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We propose a fractional order SIRC epidemicmodel to describe the dynamics of Salmonella bacterial infection in animal herds.The
infection-free and endemic steady sates, of such model, are asymptotically stable under some conditions. The basic reproduction
number R

0
is calculated, using next-generation matrix method, in terms of contact rate, recovery rate, and other parameters

in the model. The numerical simulations of the fractional order SIRC model are performed by Caputo’s derivative and using
unconditionally stable implicit scheme. The obtained results give insight to the modelers and infectious disease specialists.

1. Introduction

During the past three decades, the subject of fractional
calculus has gained popularity and importance, mainly due
to its demonstrated applications in numerous diverse and
widespread fields of science and engineering. For example,
fractional calculus has been successfully applied to system
biology, physics, chemistry and biochemistry, hydrology,
medicine, and finance (see, e.g., [1–10] and the references
therein). In many cases, the fractional order differen-
tial/integral equations models are more consistent with the
real phenomena than the integer-order models because the
fractional derivatives and integrals enable the description of
the memory and hereditary properties inherent in various
materials and processes. Hence, there is a growing need to
study and use the fractional order differential and integral
equations. However, analytical and closed solutions of these
types of fractional equations cannot generally be obtained.
As a consequence, approximate and numerical techniques are
playing important role in identifying the solution behavior
of such fractional equations and exploring their applications
(see, e.g., [9, 11, 12] and the references therein).

We recall that the Salmonella infection is amajor zoonotic
disease which is transmitted between humans and other
animals. Most persons infected with Salmonella develop
diarrhea, fever, and abdominal cramps 12 to 72 hours after
infection. The illness usually lasts 4 to 7 days, and most
persons recover without treatment. However, in some per-
sons, the diarrhea may be so severe that the patient needs
to be hospitalized. Salmonella live in the intestinal tracts
of humans and other animals, including birds. Salmonella
are usually transmitted to humans by eating foods con-
taminated with animal feces. Contaminated foods usually
look and smell normal. Contaminated foods are often of
animal origin, such as beef, poultry, milk, or eggs, but any
food, including vegetables, may become contaminated [13].
Therefore, Salmonella is considered as a serious problem
for the public health throughout the world. There are no
doubts that mathematical modeling of Salmonella bacterial
infection plays an important role in gaining understanding
of the transmission of the disease in specific environment
and in predicting the behavior of any outbreak. Furthermore,
mathematical analysis leads to determining the nature of
equilibrium states and to suggesting recommended actions
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to be taken by decisionmakers to control the spreading of the
disease. The objective of this work is to adopt the fractional
order epidemicmodel to describe the dynamics of Salmonella
infections in animal herds.

A large amount of work done on modelling biological
systems has been restricted to integer-order ordinary (or
delay) differential equations (see, e.g., [14–19]). In [20], the
authors proposed the classical Susceptible-Infected-Recovered
(SIR) model. The authors in [21] introduced a new compart-
ment into SIR model, which is called cross-immune com-
partment to be called SIRC model. The new compartment
cross-immune 𝐶(𝑡) describes an intermediate state between
the fully susceptible 𝑆(𝑡) and the fully protected 𝑅(𝑡) one.
Recently, the fractional order SIRC model of influenza, a
disease in human population, was discussed in [22]. In the
present paper, we consider the fractional order SIRC model
associated with evolution of Salmonella bacterial infection in
animal herds. However, we will take into account the disease-
induced mortality rate 𝑚 in the model. Qualitative behavior
of the fractional order SRIC model is then investigated.
Numerical simulations of the fractional order SRIC model
are provided to demonstrate the effectiveness of the proposed
method by using implicit Euler’s method.

We first give the definition of fractional order integration
and fractional order differentiation [23–25]. Let 𝐿1 = 𝐿

1
[𝑎, 𝑏]

be the class of Lebesgue integrable functions on [𝑎, 𝑏], 𝑎 <

𝑏 < ∞.

Definition 1. The fractional integral of order ] ∈ R+ of the
function 𝑓(𝑡), 𝑡 > 0 (𝑓 : R+ → R) is defined by

𝐼
]
𝑎
𝑓 (𝑡) =

1

Γ (])
∫

𝑡

𝑎

(𝑡 − 𝑠)
]−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0. (1)

However, the fractional derivative of order 𝛼 ∈ (𝑛 − 1, 𝑛) of
𝑓(𝑡) is defined by two ways.

(i) Riemann-Liouville fractional derivative: take frac-
tional integral of order (𝑛 − 𝛼) and then take 𝑛th
derivative:

𝐷
𝛼

𝑎
𝑓 (𝑡) = 𝐷

𝑛

𝑎
𝐼
𝑛−𝛼

𝑎
𝑓 (𝑡) , 𝐷

𝑛

∗
=

𝑑
𝑛

𝑑𝑡𝑛
, 𝑛 = 1, 2, . . . . (2)

(ii) Caputo’s fractional derivative: take 𝑛th derivative and
then take a fractional integral of order (𝑛 − 𝛼):

𝐷
𝛼

𝑎
𝑓 (𝑡) = 𝐼

𝑛−𝛼

𝑎
𝐷
𝑛

𝑎
𝑓 (𝑡) , 𝑛 = 1, 2, . . . . (3)

We notice that the definition of time-fractional derivative
of a function 𝑓(𝑡) at 𝑡 = 𝑡

𝑛
involves an integration and

calculating time-fractional derivative that requires all the
past history, that is, all the values of 𝑓(𝑡) from 𝑡 = 0 to
𝑡 = 𝑡

𝑛
. Caputo’s definition, which is a modification of the

Riemann-Liouville definition, has the advantage of dealing
properly with initial value problems. For more properties
of the fractional derivatives and integrals, we refer to [8, 9,
24, 25] and references therein. The generalized mean value
theorem is defined in the following Remark [26].

Remark 2. (i) Suppose that 𝑓(𝑡) ∈ 𝐶[𝑎, 𝑏] and 𝐷
𝛼

∗
𝑓(𝑡) ∈

𝐶(𝑎, 𝑏] for 0 < 𝛼 ≤ 1; then we have

𝑓 (𝑡) = 𝑓 (𝑎) +
1

Γ (𝛼)
𝐷
𝛼

∗
𝑓 (𝜉) (𝑡 − 𝑎)

𝛼
,

with 𝑎 < 𝜉 < 𝑡 ∀𝑡 ∈ (𝑎, 𝑏] .

(4)

(ii) If (i) holds and 𝐷
𝛼

∗
𝑓(𝑡) ≥ 0 ∀𝑡 ∈ [𝑎, 𝑏], then 𝑓(𝑡) is

nondecreasing for each 𝑡 ∈ [𝑎, 𝑏]. If 𝐷𝛼
∗
𝑓(𝑡) ≤ 0 ∀𝑡 ∈ [𝑎, 𝑏],

then 𝑓(𝑡) is nonincreasing for each 𝑡 ∈ [𝑎, 𝑏].

2. The SIRC Epidemic Model

Assume that the Salmonella infection spreads in animal
herds which are grouped as four compartments, according
to their infection status: 𝑆(𝑡) is the proportion of susceptible
individuals at time 𝑡 (individuals that do not have the bacte-
rial infection), 𝐼(𝑡) is the proportion of infected individuals
(that have the bacterial infection), 𝑅(𝑡) is the proportion
of recovered individuals (that recovered from the infection
and have temporary immunity), and 𝐶(𝑡) is the proportion
of cross-immune individuals at time 𝑡. The total number of
animals in the herd is given by𝑁 = 𝑆+𝐼+𝑅+𝐶. We consider
that initially all the animals are susceptible to the infection.
Once infected, a susceptible individual leaves the susceptible
compartment and enters the infectious compartment where
it then becomes infectious.The infected animals pass into the
recovered compartment.The individuals who have recovered
from the disease have temporary immunity and grouped into
𝐶(𝑡) compartment. Therefore, we consider that the disease
transmissionmodel consists of nonnegative initial conditions
together with system of equations:

̇𝑆 (𝑡) = 𝜇𝑁 + 𝜂𝐶 (𝑡) − (𝛽𝐼 (𝑡) + 𝜇) 𝑆 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝜎𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜃 + 𝑚 + 𝜇) 𝐼 (𝑡) ,

�̇� (𝑡) = (1 − 𝜎) 𝛽𝐶 (𝑡) 𝐼 (𝑡) + 𝜃𝐼 (𝑡) − (𝜇 + 𝛿) 𝑅 (𝑡) ,

�̇� (𝑡) = 𝛿𝑅 (𝑡) − 𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜂 + 𝜇)𝐶 (𝑡) .

(5)

Here, parameter 𝜇 denotes the mortality rate in every com-
partment and is assumed to be equal to the rate of newborns
in the population. 𝛽 is the contact rate and also called
transmission from susceptible to infected. 𝜂−1 is the cross-
immune period, 𝜃−1 is the infectious period, 𝛿−1 is the total
immune period, and 𝜎 is the fraction of the exposed cross-
immune individuals who are recruited in a unit time into
the infective subpopulation [21, 27]. We also assume that the
disease induces mortality rate𝑚; see the diagram of Figure 1.

2.1. Fractional Order of SIRC Epidemic Model. Although
a large number of work has been done in modeling the
dynamics of epidemiological diseases, it has been restricted to
integer-order (delay) differential equations. In recent years, it
has turned out thatmany phenomena in different fields can be
described very successfully by models using fractional order
differential equations (FODEs) [1, 5, 28]. Now, we introduce
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Figure 1: Schematic diagram of SIRC model.

fractional order into model (5) and assume that 𝑠(𝑡) =

𝑆(𝑡)/𝑁, 𝑖(𝑡) = 𝑆(𝑡)/𝑁, 𝑟(𝑡) = 𝑅(𝑡)/𝑁, 𝑐(𝑡) = 𝐶(𝑡)/𝑁, where
𝑁 is the total number of population. Then the model takes
the form

𝐷
𝛼
1𝑠 (𝑡) = 𝜇 + 𝜂𝑐 (𝑡) − (𝛽𝑖 (𝑡) + 𝜇) 𝑠 (𝑡) ,

𝐷
𝛼
2 𝑖 (𝑡) = 𝛽𝑠 (𝑡) 𝑖 (𝑡) + 𝜎𝛽𝑐 (𝑡) 𝑖 (𝑡) − (𝜃 + 𝑚 + 𝜇) 𝑖 (𝑡) ,

𝐷
𝛼
3𝑟 (𝑡) = (1 − 𝜎) 𝛽𝑐 (𝑡) 𝑖 (𝑡) + 𝜃𝑖 (𝑡) − (𝜇 + 𝛿) 𝑟 (𝑡) ,

𝐷
𝛼
4𝑐 (𝑡) = 𝛿𝑟 (𝑡) − 𝛽𝑐 (𝑡) 𝑖 (𝑡) − (𝜂 + 𝜇) 𝑐 (𝑡)

(6)

with initial conditions 𝑠(0) = 𝑠
0
, 𝑖(0) = 𝑖

0
, and 𝑟(0) = 𝑟

0
.

2.2. Stability Criteria for the Fractional Order SIRCModel. In
model (6), assume that 𝛼

1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 𝛼. Then, to find

the equilibria, we put 𝐷𝛼𝑠 = 𝐷
𝛼
𝑖 = 𝐷
𝛼
𝑟 = 𝐷

𝛼
𝑐 = 0.

Consider

E
0
= (1, 0, 0, 0) , E

+
= (𝑠
∗
, 𝑖
∗
, 𝑟
∗
, 𝑐
∗
) , (7)

where

𝑠
∗
=

𝜃 + 𝑚 + 𝜇

𝛽
− 𝜎(

𝛿𝜃𝑖
∗

(𝜇 + 𝛿𝜎) 𝛽𝑖∗ + (𝜇 + 𝛿) (𝜇 + 𝜂)
) ,

𝑟
∗
=

𝜃𝑖
∗
(𝛽𝑖
∗
+ 𝜂 + 𝜇)

(𝜇 + 𝛿𝜎) 𝛽𝑖∗ + (𝜇 + 𝛿) (𝜇 + 𝜂)
,

𝑐
∗
=

𝜃𝛿𝑖
∗

(𝜇 + 𝛿𝜎) 𝛽𝑖∗ + (𝜇 + 𝛿) (𝜇 + 𝜂)
.

(8)

The positive endemic equilibrium E
+

= (𝑠
∗
, 𝑖
∗
, 𝑟
∗
, 𝑐
∗
)

satisfies (6) and 𝑖
∗ is the positive root of 𝐴

1
𝑖
∗2

+ 𝐴
2
𝑖
∗
+ 𝐴
3
,

where

𝐴
1
= − 𝛽

2
[𝑚 (𝜇 + 𝛿𝜎) + 𝜇 (𝜃 + 𝜇 + 𝛿𝜎)] ,

𝐴
2
= 𝛽 [𝛽𝜇 (𝜇 + 𝛿𝜎) + 𝜂𝜃𝛿 − (𝜃 + 𝑚 + 𝜇)

× [(𝜇 + 𝛿) (𝜇 + 𝜂) + 𝜇 (𝜇 + 𝛿𝜎)] + 𝜇𝜎𝛿𝜃] ,

𝐴
3
= 𝛽𝜇 (𝜇 + 𝛿) (𝜇 + 𝜂) [1 − (

𝜃 + 𝑚 + 𝜇

𝛽
)] .

(9)

The Jacobian matrix of model (6) is

𝐽 = (

−𝛽𝑖 (𝑡) − 𝜇 −𝛽𝑠 (𝑡) 0 𝜂

𝛽𝑖 (𝑡) 𝛽𝑠 (𝑡) + 𝜎𝛽𝑐 (𝑡) − (𝜃 + 𝑚 + 𝜇) 0 𝜎𝛽𝑖 (𝑡)

0 (1 − 𝜎) 𝛽𝑐 (𝑡) + 𝜃 − (𝜇 + 𝛿) (1 − 𝜎) 𝛽𝑖 (𝑡)

0 −𝛽𝑐 (𝑡) 𝛿 −𝛽𝑖 (𝑡) − (𝜂 + 𝜇)

) . (10)

2.3. The Reproduction Number R
0
. The basic reproduction

number (the number of individuals infected by a single
infected individual placed in a totally susceptible population)
R
0
that includes the indirect transmission may be obtained

using next-generation matrix method. The spectral radius of
the next-generation matrix (𝐹𝑉

−1
), which is the dominant

eigenvalue of the same matrix, gives the value of R
0
[29].

Then, the basic reproductive number R
0
is obtained by the

form
R
0
= 𝜌 (𝐹𝑉

−1
) , (11)

where the matrices 𝐹 = [𝜕F
𝑖
(𝑥)/𝜕𝑥

𝑗
]
𝑥=𝑥
0

and 𝑉 =

[𝜕V
𝑖
(𝑥)/𝜕𝑥

𝑗
]
𝑥=𝑥
0

.F
𝑖
(𝑥), where 𝑥 is the set of all disease free

states in the compartment 𝑖, is the rate of appearance of new
infections in compartment 𝑖, and 𝑉

𝑖
(𝑥) is net transfer rate

(other than infections) of compartment 𝑖. The net transfer
rate is given by V

𝑖
= V−
𝑖

− V+
𝑖
, where V−

𝑖
is the rate of

transfer of individuals out of compartment 𝑖, and V+
𝑖
is the

rate of transfer of individuals into compartment 𝑖 by all other
means. Therefore, the disease transmission model consists

of nonnegative initial conditions, 𝑥
𝑖
(0), together with the

following system of equations:

𝑥
󸀠

𝑗
= 𝑓
𝑗 (𝑥) ≡ F

𝑗 (𝑥) − V
𝑗
, 𝑗 ≥ 1. (12)

From model (6), we have

𝐹 = (

𝜕F
1

𝜕𝑖 (𝑡)

𝜕F
1

𝜕𝑟 (𝑡)

𝜕F
2

𝜕𝑖 (𝑡)

𝜕F
2

𝜕𝑟 (𝑡)

) = (
𝛽𝑠 0

0 0
) ,

𝑉 = (

𝜕V
1

𝜕𝑖 (𝑡)

𝜕V
1

𝜕𝑟 (𝑡)

𝜕V
2

𝜕𝑖 (𝑡)

𝜕V
2

𝜕𝑟 (𝑡)

) = (
𝜃 + 𝑚 + 𝜇 0

−𝜃 𝜇 + 𝛿
) .

(13)

Since we have only two distinct stages, namely, 𝐼(𝑡) and 𝑅(𝑡),
it follows that both 𝐹 and 𝑉 are 2 × 2 square matrices.
Further, it can be noticed that 𝐹 is nonnegative and 𝑉

is nonsingular. The basic reproductive number R
0
is the
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Figure 2: Stability region of the fractional order system with 𝛼 ∈

(0, 1].

dominant eigenvalue of the matrix 𝐹𝑉
−1, which is obtained

by solving the characteristic equation (𝐹𝑉
−1

)𝐼 − Λ𝐼 = 0,
where Λ is the eigenvalue and 𝐼(𝑡) is the identity matrix. At
the disease-free equilibriumE

0
= (1, 0, 0, 0), we have

R
0
=

𝛽

𝜃 + 𝑚 + 𝜇
. (14)

The following theorem states thatR
0
is a threshold parameter

for the stability of model (6).

Theorem 3. The disease-free equilibrium is locally asymptot-
ically stable and the infection will die out if R

0
< 1 and is

unstable ifR
0
> 1.

Proof. The disease-free equilibrium is locally asymptotically
stable if all the eigenvalues, 𝜆

𝑖
,𝑖 = 1, 2, 3, 4, of Jacobianmatrix

𝐽(E
0
) satisfy condition [30]:

󵄨󵄨󵄨󵄨arg (𝜆
𝑖
)
󵄨󵄨󵄨󵄨 >

𝛼𝜋

2
, (15)

where

𝐽 (E
0
) = (

−𝜇 −𝛽 0 𝜂

0 𝛽 − (𝜃 + 𝑚 + 𝜇) 0 0

0 0 − (𝜇 + 𝛿) 0

0 0 𝛿 − (𝜂 + 𝜇)

) .

(16)

Figure 2 depicts the stability region of the fractional order
system, according to condition (15). The eigenvalues of
Jacobian matrix 𝐽(E

0
) are 𝜆

1
= −𝜇, 𝜆

2
= 𝛽−(𝜃+𝑚+𝜇), 𝜆

3
=

−(𝜇 + 𝛿), 𝜆
4
= −(𝜂 + 𝜇). Hence, E

0
is locally asymptotically

stable ifR
0
< 1 and is unstable ifR

0
> 1.

Now, we extend the analysis to endemic equilibrium E
+
.

Jacobian matrix 𝐽(E
+
) evaluated at the endemic equilibrium

is

𝐽 (E
+
) = (

−𝛽𝑖
∗
− 𝜇 −𝛽𝑠

∗
0 𝜂

𝛽𝑖
∗

𝛽𝑠
∗
+ 𝜎𝛽𝑐

∗
− (𝜃 + 𝑚 + 𝜇) 0 𝜎𝛽𝑖

∗

0 (1 − 𝜎) 𝛽𝑐
∗
+ 𝜃 − (𝜇 + 𝛿) (1 − 𝜎) 𝛽𝑖

∗

0 −𝛽𝑐
∗

𝛿 −𝛽𝑖
∗
− (𝜂 + 𝜇)

) , (17)

with characteristic equation
𝜆
4
+ 𝑎
1
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
3
𝜆 + 𝑎
4
= 0, (18)

where
𝑎
1
= (𝐷
1
+ 𝐷
3
+ 𝐷
5
) ,

𝑎
2
= (𝐷

1
𝐷
3
− 𝐷
4
𝛿 + 𝐷

1
𝐷
5
+ 𝐷
3
𝐷
5
+ 𝛽
2
𝑖
∗
𝑠
∗
+ 𝜎𝛽
2
𝑐
∗
𝑖
∗
) ,

𝑎
3
= (𝐷

1
𝐷
3
𝐷
5
− 𝐷
1
𝐷
4
𝛿 + 𝐷

3
𝛽
2
𝑖
∗
𝑠
∗
+ 𝐷
5
𝛽
2
𝑖
∗
𝑠
∗
+ 𝛽
2
𝑐
∗
𝜂𝑖
∗

−𝐷
2
𝜎𝛽𝛿𝑖
∗
+ 𝜎𝛽
2
𝐷
1
𝑐
∗
𝑖
∗
+ 𝜎𝐷
3
𝛽
2
𝑐
∗
𝑖
∗
) ,

𝑎
4
= 𝐷
3
𝐷
5
𝛽
2
𝑖
∗
𝑠
∗
− 𝐷
2
𝛽𝛿𝜂𝑖
∗
+ 𝐷
3
𝛽
2
𝑐
∗
𝜂𝑖
∗

− 𝐷
4
𝛽
2
𝛿𝑖
∗
𝑠
∗
− 𝜎𝛽𝛿𝐷

1
𝐷
2
𝑖
∗
+ 𝜎𝐷
1
𝐷
3
𝛽
2
𝑐
∗
𝑖
∗
,

𝐷
1
= 𝛽𝑖 + 𝜇, 𝐷

2
= (1 − 𝜎) 𝛽𝑐

∗
+ 𝜃,

𝐷
3
= (𝜇 + 𝛿) , 𝐷

4
= (1 − 𝜎) 𝛽𝑖

∗
,

𝐷
5
= 𝛽𝑖
∗
+ (𝜂 + 𝜇) .

(19)

If 𝐷(Φ) denotes the discriminant of the polynomial: Φ(𝜆) =

𝜆
4
+ 𝑎
1
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
3
𝜆 + 𝑎
4
, then denote

𝐷(Φ) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑎
1

𝑎
2

𝑎
3

𝑎
4

0 0

0 1 𝑎
1

𝑎
2

𝑎
3

𝑎
4

0

0 0 1 𝑎
1

𝑎
2

𝑎
3

𝑎
4

4 3𝑎
1

2𝑎
2

𝑎
3

0 0 0

0 4 3𝑎
1

2𝑎
2

𝑎
3

0 0

0 0 4 3𝑎
1

2𝑎
2

𝑎
3

0

0 0 0 4 3𝑎
1

2𝑎
2

𝑎
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (20)

From [31], we have the proposition.

Proposition 4. Assume that E
+
exists in R4

+
.

(1) Let 𝑐
1
, 𝑐
2
, 𝑐
3
be the Routh-Hurwitz determinants: 𝑐

1
=

𝑎
1
, 𝑐
2
=

󵄨󵄨󵄨󵄨󵄨

𝑎
1
1

𝑎
3
𝑎
2

󵄨󵄨󵄨󵄨󵄨
, 𝑐
3
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
1
1 0

𝑎
3
𝑎
2
𝑎
1

0 𝑎
4
𝑎
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. Therefore, when 𝛼 = 1,
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the equilibriumpointE
+
is locally asymptotically stable

if

𝑐
1
> 0, 𝑐

2
> 0, 𝑐

3
= 0, 𝑎

4
> 0. (21)

However, conditions (21) are sufficient (not necessary)
conditions for E

+
to be locally asymptotically stable for

all 𝛼 ∈ [0, 1).

(2) If 𝐷(Φ) > 0, 𝑎
1
> 0, 𝑎

2
< 0, and 𝛼 > 2/3, then the

equilibrium point E
+
is unstable.

(3) If 𝐷(Φ) < 0, 𝑎
1
> 0, 𝑎

2
> 0, 𝑎

3
> 0, 𝑎

4
> 0, and 𝛼 <

1/3, then the equilibrium E
+
is locally asymptotically

stable. Also, if 𝐷(Φ) < 0, 𝑎
1

< 0, 𝑎
2

> 0, 𝑎
3

< 0,
𝑎
4
> 0, then the equilibrium point E

+
is unstable.

(4) If 𝐷(Φ) < 0, 𝑎
1

> 0, 𝑎
2

> 0, 𝑎
3

> 0, 𝑎
4

> 0, and
𝑎
2

= (𝑎
1
𝑎
4
/𝑎
3
) + (𝑎

3
/𝑎
1
), then the equilibrium point

E
+
is locally asymptotically stable for all 𝛼 ∈ (0, 1).

(5) 𝑎
4

> 0 is the necessary condition for the equilibrium
point E

+
to be locally asymptotically stable.

3. Implicit Euler’s Scheme for FODEs

Sincemost of the FODEs do not have exact analytic solutions,
so approximation and numerical techniques must be used. In
addition, most of resulting biological systems are stiff (one
definition of the stiffness is that the global accuracy of the
numerical solution is determined by stability rather than
local error and implicit methods are more appropriate for
it). The stiffness often appears due to the differences in speed
between the fastest and slowest components of the solutions
and stability constraints. In addition, the state variables of
these types ofmodels are very sensitive to small perturbations
(or changes) in the parameters which occur in the model.
Therefore, efficient use of a reliable numerical method for
dealing with stiff problems is necessary.

Consider the following fractional order differential equa-
tion:

𝐷
𝛼
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑦
(𝑘)

(0) = 𝑦
(𝑘)

(0) , 𝑘 = 0, 1, 2, . . . , 𝑚 − 1,

0 < 𝛼 ≤ 1.

(22)

Here,𝑦(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇 and𝑓(𝑡, 𝑦(𝑡)) satisfy the

Lipschitz condition in variable 𝑦:

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝐾

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 , 𝐾 > 0,

(23)

where 𝑥(𝑡) is the solution of the perturbed system.

Theorem 5. Problem (22) has a unique solution provided that
Lipschitz condition (23) is satisfied and 𝑀 = 𝐾𝑇

𝛼
/Γ(𝛼 + 1)

< 1.

Proof. Using the definitions of Section 1, we can apply a
fractional integral operator to the differential equation (22)
and incorporate the initial conditions, thus converting the
equation into the equivalent equation:

𝑦 (𝑡) =

𝑚−1

∑

𝑘=0

𝑦
(𝑘)

0

𝑡
𝑘

𝑘!
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, (24)

which also is a Volterra equation of the second kind. Define
operatorL, such that

L𝑦 (𝑡) =

𝑚−1

∑

𝑘=0

𝑦
(𝑘)

0

𝑡
𝑘

𝑘!
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(25)

Then, we have
󵄩󵄩󵄩󵄩L𝑦 (𝑡) − L𝑥 (𝑡)

󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑦 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤
𝐾

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 sup
𝑠∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑥 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
𝐾

Γ (𝛼)

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 ∫

𝑡

0

𝑠
𝛼−1

𝑑𝑠

≤
𝐾𝑇
𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 𝑇
𝛼
.

(26)

So, we obtain
󵄩󵄩󵄩󵄩L𝑦 (𝑡) − L𝑥 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 .
(27)

By Banach contraction principle [32], we can deduce thatL
has a unique fixed point which implies that our problem has
a unique solution.

Several numerical methods have been proposed to solve
the FODEs [11, 33]. Recently, the predictor-corrector algo-
rithm is an efficient and powerful technique for solving the
FODEs, which is a generalization of the Adams-Bashforth-
Moulton method. The modification of Adams-Bashforth-
Moulton algorithm is proposed by Diethelm [34, 35] to
approximate the fractional order derivative. However, con-
verted Volterra integral equation (24) is with a weakly
singular kernel, such that a regularization is not necessary
any more. It seems that there exist only a very small number
of software packages for nonlinear Volterra equations. In
our case, the kernel may not be continuous, and therefore
the classical numerical algorithms for the integral part of
(24) are unable to handle the solution of (22). Therefore, we
implement the implicit Euler’s scheme to approximate the
fractional order derivative.

Given model (22) and mesh points T = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑁
},

such that 𝑡
0

= 0 and 𝑡
𝑁

= 𝑇, then a discrete approximation
to the fractional derivative can be obtained by a simple
quadrature formula, using Caputo’s fractional derivative (3)
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of order𝛼, 0 < 𝛼 ≤ 1 and using implicit Euler’s approximation
as follows (see [12]):

𝐷
𝛼

∗
𝑥
𝑖
(𝑡
𝑛
) =

1

Γ (1 − 𝛼)
∫

𝑡

0

𝑑𝑥
𝑖 (𝑠)

𝑑𝑠
(𝑡
𝑛
− 𝑠)
−𝛼

𝑑𝑠

≈
1

Γ (1 − 𝛼)

×

𝑛

∑

𝑗=1

∫

𝑗ℎ

(𝑗−1)ℎ
[
𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖

ℎ
+ 𝑂 (ℎ)] (𝑛ℎ − 𝑠)

−𝛼
𝑑𝑠

=
1

(1 − 𝛼) Γ (1 − 𝛼)

×

𝑛

∑

𝑗=1

{[
𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖

ℎ
+ 𝑂 (ℎ)]

× [(𝑛 − 𝑗 + 1)
1−𝛼

− (𝑛 − 𝑗)
1−𝛼

]} ℎ
1−𝛼

=
1

(1 − 𝛼) Γ (1 − 𝛼)

1

ℎ𝛼

×

𝑛

∑

𝑗=1

[𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖
] [(𝑛 − 𝑗 + 1)

1−𝛼
− (𝑛 − 𝑗)

1−𝛼
]

+
1

(1 − 𝛼) Γ (1 − 𝛼)

×

𝑛

∑

𝑗=1

[𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖
]

× [(𝑛 − 𝑗 + 1)
1−𝛼

− (𝑛 − 𝑗)
1−𝛼

]𝑂 (ℎ
2−𝛼

) .

(28)

Setting

G (𝛼, ℎ) =
1

(1 − 𝛼) Γ (1 − 𝛼)

1

ℎ𝛼
,

𝜔
𝛼

𝑗
= 𝑗
1−𝛼

− (𝑗 − 1)
1−𝛼

, (where 𝜔
𝛼

1
= 1) ,

(29)

then the first-order approximation method for the compu-
tation of Caputo’s fractional derivative is then given by the
expression

𝐷
𝛼

∗
𝑥
𝑖
(𝑡
𝑛
) = G (𝛼, ℎ)

𝑛

∑

𝑗=1

𝜔
𝛼

𝑗
(𝑥
𝑛−𝑗+1

𝑖
− 𝑥
𝑛−𝑗

𝑖
) + 𝑂 (ℎ) . (30)

From the analysis and numerical approximation, we also
arrive at the following proposition.

Proposition 6. The presence of a fractional differential order
in a differential equation can lead to a notable increase in
the complexity of the observed behavior, and the solution
continuously depends on all the previous states.
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Figure 3: Numerical simulation of fractional order epidemic model
(6), when 𝛼 = 0.8, and R

0
> 1 (each infected individual infects

more than one othermember of the population and a self-sustaining
group of infectious individuals will propagate), with parameter
values of Table 1.

3.1. Stability and Convergence. We here prove that fractional
order implicit difference approximation (30) is uncondi-
tionally stable. It follows then that the numerical solution
converges to the exact solution as ℎ → 0. In order to study
the stability of the numerical method, let us consider a test
problem of linear scaler fractional differential equation

𝐷
𝛼

∗
𝑢 (𝑡) = 𝜌

0
𝑢 (𝑡) + 𝜌

1
, 𝑈 (0) = 𝑈

0 (31)

such that 0 < 𝛼 ≤ 1, and 𝜌
0
< 0, 𝜌

1
> 0 are constants.

Theorem 7. The fully implicit numerical approximation (30),
to test problem (31) for all 𝑡 ≥ 0, is consistent and uncondition-
ally stable.

Proof. We assume that the approximate solution of (31) is of
the form 𝑢(𝑡

𝑛
) ≈ 𝑈
𝑛
≡ 𝜁
𝑛
; then (31) can be reduced to

(1 −
𝜌
0

G
𝛼,ℎ

)𝜁
𝑛

= 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) +
𝜌
1

G
𝛼,ℎ

, 𝑛 ≥ 2,

(32)

or

𝜁
𝑛
=

𝜁
𝑛−1

+ ∑
𝑛

𝑗=2
𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) + 𝜌
1
/G
𝛼,ℎ

(1 − (𝜌
0
/G
𝛼,ℎ

))
, 𝑛 ≥ 2.

(33)

Since (1 − (𝜌
0
/G
𝛼,ℎ

)) ≥ 1, for allG
𝛼,ℎ
, then

𝜁
1
≤ 𝜁
0
, (34)

𝜁
𝑛
≤ 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) , 𝑛 ≥ 2. (35)
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Table 1: List of parameters.

Parameter Description Value Reference
𝜇 Replacement and exit rate (day−1) 0.011 [36]
𝛽 Contact (transmission) rate of suspectable to be infected (animal−1 day−1) 0.15 [36]
𝜃 Recovery rate of infected animals day −1 0.16 Assumed
𝑚 Disease-induced mortality rate (day−1) 0.041 Assumed
𝜂 Cross-immune period 0.5 [36]
𝜎 The average reinfection probability of 𝐶(𝑡) 0.06 Assumed
𝛿 The average time of appearance of new dominant clusters 1 Assumed
𝑁 The total number of population 345 Assumed
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Figure 4: Phase plane portrait for fractional order endemic model (6), in absence of𝐶(𝑡) and 𝑅(𝑡) components, when 𝛼 = 0.7 (a) and 𝛼 = 0.9

(b) withR
0
= 0.5 < 1. We note that solution paths approach the disease-free equilibrium E

0
= (1, 0, 0).

Thus, for 𝑛 = 2, the above inequality implies

𝜁
2
≤ 𝜁
1
+ 𝜔
(𝛼)

2
(𝜁
0
− 𝜁
1
) . (36)

Using relation (34) and the positivity of the coefficients 𝜔
2
,

we get

𝜁
2
≤ 𝜁
1
. (37)

Repeating the process, we have, from (35),

𝜁
𝑛
≤ 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) ≤ 𝜁
𝑛−1

, (38)

since each term in the summation is negative. Thus, 𝜁
𝑛

≤

𝜁
𝑛−1

≤ 𝜁
𝑛−2

≤ ⋅ ⋅ ⋅ ≤ 𝜁
0
. With the assumption that 𝜁

𝑛
= |𝑈
𝑛
| ≤

𝜁
0
= |𝑈
0
|, which entails ‖𝑈𝑛‖ ≤ ‖𝑈

0
‖, we have stability.

Of course this numerical technique can be used both for
linear and for nonlinear problems, and it may be extended to
multiterm FODEs.

3.2. Numerical Simulations. The approximate solutions of
epidemic model (6) are displayed in Figures 3, 4, and 5, and
sensitivity of R

0
to transmission coefficients is displayed in

Figure 6.The numerical simulations are performed by Euler’s
implicit scheme. We choose commensurate fractional order
that 𝛼

1
= 𝛼
2

= 𝛼
3

= 𝛼
4

= 𝛼, with different fractional order
values and the parameter values given in Table 1.

4. Conclusions

In this paper, we provided a fractional order SIRC epidemic
model with Salmonella bacteria infection. We derived the
sufficient conditions to preserve the asymptotic stability
of infection-free and endemic steady states. The threshold
parameter (reproduction number)R

0
has been evaluated in

terms of contact rate, recovery rate, and other parameters
in the model. We provided unconditionally stable method,
using Euler’s implicit method for the fractional order dif-
ferential system. The solution of a fractional order model
at any time 𝑡

∗ continuously depends on all the previous
states at 𝑡 ≤ 𝑡

∗. Fractional order dynamical models are
more suitable to model biological systems with memory than
their integer-orders. The presence of a fractional differential
order into a corresponding differential equation leads to a
notable increase in the complexity of the observed behavior
and enlarges the stability region of the solutions. However,
fractional order differential models have the same integer-
order counterpart steady states, when 𝛼 > 0.5.
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