mathbb{E}^{\mathbb{Q}}[\varphi]$ at time 0 and maturity T > 0, where φ is a reward function and the expectation $\mathbb{E}^{\mathbb{Q}}$ is taken with respect to the equivalent martingale measure \mathbb{Q} . Usually, the reward function φ has a simple structure. Hence, the main problem is to approximate properly the respective density function and then to approximate $\mathbb{E}^{\mathbb{Q}}[\varphi]$. Here we offer an approximant for the density function without proof of any convergence results. These problems will be considered in details in our future publications.

2. THE RESULTS

Let **x** and **y** be two vectors in \mathbb{R}^n , $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{k=1}^n x_k y_k$ be the usual scalar product and $|\mathbf{x}| := \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$. For $f(\mathbf{x}) \in L_1(\mathbb{R}^n)$ define its Fourier transform

$$\mathbf{F}f(\mathbf{y}) = \int_{\mathbb{R}^n} \exp\left(-i \langle \mathbf{x}, \mathbf{y} \rangle\right) f(\mathbf{x}) d\mathbf{x}$$

and its formal inverse as

$$\left(\mathbf{F}^{-1}f\right)(\mathbf{x}) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp\left(i\left\langle \mathbf{x}, \mathbf{y}\right\rangle\right) f(\mathbf{y}) d\mathbf{y}.$$

We will need the following well-known result (see e.g. [7]).

Theorem 1. (Plancherel's theorem) The Fourier transform is a linear continuous operator from $L_2(\mathbb{R}^n)$ onto $L_2(\mathbb{R}^n)$. The inverse Fourier transform, \mathbf{F}^{-1} , can be obtained by letting

$$\left(\mathbf{F}^{-1}g\right)(\mathbf{y}) = (2\pi)^{-n} \left(\mathbf{F}g\right)(-\mathbf{y})$$

for any $g \in L_2(\mathbb{R}^n)$.

The density function $p_t^{\mathbb{Q}}$ of any Lévy process $\mathbf{X} = {\mathbf{X}_t}_{t \in \mathbb{R}_+}$ can be expressed in terms of the characteristic function $\Phi^{\mathbb{Q}}(\mathbf{x},t) = \exp\left(-t\psi^{\mathbb{Q}}(\mathbf{y})\right)$ of the distribution of \mathbf{X} as $p_t^{\mathbb{Q}} = (2\pi)^{-n} \mathbf{F}\left(\Phi^{\mathbb{Q}}(\mathbf{x},t)\right)$, where $\psi^{\mathbb{Q}}(\mathbf{y})$ is the characteristic exponent. According to the Khintchine-Lévy formula, for any Lévy process \mathbf{X} , the characteristic exponent ψ admits the representation

$$\psi\left(\mathbf{y}\right) = \left\langle \mathbf{L}\mathbf{x}, \mathbf{x} \right\rangle - i \left\langle \mathbf{h}, \mathbf{x} \right\rangle - \int_{\mathbb{R}^n} \left(1 - \exp\left(i \left\langle \mathbf{x}, \mathbf{z} \right\rangle\right) - i \left\langle \mathbf{x}, \mathbf{z} \right\rangle \chi_D\left(\mathbf{x}\right)\right) \Pi\left(d\mathbf{x}\right)$$
(1)

where $\chi_D(\mathbf{y})$ is the characteristic function of the unit ball in \mathbb{R}^n , $\mathbf{h} \in \mathbb{R}^n$, \mathbf{L} is a symmetric nonnegative-definite matrix and $\Pi(d\mathbf{y})$ is a measure such that

$$\int_{\mathbb{R}^n} \min\left\{1, \langle \mathbf{x}, \mathbf{x} \rangle\right\} \Pi\left(d\mathbf{y}\right) < \infty, \Pi\left(\{\mathbf{0}\}\right) = 0.$$

See [6] for more details. For simplicity we assume absolute convergence of multiple series under consideration which is sufficient for our applications. Let $K : \mathbb{R}^n \to \mathbb{R}$ be a fixed kernel function and **A** be a nonsingular $n \times n$ matrix.

Definition 2. We say that $K \in \mathcal{K}$ if the series

$$\Upsilon^{-1}(\mathbf{y}, \mathbf{z}) := \sum_{\mathbf{m} \in \mathbb{Z}^n} \mathbf{F}(K) \left(\mathbf{z} + 2\pi \left(\mathbf{y}^{-1} \right)^T \mathbf{m} \right)$$
(2)

converges absolutely and $\Upsilon(\mathbf{y}, \mathbf{z}) \mathbf{F}(K)(\mathbf{z}) \in L_1(\mathbb{R}^n)$.

The set \mathcal{K} is sufficiently large for our applications. In particular, if $K(\mathbf{z}) > 0$, $\forall \mathbf{z} \in \mathbb{R}^n$ then instead of $\Upsilon(\mathbf{z}) \mathbf{F}(K)(\mathbf{z}) \in L_1(\mathbb{R}^n)$ we may just clime that $\mathbf{F}(K)(\mathbf{z}) \in L_1(\mathbb{R}^n)$. A typical example of $K \in \mathcal{K}$ is given by a Gaussian of the form $K(\mathbf{y}) = \exp\left(-|\mathbf{B}\mathbf{y}|^2\right)$, where **B** is a nonsingular matrix. In this case $K(\mathbf{y}) > 0$ and the condition (2) is easily verifiable. Fix a kernel function $K \in \mathcal{K}$. Consider the function

$$\widetilde{sk}\left(\mathbf{y}\right) := \frac{\det\left(\mathbf{A}\right)}{\left(2\pi\right)^{n}} \int_{\mathbb{R}^{n}} \Upsilon\left(\mathbf{y}, \mathbf{z}\right) \mathbf{F}\left(K\right)\left(\mathbf{z}\right) \exp\left(i\left\langle\mathbf{y}, \mathbf{z}\right\rangle\right) d\mathbf{z}$$

which we call the *fundamental sk-spline*. It is possible to show that

$$\widetilde{sk}(\mathbf{Am}) = \begin{cases} 1, & m_k = 0, 1 \le k \le n, \\ 0, & \text{otherwise.} \end{cases}$$

for any $\mathbf{m} \in \mathbb{Z}^n$ if $K \in \mathbf{K}$ [5]. The functions $\widetilde{sk}(\mathbf{y})$ are analogs of periodic fundamental splines introduced in [3, 4]

$$\tilde{sk}(x) = \frac{1}{n} + \frac{1}{n} \sum_{j=1}^{n-1} \frac{Re\lambda_j(x)Re\lambda_j(y) + Im\lambda_j(x)Im\lambda_j(y)}{|\lambda_j(y)|^2},$$

where $\lambda_j(y) = \sum_{\nu=1}^n \exp\left(\frac{2\pi i\nu j}{n}\right) K\left(y - \frac{2\pi\nu}{n}\right) \neq 0, \ 1 \leq j \leq n-1 \text{ and } K \in C\left(\mathbb{T}^1\right)$ is a fixed kernel function. Observe that

$$\tilde{sk}(y + 2\pi j/n) = \begin{cases} 1, & j = 0 \mod(n), \\ 0 & \text{otherwise.} \end{cases}$$

Fundamental *sk*-splines on parallelepipedal grids in \mathbb{T}^d (see [2]) were considered in [1]. To construct an approximant $q(\cdot)$ for the density function $p_t^{\mathbb{Q}}(\cdot)$ defined by $\Phi^{\mathbb{Q}}(\mathbf{x}, t)$ in (1) we assume that $K \in \mathcal{K} \cap L_2(\mathbb{R}^n)$. Consequently, by Plancherel theorem we get

$$\begin{split} p_t^{\mathbb{Q}}\left(\cdot\right) &= \frac{\mathbf{F}\left(\Phi^{\mathbb{Q}}\left(\mathbf{x},t\right)\right)\left(\cdot\right)}{\left(2\pi\right)^n} \\ &\approx \mathbf{F}\left(\sum_{\mathbf{m}\in\mathbb{Z}^n} \frac{\Phi^{\mathbb{Q}}(\mathbf{A}\mathbf{m},t)\widetilde{sk}(\mathbf{x}-\mathbf{A}\mathbf{m})}{\left(2\pi\right)^n}\right)\left(\cdot\right) \\ &= \mathbf{F}\left(\sum_{\mathbf{m}\in\mathbb{Z}^n} \mathbf{F}^{-1}\left(\frac{\det\left(\mathbf{A}\right)\Phi^{\mathbb{Q}}\left(\mathbf{A}\mathbf{m},t\right)\mathbf{F}\left(K\right)\left(\mathbf{z}\right)}{\left(2\pi\right)^n\sum_{\mathbf{s}\in\mathbb{Z}^n}\mathbf{F}\left(K\right)\left(\mathbf{z}+2\pi\left(\mathbf{y}^{-1}\right)^T\mathbf{s}\right)}\right)\left(\mathbf{x}-\mathbf{A}\mathbf{m}\right)\right)\left(\cdot\right) \\ &= \frac{\det\left(\mathbf{A}\right)\mathbf{F}\left(K\right)\left(\cdot\right)\sum_{\mathbf{m}\in\mathbb{Z}^n}\Phi^{\mathbb{Q}}\left(-\mathbf{A}\mathbf{m},t\right)\exp\left(i\left\langle\cdot,\mathbf{A}\mathbf{m}\right\rangle\right)}{\left(2\pi\right)^n\sum_{\mathbf{s}\in\mathbb{Z}^n}\mathbf{F}\left(K\right)\left(\cdot+2\pi\left(\mathbf{y}^{-1}\right)^T\mathbf{s}\right)}. \end{split}$$

Assume that for some domain $\Omega \subset \mathbb{R}^n$, $\Omega \ni \mathbf{0}$ the sum

$$\sum_{\mathbf{s}\in\mathbb{Z}^{n}\setminus\mathbf{0}}\mathbf{F}\left(K\right)\left(\cdot+2\pi\left(\mathbf{y}^{-1}\right)^{T}\mathbf{s}\right)$$

is "relatively small" for any $\mathbf{z} \in \Omega$. Then

$$\sum_{\mathbf{s}\in\mathbb{Z}^{n}}\mathbf{F}\left(K\right)\left(\cdot+2\pi\left(\mathbf{y}^{-1}\right)^{T}\mathbf{s}\right)\approx\mathbf{F}\left(K\right)\left(\cdot\right).$$

Hence

$$p_t^{\mathbb{Q}}(\cdot) \approx q(\cdot) = \frac{\det(\mathbf{A})}{(2\pi)^n} \sum_{\mathbf{m}\in\mathbb{Z}^n} \Phi^{\mathbb{Q}}\left(-\mathbf{A}\mathbf{m},t\right) \exp\left(i\left\langle\cdot,\mathbf{A}\mathbf{m}\right\rangle\right).$$

Let $\mathbf{m}_k, k \in \mathbb{N}$ corresponds to the nonincreasing rearrangement of $|\Phi^{\mathbb{Q}}(-\mathbf{Am},t)|$, $\mathbf{m} \in \mathbb{Z}^n$. Hence for a fixed $N = N(\Phi^{\mathbb{Q}}, \mathbf{y}, t)$ we get

Theorem 3. In our notations the approximant $q(\mathbf{z})$ for the density function $p_t^{\mathbb{Q}}(\mathbf{z})$ has the form

$$q(\mathbf{z}) = \frac{\det(\mathbf{A})}{(2\pi)^n} \sum_{k=1}^N \Phi^{\mathbb{Q}} \left(-\mathbf{A}\mathbf{m}_k, t \right) \exp\left(i \left\langle \mathbf{z}, \mathbf{A}\mathbf{m}_k \right\rangle \right).$$

Example 4. Let n = 2 and $p(\mathbf{y}) = p(x_1, x_2) = \pi^{-1} \exp\left(-x_1^2 - x_2^2\right)$ be Gaussian density. Then $\Phi(\mathbf{y}) = \mathbf{F}p(-\mathbf{y}) = \exp\left(-\left(x_1^2 + x_2^2\right)/4\right)$. Let P and M be fixed parameters. In the case of the square grid $(2\pi k/P, 2\pi s/P)$, $(k, s) \in \mathbb{Z}^2$ we get $\mathbf{y} = \operatorname{diag}\left(2\pi/P, 2\pi/P\right)$, $\operatorname{det}(\mathbf{y}) = (2\pi/P)^2$. Hence the approximant $q(\mathbf{y})$ takes the form

$$\begin{aligned} q(\mathbf{y}) &= q(x_1, x_2) \\ &= \frac{(2\pi/P)^2}{(2\pi)^2} \sum_{|k| \le M} \sum_{|s| \le M} \Phi\left(-\frac{2\pi k}{P}, -\frac{2\pi s}{P}\right) \exp\left(\frac{2\pi k i}{P} x_1 + \frac{2\pi s i}{P} x_2\right) \\ &= \frac{1}{P^2} \sum_{|k| \le M} \sum_{|s| \le M} \exp\left(-\left(\frac{2\pi}{P}\right)^2 \left(\frac{k^2 + s^2}{4}\right)\right) \exp\left(\frac{2\pi i k x_1}{P} + \frac{2\pi i s x_2}{P}\right). \end{aligned}$$

Let $d(P, M, a) := \max \{ \mathbf{x} \in [-a/2, a/2] \times [-a/2, a/2] \mid |p(\mathbf{y}) - q(\mathbf{y})| \}$. Numerical examples show that $d(5, 4, 1) = 2.36 \times 10^{-5}, d(5, 6, 1) = 1.8 \times 10^{-8}$.

REFERENCES

- S.M. Gomes, A.K. Kushpel, J. Levesley, D.L. Ragozin, Interpolation on the Torus using sk-splines with Number Theoretic Knots, J. of Approximation Theory, 98 (1999), 56-71.
- [2] N.M. Korobov, Exponential Sums and their Applications, Boston, Kluwer Academic Publishers, 1992.
- [3] A.K. Kushpel, Extremal properties of splines and diameters of classes of periodic functions in the space $C_{2\pi}$, *Preprint*, 84.15, Kiev, Inst. Math. Acad. Nauk Ukrain. SSR (1984), 1-44.

- [4] A.K. Kushpel, Sharp estimates of the widths of convolution classes, Math. USSR Izvestiya, American Mathematical Society, 33, No. 3 (1989), 631-649.
- [5] A. Kushpel, sk-Spline interpolation on \mathbb{R}^n , ArXiv: 1809.08618v1 [math. NA] 23 Sep 2018.
- [6] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
- [7] E. Stein, G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton, 1990.