A METHOD OF INVERSION OF FOURIER TRANSFORMS ANS ITS APPLICATIONS

A. Kushpel
Department of Mathematics
Çankaya University
Ankara, TURKEY

AMS Subject Classification: 41A05, 42B05
Key Words: Fourier transform, PDE, $s k$-spline, Lévy process, density function

Received: November 10, 2018
Published: March 23, 2019
Academic Publications, Ltd.

Revised: March 20, 2019
doi: 10.12732/ijdea.v18i1.3
https://acadpubl.eu

1. INTRODUCTION

The problem of inversion of Fourier transforms is a frequently discussed topic in the theory of PDEs, Stochastic Processes and many other branches of Analysis. We consider here in more details an application of a method proposed in Financial Modeling. As a motivating example consider a frictionless market with no arbitrage opportunities and a constant riskless interest rate $r>0$. Assuming the existence of a risk-neutral equivalent martingale measure \mathbb{Q}, we get the option value $V=e^{-r T} \mathbb{E}^{\mathbb{Q}}[\varphi]$ at time 0 and maturity $T>0$, where φ is a reward function and the expectation $\mathbb{E}^{\mathbb{Q}}$ is taken with respect to the equivalent martingale measure \mathbb{Q}. Usually, the reward function φ has a simple structure. Hence, the main problem is to approximate properly the respective density function and then to approximate $\mathbb{E}^{\mathbb{Q}}[\varphi]$. Here we offer an approximant for the density function without proof of any convergence results. These problems will be considered in details in our future publications.

2. THE RESULTS

Let \mathbf{x} and \mathbf{y} be two vectors in $\mathbb{R}^{n},\langle\mathbf{x}, \mathbf{y}\rangle:=\sum_{k=1}^{n} x_{k} y_{k}$ be the usual scalar product and $|\mathbf{x}|:=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$. For $f(\mathbf{x}) \in L_{1}\left(\mathbb{R}^{n}\right)$ define its Fourier transform

$$
\mathbf{F} f(\mathbf{y})=\int_{\mathbb{R}^{n}} \exp (-i\langle\mathbf{x}, \mathbf{y}\rangle) f(\mathbf{x}) d \mathbf{x}
$$

and its formal inverse as

$$
\left(\mathbf{F}^{-1} f\right)(\mathbf{x})=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \exp (i\langle\mathbf{x}, \mathbf{y}\rangle) f(\mathbf{y}) d \mathbf{y}
$$

We will need the following well-known result (see e.g. [7]).
Theorem 1. (Plancherel's theorem) The Fourier transform is a linear continuous operator from $L_{2}\left(\mathbb{R}^{n}\right)$ onto $L_{2}\left(\mathbb{R}^{n}\right)$. The inverse Fourier transform, \mathbf{F}^{-1}, can be obtained by letting

$$
\left(\mathbf{F}^{-1} g\right)(\mathbf{y})=(2 \pi)^{-n}(\mathbf{F} g)(-\mathbf{y})
$$

for any $g \in L_{2}\left(\mathbb{R}^{n}\right)$.
The density function $p_{t}^{\mathbb{Q}}$ of any Lévy process $\mathbf{X}=\left\{\mathbf{X}_{t}\right\}_{t \in \mathbb{R}_{+}}$can be expressed in terms of the characteristic function $\Phi^{\mathbb{Q}}(\mathbf{x}, t)=\exp \left(-t \psi^{\mathbb{Q}}(\mathbf{y})\right)$ of the distribution of \mathbf{X} as $p_{t}^{\mathbb{Q}}=(2 \pi)^{-n} \mathbf{F}\left(\Phi^{\mathbb{Q}}(\mathbf{x}, t)\right)$, where $\psi^{\mathbb{Q}}(\mathbf{y})$ is the characteristic exponent. According to the Khintchine-Lévy formula, for any Lévy process \mathbf{X}, the characteristic exponent ψ admits the representation

$$
\begin{equation*}
\psi(\mathbf{y})=\langle\mathbf{L} \mathbf{x}, \mathbf{x}\rangle-i\langle\mathbf{h}, \mathbf{x}\rangle-\int_{\mathbb{R}^{n}}\left(1-\exp (i\langle\mathbf{x}, \mathbf{z}\rangle)-i\langle\mathbf{x}, \mathbf{z}\rangle \chi_{D}(\mathbf{x})\right) \Pi(d \mathbf{x}) \tag{1}
\end{equation*}
$$

where $\chi_{D}(\mathbf{y})$ is the characteristic function of the unit ball in $\mathbb{R}^{n}, \mathbf{h} \in \mathbb{R}^{n}, \mathbf{L}$ is a symmetric nonnegative-definite matrix and $\Pi(d \mathbf{y})$ is a measure such that

$$
\int_{\mathbb{R}^{n}} \min \{1,\langle\mathbf{x}, \mathbf{x}\rangle\} \Pi(d \mathbf{y})<\infty, \Pi(\{\mathbf{0}\})=0
$$

See [6] for more details. For simplicity we assume absolute convergence of multiple series under consideration which is sufficient for our applications. Let $K: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a fixed kernel function and \mathbf{A} be a nonsingular $n \times n$ matrix.

Definition 2. We say that $K \in \mathcal{K}$ if the series

$$
\begin{equation*}
\Upsilon^{-1}(\mathbf{y}, \mathbf{z}):=\sum_{\mathbf{m} \in \mathbb{Z}^{n}} \mathbf{F}(K)\left(\mathbf{z}+2 \pi\left(\mathbf{y}^{-1}\right)^{T} \mathbf{m}\right) \tag{2}
\end{equation*}
$$

converges absolutely and $\Upsilon(\mathbf{y}, \mathbf{z}) \mathbf{F}(K)(\mathbf{z}) \in L_{1}\left(\mathbb{R}^{n}\right)$.

The set \mathcal{K} is sufficiently large for our applications. In particular, if $K(\mathbf{z})>0$, $\forall \mathbf{z} \in \mathbb{R}^{n}$ then instead of $\Upsilon(\mathbf{z}) \mathbf{F}(K)(\mathbf{z}) \in L_{1}\left(\mathbb{R}^{n}\right)$ we may just clime that $\mathbf{F}(K)(\mathbf{z}) \in$ $L_{1}\left(\mathbb{R}^{n}\right)$. A typical example of $K \in \mathcal{K}$ is given by a Gaussian of the form $K(\mathbf{y})=$ $\exp \left(-|\mathbf{B y}|^{2}\right)$, where \mathbf{B} is a nonsingular matrix. In this case $K(\mathbf{y})>0$ and the condition (2) is easily verifiable. Fix a kernel function $K \in \mathcal{K}$. Consider the function

$$
\widetilde{s k}(\mathbf{y}):=\frac{\operatorname{det}(\mathbf{A})}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \Upsilon(\mathbf{y}, \mathbf{z}) \mathbf{F}(K)(\mathbf{z}) \exp (i\langle\mathbf{y}, \mathbf{z}\rangle) d \mathbf{z}
$$

which we call the fundamental sk-spline. It is possible to show that

$$
\widetilde{s k}(\mathbf{A m})=\left\{\begin{array}{lc}
1, & m_{k}=0,1 \leq k \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

for any $\mathbf{m} \in \mathbb{Z}^{n}$ if $K \in \mathbf{K}[5]$. The functions $\widetilde{s k}(\mathbf{y})$ are analogs of periodic fundamental splines introduced in [3, 4]

$$
\tilde{s k}(x)=\frac{1}{n}+\frac{1}{n} \sum_{j=1}^{n-1} \frac{\operatorname{Re} \lambda_{j}(x) \operatorname{Re} \lambda_{j}(y)+\operatorname{Im} \lambda_{j}(x) \operatorname{Im} \lambda_{j}(y)}{\left|\lambda_{j}(y)\right|^{2}}
$$

where $\lambda_{j}(y)=\sum_{\nu=1}^{n} \exp \left(\frac{2 \pi i \nu j}{n}\right) K\left(y-\frac{2 \pi \nu}{n}\right) \neq 0,1 \leq j \leq n-1$ and $K \in C\left(\mathbb{T}^{1}\right)$ is a fixed kernel function. Observe that

$$
\tilde{s k}(y+2 \pi j / n)=\left\{\begin{array}{cc}
1, & j=0 \bmod (n) \\
0 & \text { otherwise }
\end{array}\right.
$$

Fundamental $s k$-splines on parallelepipedal grids in \mathbb{T}^{d} (see [2]) were considered in [1]. To construct an approximant $q(\cdot)$ for the density function $p_{t}^{\mathbb{Q}}(\cdot)$ defined by $\Phi^{\mathbb{Q}}(\mathbf{x}, t)$ in (1) we assume that $K \in \mathcal{K} \cap L_{2}\left(\mathbb{R}^{n}\right)$. Consequently, by Plancherel theorem we get

$$
\begin{aligned}
p_{t}^{\mathbb{Q}}(\cdot) & =\frac{\mathbf{F}\left(\Phi^{\mathbb{Q}}(\mathbf{x}, t)\right)(\cdot)}{(2 \pi)^{n}} \\
& \approx \mathbf{F}\left(\sum_{\mathbf{m} \in \mathbb{Z}^{n}} \frac{\Phi^{\mathbb{Q}}(\mathbf{A m}, t) \widetilde{s k}(\mathbf{x}-\mathbf{A m})}{(2 \pi)^{n}}\right)(\cdot) \\
& =\mathbf{F}\left(\sum_{\mathbf{m} \in \mathbb{Z}^{n}} \mathbf{F}^{-1}\left(\frac{\operatorname{det}(\mathbf{A}) \Phi^{\mathbb{Q}}(\mathbf{A m}, t) \mathbf{F}(K)(\mathbf{z})}{(2 \pi)^{n} \sum_{\mathbf{s} \in \mathbb{Z}^{n}} \mathbf{F}(K)\left(\mathbf{z}+2 \pi\left(\mathbf{y}^{-1}\right)^{T} \mathbf{s}\right)}\right)(\mathbf{x}-\mathbf{A m})\right)(\cdot) \\
& =\frac{\operatorname{det}(\mathbf{A}) \mathbf{F}(K)(\cdot) \sum_{\mathbf{m} \in \mathbb{Z}^{n}} \Phi^{\mathbb{Q}}(-\mathbf{A m}, t) \exp (i\langle\cdot, \mathbf{A} \mathbf{m}\rangle)}{(2 \pi)^{n} \sum_{\mathbf{s} \in \mathbb{Z}^{n}} \mathbf{F}(K)\left(\cdot+2 \pi\left(\mathbf{y}^{-1}\right)^{T} \mathbf{s}\right)}
\end{aligned}
$$

Assume that for some domain $\Omega \subset \mathbb{R}^{n}, \Omega \ni \mathbf{0}$ the sum

$$
\sum_{\mathbf{s} \in \mathbb{Z}^{n} \backslash \mathbf{0}} \mathbf{F}(K)\left(\cdot+2 \pi\left(\mathbf{y}^{-1}\right)^{T} \mathbf{s}\right)
$$

is "relatively small" for any $\mathbf{z} \in \Omega$. Then

$$
\sum_{\mathbf{s} \in \mathbb{Z}^{n}} \mathbf{F}(K)\left(\cdot+2 \pi\left(\mathbf{y}^{-1}\right)^{T} \mathbf{s}\right) \approx \mathbf{F}(K)(\cdot)
$$

Hence

$$
p_{t}^{\mathbb{Q}}(\cdot) \approx q(\cdot)=\frac{\operatorname{det}(\mathbf{A})}{(2 \pi)^{n}} \sum_{\mathbf{m} \in \mathbb{Z}^{n}} \Phi^{\mathbb{Q}}(-\mathbf{A m}, t) \exp (i\langle\cdot, \mathbf{A m}\rangle)
$$

Let $\mathbf{m}_{k}, k \in \mathbb{N}$ corresponds to the nonincreasing rearrangement of $\left|\Phi^{\mathbb{Q}}(-\mathbf{A m}, t)\right|$, $\mathbf{m} \in \mathbb{Z}^{n}$. Hence for a fixed $N=N\left(\Phi^{\mathbb{Q}}, \mathbf{y}, t,\right)$ we get

Theorem 3. In our notations the approximant $q(\mathbf{z})$ for the density function $p_{t}^{\mathbb{Q}}(\mathbf{z})$ has the form

$$
q(\mathbf{z})=\frac{\operatorname{det}(\mathbf{A})}{(2 \pi)^{n}} \sum_{k=1}^{N} \Phi^{\mathbb{Q}}\left(-\mathbf{A} \mathbf{m}_{k}, t\right) \exp \left(i\left\langle\mathbf{z}, \mathbf{A} \mathbf{m}_{k}\right\rangle\right)
$$

Example 4. Let $n=2$ and $p(\mathbf{y})=p\left(x_{1}, x_{2}\right)=\pi^{-1} \exp \left(-x_{1}^{2}-x_{2}^{2}\right)$ be Gaussian density. Then $\Phi(\mathbf{y})=\mathbf{F} p(-\mathbf{y})=\exp \left(-\left(x_{1}^{2}+x_{2}^{2}\right) / 4\right)$. Let P and M be fixed parameters. In the case of the square grid $(2 \pi k / P, 2 \pi s / P),(k, s) \in \mathbb{Z}^{2}$ we get $\mathbf{y}=\operatorname{diag}(2 \pi / P, 2 \pi / P), \operatorname{det}(\mathbf{y})=(2 \pi / P)^{2}$. Hence the approximant $q(\mathbf{y})$ takes the form

$$
\begin{aligned}
q(\mathbf{y}) & =q\left(x_{1}, x_{2}\right) \\
& =\frac{(2 \pi / P)^{2}}{(2 \pi)^{2}} \sum_{|k| \leq M} \sum_{|s| \leq M} \Phi\left(-\frac{2 \pi k}{P},-\frac{2 \pi s}{P}\right) \exp \left(\frac{2 \pi k i}{P} x_{1}+\frac{2 \pi s i}{P} x_{2}\right) \\
& =\frac{1}{P^{2}} \sum_{|k| \leq M} \sum_{|s| \leq M} \exp \left(-\left(\frac{2 \pi}{P}\right)^{2}\left(\frac{k^{2}+s^{2}}{4}\right)\right) \exp \left(\frac{2 \pi i k x_{1}}{P}+\frac{2 \pi i s x_{2}}{P}\right) .
\end{aligned}
$$

Let $d(P, M, a):=\max \{\mathbf{x} \in[-a / 2, a / 2] \times[-a / 2, a / 2]| | p(\mathbf{y})-q(\mathbf{y}) \mid\}$. Numerical examples show that $d(5,4,1)=2.36 \times 10^{-5}, d(5,6,1)=1.8 \times 10^{-8}$.

REFERENCES

[1] S.M. Gomes, A.K. Kushpel, J. Levesley, D.L. Ragozin, Interpolation on the Torus using $s k$-splines with Number Theoretic Knots, J. of Approximation Theory, 98 (1999), 56-71.
[2] N.M. Korobov, Exponential Sums and their Applications, Boston, Kluwer Academic Publishers, 1992.
[3] A.K. Kushpel, Extremal properties of splines and diameters of classes of periodic functions in the space $C_{2 \pi}$, Preprint, 84.15, Kiev, Inst. Math. Acad. Nauk Ukrain. SSR (1984), 1-44.
[4] A.K. Kushpel, Sharp estimates of the widths of convolution classes, Math. USSR Izvestiya, American Mathematical Society, 33, No. 3 (1989), 631-649.
[5] A. Kushpel, sk-Spline interpolation on \mathbb{R}^{n}, ArXiv: 1809.08618v1 [math. NA] 23 Sep 2018.
[6] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
[7] E. Stein, G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton, 1990.

