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This paper deals with a new implementation of the Bernstein polynomials method to the numerical solution of a special kind of
singular system. For this aim, first the truncated Bernstein series polynomials of the solution functions are substituted in the given
problem. Using some properties of these polynomials, the solution of the problem is reduced to solve a linear system of algebraic
equations. In order to confirm the reliability and accuracy of the proposed method, some weakly Abel integral equations systems
with comparisons are solved in detail as numerical examples.

1. Introduction

Many physical, biological, or engineering processes involve
relating rates of change of various quantities according to
physical or other principles. In some occasions,mathematical
representation of these processes appears in a natural way in
terms of singular integral equations. It should be noted that
these types of equations contain much more mathematical
information about the applied scientific problem aroused
from natural phenomena. On the other hand, much singular
integral equations are not easy to solve analytically. Hence,
numerical methods based on solving these equations can
be unbelievably powerful. Among the numerous numerical
approaches that have been offered, let us mention some
well-known methods. For example, Khan and Gondal [1]
merged the Laplace transform and decomposition method
and then presented a new mechanism for the solution of
Abel type singular integral equations, that is to say, the two-
step Laplace decomposition algorithm. Bougoffa et al. [2]
used the Adomian decomposition method for solving linear

and nonlinear Abel integral equations. Abdulkawi et al. [3]
used the Chebyshev polynomials of the second kind for
the numerical solution of the Cauchy type singular integral
equations of the first kind, over a finite segment.The solution
of a singular integral equation with logarithmic kernel in
two disjoint intervals was obtained using function theoretic
method by Banerjea and Dutta in [4]. The two interval
conditions yielded to the two simple simultaneous algebraic
equations in two unknowns, which were solved to recover
the reflection and transmission coefficients in the scattering
problem. Helsing in [5] presented a fast and stable solver
based on the reduction, Nystrom discretization, composite
quadrature, recursive compressed inverse preconditioning,
and multipole acceleration techniques for the numerical
solution of these integral equations on piecewise smooth
curves. Maleknejad and Salimi Shamloo [6] utilized Laplace
transform of the problem and operational matrices of piece-
wise constant orthogonal functions to solve singular Volterra
integral equations. Moreover, Huang et al. [7] offered a stable
approximate inversion of Abel integral equation by using
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the Taylor expansion method. This work transformed the
equation approximately to a system of linear algebraic equa-
tions for the unknown function together with its derivatives.
Akel and Hussein [8] proposed a convenient and efficient
numerical method for the treatment of singular integral
equations of the first and second kind. The method yielded a
simple and closed form of the approximate solution bymeans
of Sinc functions with smoothing transformations. Recently,
we employed a structure of artificial neural networks for
approximating solution of a fuzzy typeAbel integral equation.
Also, the application of Legendre wavelets as a basis function
is offered for solving a special kind of singular system in
[9]. Recently, [10–17], wavelets method has been employed
for solving a class of system of nonlinear singular fractional
Volterra integrodifferential equations. In this work, shifted
Chebyshev polynomials and their properties were employed
to derive a general procedure for forming the operational
matrix of fractional derivative for Chebyshev wavelets.

In many problems in science and engineering, we have
some unknown functions which are too complicated to be
determined. The Bernstein polynomials method is one of
the earliest analytic-numeric algorithms for approximating
the unknowns in different kinds of mathematical problems.
This is an extremely useful way of expressing a compli-
cated function in terms of simple polynomial. The only
requirement is that the given function should be smooth.
In other words, at a point of interest it must be possible to
differentiate the function as often as we please. In our earlier
works, the linear integral equations system was handled by
using these kinds of polynomials [18]. Moreover, in [19–22]
Bernstein polynomials and Bernstein operational matrices
were employed for solving some types of singular integral
and integrodifferential equations. In this paper, we are going
to apply a development of the Bernstein series method to
approximate solution of a system of weakly Abel integral
equations which has been considered in the standard form:

𝑚

∑
𝑗=1

𝑔
𝑖,𝑗
(𝑠) 𝜑
𝑗
(𝑠) = 𝑓

𝑖
(𝑠) +

𝑚

∑
𝑗=1

𝜆
𝑖,𝑗
∫
𝑠

0

𝜑
𝑗
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

0 < 𝑠 ≤ 1, 𝑖 = 1, . . . , 𝑚,

(1)

where 𝜆
𝑖,𝑗

is a real constant, 𝑓
𝑖
(𝑠) and 𝑔

𝑖,𝑗
(𝑠) are predeter-

mined real-valued functions, and 𝜑(𝑠) = [𝜑
1
(𝑠), . . . , 𝜑

𝑚
(𝑠)] is

the vector solution that will be determined. For more details
on the integral equations, the reader is referred to the book
[23]. Supposedly the present problem has a unique solution
[23], a comfort computational form of the above system is
obtained when the Bernstein polynomials are used as basis
functions. Now, putting 𝑠 = 𝑠

𝑖
(for 𝑖 = 0, . . . , 𝑛) transforms

the resulting system to a system of linear algebraic equations
for the unknown functions. Then, a numerical solution can
be obtained by solving the resulting system using a standard
rule. If more and more terms are used from the Bernstein
series, then the polynomial representations better and better
approximate the unknowns. It is clear that the 𝑛-th order
series solution converges to the exact solution if the unknown
functions are polynomials of degree up to 𝑛. Here is an outline

of the paper. Section 2 intends to describe how to find approx-
imate solution of a weakly Abel integral equations system by
using the present approach. In Section 3, the error analysis of
approximate solution corresponding to the singular integral
equations system is given. To demonstrate the efficiency and
reliability of the method, some numerical test examples with
comparisons are given in Section 4. Section 5 concludes the
paper.

2. Description of the Method

The Bernstein polynomials representation is extremely
important from many points of view. This approach can be
used to approximate more complicated functions in terms
of simpler polynomials. In this section, our aim is to show
how the Bernstein polynomials method can be applied to the
numerical solution of singular system (1). First, assume that
the functions 𝑓

𝑖
(𝑠) and 𝑔

𝑖,𝑗
(𝑠) are continually differentiable

in the interval of interest. We know that the Bernstein
approximation of function𝜑

𝑗
: [0, 1] → R is the polynomial:

𝜑
𝑗,𝑛

(𝑠) =
𝑛

∑
𝑝=0

𝜉
𝑗,𝑝

𝛽
𝑝,𝑛

(𝑠) , (2)

where 𝜉
𝑝
is a constant coefficient and 𝛽

𝑝,𝑛
(𝑠) is the Bernstein

basis polynomial of degree 𝑛 for each positive integer 𝑛, which
is defined by Mandal and Bhattacharya [24]:

𝛽
𝑝,𝑛

(𝑠) = (𝑛𝑝) 𝑠𝑝(1 − 𝑠)𝑛−𝑝, 𝑝 = 0, . . . , 𝑛. (3)

It is clear that the value of 𝜑
𝑗,𝑛
(𝑠) approaches 𝜑

𝑗
(𝑠) as 𝑛 gets

larger. Suppose we carry this argument and try to determine
polynomial approximations of degree 𝑛 for the solutions in
the given problem. To do this, first 𝜑

𝑗,𝑛
is substituted for 𝜑

𝑗
in

system (1). Now, we get

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝑔
𝑖,𝑗
(𝑠) 𝛽
𝑘,𝑛

(𝑠) 𝜉
𝑗,𝑘

= 𝑓
𝑖
(𝑠) +

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝜆
𝑖,𝑗
∫
𝑠

0

𝛽
𝑘,𝑛

(𝑡)
√𝑠 − 𝑡

𝑑𝑡𝜉
𝑗,𝑘
,

(4)

or equivalently

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝑔
𝑖,𝑗
(𝑠) 𝛽
𝑘,𝑛

(𝑠) 𝜉
𝑗,𝑘

= 𝑓
𝑖
(𝑠) +

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝜆
𝑖,𝑗
(𝑛𝑘)∫

𝑠

𝑎

𝑡𝑘𝜁
𝑘
(𝑡)

√𝑠 − 𝑡
𝑑𝑡𝜉
𝑗,𝑘
,

(5)

where

𝜁
𝑘
(𝑡) =
𝑛−𝑘

∑
𝑞=0

(𝑛 − 𝑘
𝑞 ) (−1)𝑛−𝑘−𝑞𝑡𝑛−𝑘−𝑞. (6)
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After some simplifications, (5) is reduced to the following
form:

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝑔
𝑖,𝑗
(𝑠) 𝛽
𝑘,𝑛

(𝑠) 𝜉
𝑗,𝑘

= 𝑓
𝑖
(𝑠) +

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝜆
𝑖,𝑗
(𝑛𝑘)
𝑛−𝑘

∑
𝑞=0

𝑑
𝑘,𝑞

𝜇
𝑛−𝑞

(𝑠) 𝜉
𝑗,𝑘
,

(7)

where

𝑑
𝑘,𝑞

= (𝑛 − 𝑘
𝑞 ) (−1)𝑛−𝑘−𝑞,

𝜇
𝑛−𝑞

(𝑠) =
2𝑛−𝑞+1Γ (𝑛 − 𝑞 + 1) 𝑠𝑛−𝑞+(1/2)

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ ⋅ ⋅ (2 (𝑛 − 𝑞) + 1)
.

(8)

For suitable choice of the distinct values 𝑠 = 𝑠
𝑝
(for 𝑝 =

0, . . . , 𝑛) in [0, 1] (e.g., 𝑠
𝑝
= (𝑝/𝑛)), we achieve the following

linear algebraic system:

𝑚

∑
𝑗=1

𝑛

∑
𝑘=0

𝛾𝑝,𝑘
𝑖,𝑗

⋅ 𝜉
𝑗,𝑘

= 𝑓
𝑖
(𝑠
𝑝
) , 𝑖 = 1, . . . , 𝑚; 𝑝 = 0, . . . , 𝑛, (9)

where

𝛾𝑝,𝑘
𝑖,𝑗

=
(𝑛
𝑘
) 𝑛𝑛

𝑝𝑘(𝑛 − 𝑝)𝑛−𝑘
𝑔
𝑖,𝑗
(𝑠
𝑝
) − 𝜆
𝑖,𝑗
(𝑛𝑘)
𝑛−𝑘

∑
𝑞=0

𝑑
𝑘,𝑞

𝜇
𝑛−𝑞

(𝑠
𝑝
) .

(10)

Therefore, system (9) with𝑚(𝑛+ 1) linear equations of𝑚(𝑛+
1) unknowns 𝜑

𝑗
(𝑠
𝑝
) (for 𝑝 = 0, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚) can be

rewritten in the matrix form as follows:

[[

[

Υ
1,1

⋅ ⋅ ⋅ Υ
1,𝑚

... d
...

Υ
𝑚,1

⋅ ⋅ ⋅ Υ
𝑚,𝑚

]]

]

[[

[

Φ
1

...
Φ
𝑚

]]

]

= [[

[

ϝ
1

...
ϝ
𝑚

]]

]

, (11)

or equivalently

Υ𝑛,𝑛Φ𝑛 = ϝ𝑛, (12)

with the block matrices:

Υ
𝑖,𝑗

=
[[[

[

𝛾0,0
𝑖,𝑗

⋅ ⋅ ⋅ 𝛾0,𝑛
𝑖,𝑗

... d
...

𝛾𝑛,0
𝑖,𝑗

⋅ ⋅ ⋅ 𝛾𝑛,𝑛
𝑖,𝑗

]]]

]

, Φ
𝑗
= [[

[

𝜉
𝑗,0

...
𝜉
𝑗,𝑛

]]

]

,

ϝ
𝑖
= [[

[

𝑓
𝑖
(𝑠
0
)

...
𝑓
𝑖
(𝑠
𝑛
)

]]

]

.

(13)

Consequently, system (11) can be solved using a standard rule
to obtain the unknown constants 𝜉

𝑗,𝑘
(for 𝑗 = 1, . . . , 𝑚; 𝑘 =

0, . . . , 𝑛). Ultimately, the unknown function 𝜑
𝑗
(𝑠) can be

easily approximated using the aforementioned assumptions.

3. Convergence Analysis

In this section, we intend to prove that the presented
numerical method converges to the exact solution of system
(1).

Theorem 1. Let 𝜑
𝑗,𝑛
(𝑠) (for 𝑗 = 1, . . . , 𝑚) be polynomials

of degree 𝑛 that their numerical coefficients are produced by
solving the linear system (11). There exists an integer 𝑁 such
that, for all 𝑛 ≥ 𝑁, these polynomials converge to the exact
solution of the integral equations system (1).

Proof. We know that the Bernstein polynomials for the
function 𝜑

𝑗
(𝑠) that is continuous on interval [0, 1] converge

uniformly to this function [24]. Consider again system (1). In
otherwords,𝜑

𝑗
(𝑠) can be expanded as a uniformly convergent

Bernstein series in [0, 1]:

𝜑
𝑗
(𝑠) =

𝑛

∑
𝑝=0

𝜉
𝑗,𝑝

𝛽
𝑝,𝑛

(𝑠) , 𝑛 ≥ 𝑁. (14)

Based on the suggested process, Abel integral equations
system (1) can be transformed to the following equivalent
infinitely systems of linear equations for unknown 𝜑

𝑗
(𝑠):

ΥΦ = ϝ, (15)

with

Υ = lim
𝑛→∞

Υ𝑛,𝑛, ϝ = lim
𝑛→∞

ϝ𝑛, Φ = lim
𝑛→∞

Φ𝑛, (16)

where Υ𝑛,𝑛, ϝ𝑛, and ϝ𝑛 were defined in the previous section.
For the above system, the unique solution can be expressed
as

Φ = 𝐿ϝ, (17)

where 𝐿 = Υ−1. Alternatively, the above system can be
rewritten as

[Φ𝑛
Φ∞] = [ 𝐿𝑛,𝑛 𝐿𝑛,∞

𝐿∞,𝑛 𝐿∞,∞] [ ϝ𝑛
ϝ∞] , (18)

where

𝐿𝑛,𝑛 = [[

[

𝐿𝑛,𝑛
1,1

⋅ ⋅ ⋅ 𝐿𝑛,𝑛
1,𝑚

... d
...

𝐿𝑛,𝑛
𝑚,1

⋅ ⋅ ⋅ 𝐿𝑛,𝑛
𝑚,𝑚

]]

]

. (19)

Consequently, one finds that the vector 𝜑
𝑗,𝑛

composed of the
first 𝑛+1 elements of the exact solution vector 𝜑

𝑗
must satisfy

the following relation:

Φ𝑛 = 𝐿𝑛,𝑛ϝ𝑛 + 𝐿𝑛,∞ϝ∞. (20)

In addition, based on the analysis of the foregoing section, the
unique solution of (11) is denoted as

Φ𝑛 = (Υ𝑛,𝑛)−1ϝ𝑛. (21)
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Subtracting (21) from (20) yields

Φ𝑛 − Φ𝑛 = 𝐴𝑛,𝑛ϝ𝑛 + 𝐿𝑛,∞ϝ∞, (22)

where 𝐴𝑛,𝑛 = 𝐿𝑛,𝑛 − (Υ𝑛,𝑛)−1. Expanding the right-hand side
of (22), the left-hand side of this is expressed by

𝜑
𝑖
(𝑠) − 𝜑

𝑖,𝑛
(𝑠) =

𝑛

∑
𝑞=0

𝑛

∑
𝑟=0

𝑎𝑞,𝑟
𝑖,𝑗

𝑓
𝑖
(𝑠
𝑟
) 𝛽
𝑞,𝑛

(𝑠)

+
𝑛

∑
𝑞=0

∞

∑
𝑟=𝑛+1

𝑙𝑞,𝑟
𝑖,𝑗

𝑓
𝑖
(𝑠
𝑟
) 𝛽
𝑞,𝑛

(𝑠) ,

(23)

where 𝑎𝑞,𝑟
𝑖,𝑗

and 𝑙𝑞,𝑟
𝑖,𝑗

are the elements of 𝐴
𝑖,𝑗

and 𝐿
𝑖,𝑗
, respec-

tively. Thus,

󵄨󵄨󵄨󵄨𝜑𝑖 (𝑠) − 𝜑
𝑖,𝑛

(𝑠)󵄨󵄨󵄨󵄨

≤ ((
𝑛

∑
𝑞=0

𝑛

∑
𝑟=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨
2

)
1/2

− (
𝑛

∑
𝑞=0

∞

∑
𝑟=𝑛+1

󵄨󵄨󵄨󵄨󵄨𝑙𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨
2

)
1/2

) ,

(
𝑛

∑
𝑞=0

𝑛

∑
𝑟=0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠𝑟)
󵄨󵄨󵄨󵄨
2

)
1/2

(
𝑛

∑
𝑞=0

𝑛

∑
𝑟=0

󵄨󵄨󵄨󵄨󵄨𝛽𝑞,𝑛 (𝑠)
󵄨󵄨󵄨󵄨󵄨
2

)
1/2

(24)

follows from the well-known Cauchy-Schwarz inequality.
Since lim

𝑛→∞
𝐴
𝑛,𝑛

= 0 and lim
𝑛→∞

𝐿
𝑛,∞

= 0, so we can
conclude that lim

𝑛→∞
|𝜑
𝑖
(𝑠) − 𝜑

𝑖,𝑛
(𝑠)| = 0 and proof is

completed.

4. Numerical Examples

In this section, the above-mentioned method is illustrated
with the help of three illustrative examples which include
second kind Volterra integral equations system with Abel
kernels. Note that the empirical results obtained here will be
compared with the ones achieved from the Taylor expansion
method (TEM) of degree 𝑛 [7].

Example 1. Consider the following singular integral equa-
tions system:

𝑠2𝜑
1
(𝑠) − (𝑠 + 1) 𝜑

2
(𝑠)

= 𝑓
1
(𝑠) + ∫

𝑠

0

𝜑
1
(𝑡)

√𝑠 − 𝑡
𝑑𝑡 − ∫

𝑠

0

𝜑
2
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

𝑠𝜑
1
(𝑠) + (𝑠2 + 2) 𝜑

2
(𝑠)

= 𝑓
2
(𝑠) + ∫

𝑠

0

𝜑
1
(𝑡)

√𝑠 − 𝑡
𝑑𝑡 + ∫

𝑠

0

𝜑
2
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

0 < 𝑠 ≤ 1,

(25)

where

𝑓
1
(𝑠) = 𝑠 (20𝑠1/2

3
− 4) + 𝑠2 (16𝑠1/2

15
− 4)

− 4𝑠1/2 − 𝑠4 + 𝑠5 − 32𝑠2

35
+ 1,

𝑓
2
(𝑠) = 𝑠2 (16𝑠1/2

15
− 1) − 𝑠(20𝑠1/2

3
− 11)

− 𝑠3 (32𝑠1/2

35
− 4) + 𝑠4 − 2,

(26)

with the exact vector solution [𝜑
1
(𝑠), 𝜑
2
(𝑠)] = [𝑠3 −𝑠2+1, 5𝑠−

1]. In this example, we aim to apply the present technique to
approximate solution of the problem by taking 𝑛 = 3. The
solutions in series forms are given by

𝜑
1,3

(𝑠) = 3𝑠(𝑠 − 1)2 − 2𝑠2 (𝑠 − 1) − (𝑠 − 1)3

+ 𝑠3 + 1 = 𝑠3 − 𝑠2 + 1,

𝜑
2,3

(𝑠) = 2𝑠(𝑠 − 1)2 − 7𝑠2 (𝑠 − 1) + (𝑠 − 1)3 + 4𝑠3

= 5𝑠 − 1.

(27)

As shown, the method is quite accurate when the solutions
are polynomials of degree up to 𝑛.

Example 2. Consider the system of Abel integral equations:

𝜑
1
(𝑠) = 𝑒𝑠 (

erf (√𝑠) − √𝜋
√𝜋

) − 𝑠
2

+ ∫
𝑠

0

𝜑
1
(𝑡) + 𝜑

2
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

𝜑
2
(𝑠) = (𝑠 + 1) (1 + 𝜋√𝑠

𝜋√𝑠
)

± 𝑒𝑠 + 2 + ∫
𝑠

0

𝜑
1
(𝑡) − 2𝜑

2
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

0 < 𝑠 ≤ 1,

(28)

which has the exact solutions 𝜑
1
(𝑠) = 𝑒𝑠 erf(√𝑠)/√𝜋 and

𝜑
2
(𝑠) = ((1 + 𝑠)/𝜋√𝑠). For suitable distinct points 𝑠 = 𝑠

𝑖
(for

𝑖 = 0, . . . , 5) in (0, 1] in which 𝑠
0
is taken near 0 and 𝑠

5
= 1,

the numerical results obtained here and the Taylor expansion
quadrature method are presented in Table 1. Also, the exact
and approximate solutions are compared in Figure 1.
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Figure 1: Comparison of the exact and approximated solutions for Example 2.

Table 1: Numerical results for Example 2.

𝑠
𝑖
= 0.1𝑖 Exact solution Proposed method TEM

𝜑
1
(𝑠
𝑖
) 𝜑

2
(𝑠
𝑖
) 𝜑1,5(𝑠𝑖) 𝜑

2,5
(𝑠
𝑖
) 𝜑1,5(𝑠𝑖) 𝜑

2,5
(𝑠
𝑖
)

𝑖 = 1 0.2153 1.1072 0.215290 1.107242 0.215169 1.107682
𝑖 = 2 0.3259 0.8541 0.325884 0.854115 0.325780 0.854328
𝑖 = 3 0.4276 0.7555 0.427565 0.755497 0.427509 0.755881
𝑖 = 4 0.5293 0.7046 0.529335 0.704608 0.529611 0.704209
𝑖 = 5 0.6350 0.6752 0.635031 0.675237 0.635295 0.675831
𝑖 = 6 0.7470 0.6575 0.747040 0.657498 0.747548 0.657637
𝑖 = 7 0.8672 0.6468 0.867187 0.646770 0.867735 0.646340
𝑖 = 8 0.9971 0.6406 0.997089 0.640586 0.997818 0.640385
𝑖 = 9 1.1383 0.6375 1.138298 0.637503 1.138803 0.637804
𝑖 = 10 1.2924 0.6366 1.292388 0.636619 1.292765 0.636391

Example 3. Let us consider the Abel integral equations
system:

𝑠𝜑
1
(𝑠) + √𝑠𝜑

2
(𝑠) + 𝜑

3
(𝑠)

= 𝑓
1
(𝑠) + ∫

𝑠

0

𝜑
1
(𝑡) + 𝜑

2
(𝑡) + 𝜑

3
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

𝜑
1
(𝑠) − 𝑠2𝜑

2
(𝑠) + (𝑠 + 1) 𝜑

3
(𝑠)

= 𝑓
2
(𝑠) + ∫

𝑠

0

𝜑
1
(𝑡) + 𝜑

2
(𝑡) − 𝜑

3
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

(2𝑠 − 5) 𝜑
1
(𝑠) + 𝜑

2
(𝑠) − (𝑠2 − 1) 𝜑

3
(𝑠)

= 𝑓
3
(𝑠) + ∫

𝑠

0

𝜑
1
(𝑡) − 𝜑

2
(𝑡) + 𝜑

3
(𝑡)

√𝑠 − 𝑡
𝑑𝑡,

(29)

where

𝑓
1
(𝑠) = (𝑠 + 1) tan−1 ( 1

√𝑠
) − 𝜋

2
(𝑠 + 1) + 𝑠 (3𝑠 + 3)

+ √𝑠 + 1 − 7√𝑠 − 4√𝑠3 − √𝑠5,

𝑓
2
(𝑠) = − (𝑠 + 1) tan−1 ( 1

√𝑠
) + 𝜋

2
(𝑠 + 1) + √(𝑠 + 1)3

− 5√𝑠 − 15𝑠4 − 4√𝑠3 − 16√𝑠5 + 3,

𝑓
3
(𝑠) = (𝑠 + 1) tan−1 ( 1

√𝑠
) − 𝜋

2
(𝑠 + 1) + (3𝑠 + 3) (2𝑠 − 5)

− (𝑠2 − 1)√𝑠 + 1 + 15𝑠2

− 7√𝑠 − 4√𝑠3 + 16√𝑠5,
(30)
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Table 2: Numerical results for Example 3.

𝑠
𝑖
= 0.1𝑖 Exact solution Approximate solution

𝜑
1
(𝑠
𝑖
) 𝜑

2
(𝑠
𝑖
) 𝜑

3
(𝑠
𝑖
) 𝜑

1,3
(𝑠
𝑖
) 𝜑

2,3
(𝑠
𝑖
) 𝜑

3,3
(𝑠
𝑖
)

𝑖 = 1 3.3000 0.1500 1.0488 3.3000 0.1500 1.0488
𝑖 = 2 3.6000 0.6000 1.0954 3.6000 0.6000 1.0951
𝑖 = 3 3.9000 1.3500 1.1402 3.9000 1.3500 1.1389
𝑖 = 4 4.2000 2.4000 1.1832 4.2000 2.4000 1.1810
𝑖 = 5 4.5000 3.7500 1.2247 4.5000 3.7500 1.2198
𝑖 = 6 4.8000 5.4000 1.2649 4.8000 5.4000 1.2590
𝑖 = 7 5.1000 7.3500 1.3038 5.1000 7.3500 1.2898
𝑖 = 8 5.4000 9.6000 1.3416 5.4000 9.6000 1.3310
𝑖 = 9 5.7000 12.150 1.3784 5.7000 12.150 1.3687
𝑖 = 10 6.0000 15.000 1.4142 6.0000 15.000 1.4050
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Approximate solution for n = 7

s

Figure 2: 𝜑
3
(𝑠), 𝜑
3,3
(𝑠), and 𝜑

3,5
(𝑠) for Example 3.

with the exact solutions 𝜑
1
(𝑠) = 3(𝑠 + 1), 𝜑

2
(𝑠) = 15𝑠2, and

𝜑
3
(𝑠) = √𝑠 + 1. In Table 2, the numerical results obtained

here for 𝑛 = 3 are compared with the exact solutions. It is
clear that errors between the exact and approximate values of
𝜑
1
(𝑠) and𝜑

2
(𝑠) are zero. Similarly, the series solutions of order

3 with Taylor approximation converge to the exact solutions
𝜑
1
(𝑠) and 𝜑

2
(𝑠). Also, the exact and approximate solutions of

𝜑
3
(𝑠) are compared in Figure 2 for 𝑛 = 3 and 5.

5. Conclusions

In this paper, we presented a useful numerical method that
originatedmainly from the Bernstein polynomials for solving
Abel integral equations systems. This method converted the
present problem to a system of linear algebraic equations
for unknown functions. Having determined the unknown
Bernstein coefficients of the solution functions, the series
solutions were produced immediately. An interesting feature
of this method is that the exact solution is derived if it is a
polynomial of degree 𝑛 or less than 𝑛. On the other hand, if
an exact solution is not obtainable, then the obtained series

can be used for numerical purposes. In this case, more terms
must be evaluated to the higher accuracy level. Additionally,
the proposed technique has been compared with the Taylor
expansion method. The obtained numerical results from
analyzed examples illustrated that, in applications involving
computations with polynomials, the Bernstein form offers
efficient algorithmversus the traditional Taylor rule, formany
basic functions.
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