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We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential
boundary value problems Df. u(t) + f,(t, u(t), v(t), (¢,u)(t), (wlv)(t),D(l;u(t),D’Siv(t),Dgiv(t),...,Dgi"v(t)) = O,Df+v(t) +
fz(t,u(t),v(t),(([)zu)(t),(wzv)(t),Dgw(t),Dgiu(t),Dgiu(t),...,Dg’fu(t)) =0,u?0) = 0and v?(0) = 0 forall0 < i < n-2,
[Dgiu(t)]t=1 =0for2 <9 <n-landa-96, > 1, [Diiv(t)]t=1 =0for2 <6, <n-1land -8, > 1, wheren > 4,
n-1<apf<n0<pg<ll<p,v;,<2(@{= 1,2,...,m),yj,)\j :[0,1]%x[0,1] — (0, 00) are continuous functions (j = 1,2) and
(¢ju)(t) = Iot yj(t, s)u(s)ds, (wjv)(t) = '[; )»j(t, s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, fj (j=1,2)

is a Caratheodory function, and f;(t, x, y,z, w, v, u;, u, . ..

1. Introduction

During the last decade, there were a lot of manuscripts
on fractional differential equations (see, e.g., [1-19] and the
references therein). Fractional equations have been discussed
extensively as valuable tools in the modeling of many phe-
nomena in various fields of science and engineering. Indeed,
we can find numerous applications in fluid mechanics, vis-
coelasticity, edge detection, porous media, and electromag-
netism, as well as in various other areas. For more examples
and details, see [3,13-15] and references therein. On the other
hand, there are many works about the existence of positive
solutions of fractional differential equations (see, e.g., [1, 2, 6-
8,10, 17, 19] and the references therein).

,U,,) is singular at the value 0 of its variables.

2. The Problem

In this paper, we investigate the following coupled system
of multiterm singular fractional integrodifferential boundary
value problem:

Dy.u(t)+ fy (Lu(®),v(t), (¢u) @),
(y,v) (), DYu(t), Dhtv (1),

H Hm _
Div(D),....Dirv(t)) =0,

Dpv(®)+ £ (Bu(®),v (1), ($0) @),



(y,v) (6), DLy (t), D)l u(t),

V. Vm _
Dpu(t),....,Dru(t)) =0,

)
u©0)=0 Yo<i<n-2,
s )
[Doiu(t)]tzlzo for2<d,<n-1L,a-06;=1,
vWo)y=0 vYo<i<n-2,
3)

[Dgiv(t)]tzl =0 for2<§,<n-1,3-6,=>1,
wheren > 4,n-1<a f<n0< pg<l,1<y,y<
2(i =1,2,...,m), y; and A, are positive-valued continuous
functions on [0, 1] x [0,1] (j = 1,2),

t

(#u) @) = L y; (t,)u(s)ds,

¢ (4)
(V/j") (t) = L Aj(t,s)v(s)ds,

yg = Supte[o,l]l jot yj(t,s)dsl < 00 and )L{) =

sup,erol [ A;(t.5)ds| < co. Also, f, and f, satisfy the
local Caratheodory condition on [0,1] x D(f, f, €
Car([0,1] x D)), where D is a subset of R™ and
fit %, 3,2, w, v, uy,uy, ..., u,,) may be singular at the
value 0 of all its variables. Here, D is the standard Riemann-
Liouville fractional derivative. In fact, a function f satisfies
the local Caratheodory condition on [0, 1] x D whenever

Su,) [0, — Ris
U,) €D

,)) + D — Ris continuous for almost all

D) fGxy 2w, v, U, Uy, ..

measurable for all (x, y,z, w, v, u;, u,, ..

(i) f(t5n...

te[0,1],

(iii) for each compact subset k ¢ D, there is a function
@, € L'[0,1] such that

If (5% y, 2w, v 0y, 1y, ..o u,)| < @ (£), (5)

for almost all t € [0,1] and all (x, y,z, w, v, u;,u,,...,u,,) €
«. The functions u, v € C? [0, 1] are called positive solutions
of the problem (1), (2), and (3) whenever u > 0 and v > 0 on
(0,1], Dy u, D(l; vell [0, 1], u, v satisfy boundary conditions
(2), (3),and (1) holds for almost all t € [0, 1]. In 2010, Agarwal
et al. reviewed positive solutions of the singular Dirichlet
problem

Diu(t)+ f (bu(t),Di.u(®) =0, (6)

u(0) = u(1) = 0,wherel < « < 2,0 < u < a—1and f satisfies
the local Caratheodory condition on [0, 1] x (0, 00) x R [1].
In 2011, Stanék reviewed the singular problem

Diu(t)+ f(tu(),u ), Dhu@®)=0,  (7)

u(0) = 0,1'(0) = u'(1) = 0, where2 < a < 3,0 < u<land f
satisfies the local Caratheodory condition on [0, 1] x D [19].
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Here, ® is a subset of R®. In 2012, Bai and Sun reviewed the
singular problem

Diu(t)+ f (bu(t),Dyu(t), Dyu(t)) =0,  (8)

u(0) = u'(0) = u”'(0) =1 (1) = 0, where 3 < < 4,0 < v <
1,1 < u < 2and f satisfies the local Caratheodory condition
on [0,1] x D [8]. Again, D is a subset of R>. In this year,
Agarwal et al. reviewed the singular problem

Dyu(t)+ f(Lu@),u' ). Dhu@®)=0, (9

W) = 0, u(l) = 0, wherel < a < 2,0 < p <
1 and f is a L?-Caratheodory function on [0,1] x B [2].
Here, B = (0,00) X (-00,0) X (-00,0), g > 1/(a — 1)
and ‘D is the Caputo fractional derivative. Many researchers
have established the existence and uniqueness of solutions for
some systems of nonlinear fractional differential equations,
but there are few works about coupled system of multiterm
nonlinear fractional differential equations (see, for example,
[4, 5, 20, 21]). Also, there are a few papers discussing singular
system of fractional differential equations (see, e.g., [6, 16]).

Let [x], = Iol |x(t)|dt be the norm of L'[0,1], ||lx]| =

max{|x(t)] : t € [0,1]} the norm of C[0,1], and |lul|, =
max{[ul, |¢'|l, l4" ]I} the norm of X = C?[0,1]. As you
know, (X, || - II,) and (X x X, || - ||.,) are Banach spaces, where
G, V) max{flul., [Ivl.}. Suppose that AC[0,1] and

ACF[0,1] are the spaces of absolutely continuous functions
and functions having absolutely continuous kth derivatives
on [0, 1], respectively. In this paper, we suppose that the
functions f; and f, in (1) satisty the following conditions:

(H) fi, f, € Car([0,1] x D), where D = (0,00)"™".
Also, there exists a positive constant m; such that
filt, %y, z,w, v, up, Uy, .. U,,) 2 m; for almost all
t € [0,1] and (x, y, 2z, w, v, uy, Uy, ..., U,,) € D;

(H,) there exist positive mappings k,k, € L'[0,1],
P,P, € C(D), and h;,h, € C([0,00)™") such
that P, and P, are nonincreasing and h; and h, are
nondecreasing in all their variables,

_ m _ "
M= orery T BB

hj(x,x,...,x)

lim — =0,
X — 00 X

(j=12),

1
J P, (Mls"‘l, M,sP,
0

M, J v (s, 7) %7 dT, M, J A (s, 1) TP dr,
0 0

(0, -2M, oy =DMy 4,
I'(a-p) T T(B-m) ’
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-2)M -2)M
Msﬁ_“z, . ,Msﬁ_"”‘) ds <00,
T (B-) T (B~thn)
1
J P, (Mls‘“,Mzsﬁl,
0

Mlj y, (5, 7) T““ldT,sz A, (s, 1) P dr,
0 0

1 a—v,

(5, -2) My 5, (8 -2)M

r(B-q) =~ T(a-»)
(61_2)M1 a-v, (51_2)M15(x—vm $<00
Ta-v) (@) )d <o

fi(tx yoz,w, v 0,1y, . 1)

= P] (x’y’zaw,v;ul,uz,...,um)
+k; () b (% 2,0, v, 1y, Uy, s 1y,
(10)
for almost all t € [0,1] and (x, y, z, w, v, uy, Uy, ..., u,,) € D.

Since we suppose that the problem (1) is singular, we use
regularization and sequential techniques for the existence of
positive solutions of the problem. In this way, for each natural
number 7 define the function fJ (j = 1,2) by

fl(tx y 2,0, v,up, 0y, . 1y,)

= [ (6 X (%) X (9) 5 X (2) 5 ) (W), (11)
Xn (V) > Xn (ul) > Xn (“2) Y00 Xn (um))

for almost all t € [0,1] and (x, y,z, w, v, Uy, Uy,...,U,,) €
R™", where
1
x ifx>-—,
n
Xn (X) = (12)
1 . 1
- ifx<—.
n n

Then condition (H, ) implies that f/ € Car([0, 1] xR"**) and
it x, y,z,w, v, up, 1y, .. 1,,) = m; for almost all ¢ € [0, 1]

and (X, y, 2, W, v, Uy, Uy, ..., Uy,,) € R™, (j = 1,2). Also, the

condition (H,) implies

)

<P(l 1 l)
A PRI )

+hkiOh(1+x1+y1+z1+w,

fI(tx y, 2w, v, up, Uy, ...

L+v,1+u,l+uy,...,1+u,)

3
for almost all t € [0,1] and (x, y,z, w, v, u;, Uy,...,U,,) €
[0, 00)™"° and

fl(tx yz,w,v,up, 0y, . 1y,)
<P (% 9,2, w, v,y Uy, .y Uy,)
(14)
+kiOh(1+x1+y1+21+w,
L+v,1+up,l+uy,...,1+u,)
for almost all t € [0, 1] and (x, ¥, z, w, v, uy, Uy, ..., u,,) € D.

For obtaining solutions of the system (1), (2), and (3), for each
natural number 7, we will obtain solutions of the system

O (FIORTON IR ION

DP.u(t), Dl (£), D2v (1), ..., DEwv (8) ):0,

DEv(t)+f? (t, w(@®),v (@), () (1) (y,v) (8),

DA v (6), Dy (0, D 0, Dy (6) ) =0,
15)

via the boundary conditions (2) and (3) and by using
solutions of this system, we will obtain solution of the system
(1), (2), and (3). It has been proved that the fractional integral
Ij» maps L'[0, 1] into L'[0, 1] whenever « € (0,1) and maps
L'[0,1] into AC“"1[0,1] whenever a > 1 [19]. Here, [«]
means the integral part of « and AC°l0,1] = AC]o,1].
Suppose that « > 0 and « is not a natural number. If x €
C(0,1] and Dj.x € L'[0, 1], then x(t) = I5. Dy x(t) +
Yo ckt“_k forallt € (0,1], wheren = [a] + land ¢ € R
for k = 1,2,...,n [7]. Suppose that v € (0,1), u € (1,2),
x € C?[0,1], and x(0) = x'(0) = 0. Then, D, x € C[0,1],
Dy.x € C[0,1], Diox(t) = (1/TQ - w) [, (t - )" %" (s)ds,

and D} x(t) = (1/T(2 - v)) jot (t - )"7"x" (s)ds [2].

3. Main Results

Now, we are ready to state and prove our main results. One
can find main idea of next result in [17].

Lemmal. Letn>4andn—1< « < n. Foreach g € L'[0,1],
u(t) = Iol G, (t,s)g(s)ds is the unique solution of the equation

Dg.u(t) + g(t) = 0 in C?[0, 1] which satisfies the boundary
condition (2), where

G, (t,s)
a-1 a=0;=1 _ o ol
t* 7 (1-5) (t-ys) cs<t<l,
I'(«) (16)
toc—l 1— a—6,-1
£aA-97 0<t<s<l

T'(x)



Proof It is easy to see that the functions u(t) = —I g(t) +
ot” +Qt 24 “+¢,t*" are solutions of D u(t)+g(t) 0in
C(0,1] forall ¢; € R. Slnce [a] > 3,159 € AC[“] 0,1] and
sou(t) = =I5 g(t) + c;t* ! are solutions of D u(t) + g(t) =

in C?[0, 1], where ¢, € R.Theboundary cond1t10n 2) 1mp11es
thate, =+ =¢,.; =0and

T'(x)

a-8,-1
[(x-8;) )

0=g¢q
(17)

1 a-06,-1
WJ (1-3) g(s)ds.

Thus, u(t) = (1" /T(@)) [} (1-5)*0 " g(s)ds—(1/T(@) [1(t-
s)“_lg(s)ds = j01 G, (t,s)g(s)ds is the unique solution of the
problem in c?[o, 1]. O

Note that the Green function G, in Lemma 1 has some
properties. For example, G,, (3/0t)G, and (az/atZ)Ga are
continuous functions on [0,1] x [0,1], G,(¢t,s) > 0 on
(0,1) x (0,1), G, (t,s) < 1/T(e) for all (¢,s) € [0,1] x [0,1],
[} Golt.)ds > 157 (@ — 8T + 1) for all + € [0,1],
(0/0t)G,(t,s) > 00n (0, 1)x(0, 1), (0/0t)G,(t,s) < 1/T(a—1)
for all (t,s) € [0,1] x [0, 1], Iol(a/at)Ga(t, s)ds > t*7%/(« -

8,)I(a) forall t € [0,1], (9°/0t*)G,(t,s) > 0 on (0,1) x (0, 1),
(az/atz)Ga(t, s) < 1/T(ax—2) forall (t,s) € [0,1] x [0, 1], and

JOI (az/atz)Ga(t, s)ds = (8, — 2)t*/(a — 8,)T(« — 1) for all
t € [0,1]. Let X = C?[0, 1]. Define the cone P on X x X by

:{(x,y)EXxX:

x(0)=x"(0)=y(0) =y (0)=0,
(18)
x@®),x ®),x"®),y®),y ®,y" ) =0,
Vt € [0,1] }
It is easy to see that for each (x,y) € P,i = 1,2,...,m and

t e [0,1] we haveD x,D x,Dq+y,Dgiy e CJ[0,1] and
D x(t) > 0, D} x(t) = 0, D% y(t) = 0, Diiy(t) > 0. Now
for each natural number n, deﬁne the operator T, on P by
T, (% y) (®)

_ (Tf, (x.) (t)>
T, (x, ) (1)

B (Jol Ca69) f;
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x (5,%(), (), ($1%) (5),
(y1y) (s), DY x(s), Dl y (),

Dity(s),...,Diry (s)) ds

1
2
JO Gﬁ (t, 5) fn

< (5,29, 9/6). ($:%) 9,

(y27) (s), D,y (s), D}ix (s),

Dng (s)) ds).

Dpx(s),.
(19)

Lemma 2. For each natural number n, T, is a completely
continuous operator on P.

Proof. Let n be a natural number, (x, y) € P,
PLO) = £ (6x @),y (),(412) (1)

Dfx(£), Dl y (6), DLy (8). .

() @),

Dhry ()
(20)

and p*(t) = f2(t,x(t), (1), ($,x)(0), Wz)’)(t)> DL y(t),
Dle(t) D 2x(t), . DV'”x(t)) Then, p p e L'0,1]
and there exist posmve constants m; and m, such that
pl(t) > m; and pz(t) > m, for almost all + € [0,1].
Since G,,, Gg, (0/0t)G,, (0/0t)Gy, (0°/0t*)G,, and (3 /01*)G g
are nonnegative and continuous functions on [0, 1] x [0, 1],
G,(0,s) = 0, and Gﬁ(O,s) = 0 forall s € [0,1], we get

T (x, ), TXx, y) € C*[0,1], T (x, )(0) = T>(x,y)(0) =
(TX(x, ) (0) = (T2(x, y)) (0) = 0, T} (x, y) = 0, T3(x, ) >
0, (T x, ) = 0, (TXx, ) = 0, (T'x ) = 0,

and (Tﬁ(x, y))” > 0 on [0,1]. Thus, T, maps P into P.
Suppose that {(xy, y)}is; is a convergent sequence in P and

1imk%0(xk yi) = (%, ). Then, limy_, o\ (£) = x(¢) and

llmk_moy (t) = y(] () uniformly on [0, 1] for j = 0,1,2.
Smceforp,q € (0,1), u,v; € (1,2) foralli = 1,2,...,m,

| DS, (1) = Df.x (1)
[ = "] [ - "]
< w J (t )1 pdS < m
DL yi (1) - DL y (1)
-y [t i ="
- I'(2-9) r(3-q)°
| Dy xi (1) = Dyt (1)
[ = "] [ - ="
= r(2-v) J(t s < r-»)’
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Dl yi (1) - Dl y (1)

. 'y;i’—y""J s < 26

r(2-u) rG-w)’
|(95:) 0 = () 0)
< sup J yj(t,s)ds e = x| = Yg i = x|,
te(0,1]
|(vi) 0 = (vy) @]
< sup J Aj(ts)ds| |y - y| = A Iy = 5l
tel0,1]

(21)

forj = 1,2 and k >
x(t) llmk_,ooDWyk(t)

1, we have limk_mngJck(t)
g+y(t), limkéngixk(t) =

0+x(t),hmkHOOD () = Diy(t) fori = 1,2,...,m, and
limy_, o (¢;)(8) = ($;x)(1), limkaoo(wjyk)(t) = (y;»)()
uniformly on [0, 1] for j = 1, 2. Also, we have
RN
||Dg+xk|| = r(2-p) L (t—s) Pds< TG-p)
s DAL [ s D
"I R-q) b TI(3-q)
el R
Iohsd = oy [ -9 7=
[0y < ok “ " J (t— ) Fids < “ "
=T ) TG w)

and also [|g;x| < yllxell and llyyell < Ayl for j = 1,2
and k > 1. Now, put

P (1) = fo (6xe (1), 3 (), ($1x) (B,
Df x, (1), Dty (1), (23)

DYy (1)

(v1yi) (0),

Dty (t),.

and p(t) = fz(t xi(0), Y (0), (62)(1), (W23 (1), DL, (1),
DV1 x; (1), D > xi (1), ... Dgi”xk(t)) for all k > 1. Then,
llmk_,oopk(t) J(t) for almost all + € [0,1] and j =
1, 2. Since fr{ € Car([0,1] x R™) and {x st {ichis, are
bounded sequences in C*[0, 1] and also by using the above
inequaliﬁes» {Dg+xk}k21’ {Dg+yk}k21’ {Dz)’ixk}kzl) {Dgiyk}kzl
fori = 1,2,...,mand {¢;x;}s1> {Y;xp}sy for j = 1,2 are
bounded sequences in C[0, 1], there exist g;,g, € L'[0,1]

such that m; < p}i(t) < gj(t) for almost all ¢ € [0,1] and

k > 1. Thus, by using the Lebesgue dominated convergence
theorem and the following relations:

T, (x0 3) (8) = T, (x, ) ()]
< (—J ok ()= p' (9)] s,
(T3 Goio 7)) ® = (T, () @)
- Ll lpi ()= P ()] ds,
(7)) 0= (13 Ge) " 0]
<oy | o-p o]

(24)
Ty (i yi0) () = T (%, ) ()]

1Y, 2
< o 10 Gl

Kﬁmemwﬁmmwn

< T j o2 (9) - p*(5)] s,

|(T721(xk’yk)) ) - (T2 (x. ) (t)|

< T j o2 (9) - p*(5)] s,

we get limy_ o (T (xp i) P(6) = (T, y)P(t) and
limy _, oo (T2 (% y) (@) = (T3 (x, ) (#) uniformly on
[0,1] for j = 0,1,2. This implies that Ti and Tj are
continuous operators and so T), is a continuous operator. Let
{(x4> ¥)}i>1 be a bounded sequence in P. We show that the
sequence {T, (xy, yi)}is; is relatively compact in X x X. By
using the Arzela-Ascoli theorem, it is sufficient to prove that
{T, (x> ¥)}ksy is bounded in X x X and {(T,(x;, y))"} is
equicontinuous on [0, 1]. Choose a positive number S such
that Il < Syl < Sl < S lyll < S el < S
I yk '| < S forall k > 1. By using the above inequalities, one
can see that ||D xell < S/T3 - p), ||D0+yk|| < S/IT(3 - ¢q),
||D0+xk|| < S/T(3 - ;) , and ||D0+yk|| < S/T(3 - ;) for
i =1,2,...,mand ||¢>jxk|| < < A{)S for
j=1,2.Since

yiS and

1
0<T, (xp ) (£) = J G, (t,s) pg (s)ds

gl
I'(@)’

1 1
SWJ g, (s)ds =



! 15
0< (Tr{ (xk’yk)) ()= L EG"‘ (t,s) p, (s)ds

1 1
< I'(x-1) Jo gi(s)ds =

1 1 aZ
OS(Tn(xk,yk)) (t) = J —G, (t,5) pi (s)ds

lgul;
F(a-1)

_ _aul,
T T(a-2)

1
F((x Z)J’ g1 (s)ds
(25)

||T; (x> ¥, < llgill; /T (e = 2). Similarly, we can verify that
IT2 (e yill, < 19511, /T(B = 2). Thus,
lgul, sl

"Tn(xk’yk)"** Smax{r(“_z)’r(ﬁ_z)} (26)

for all k. Hence, {T,,(x, ¥ )} i1 is bounded in X x X. Also, for
0<t; <t, <1wehave

(T3 (o 20) " (82) = (T, Ge )" (1)

<uj (1-9)%"pl(s)ds +
T T(a-2) I'(x-2)

X

t, 3t
| -9 @ds— [ -9l 0ds

It (e ey,

*T-2) - T(ax-2)

1
x H: (t, - )" p (s)ds

+ Jtl ((l‘2 ) (¢, - s)a_s) pi (s) ds]

0

“91“1 (ttx _ttx73)+ 1

“T(a-2)\2 ! I'(ax-2)

|-t lail,

+ j (=97 = (69" ) 91 9 ds] .

0

(27)
Similarly, we have
(72 (v 90))” (82) = (T2 (0 )" (1)
lg2 "1 B-3 -3 1
T )
(28)

X [(tz - tl)ﬁ_3“92”1

+ Jtl ((tz - S)ﬁ_3 —(t, - S)ﬁ_3> 9, (5) ds] :

0
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Let € > 0 be given. Since the functions t* and t# are
uniformly continuous on [0, 1] and the functions [t — s|*?
and |t —s|P~3 are uniformly continuous on [0, 1] x [0, 1], there
exists 8 > 0 such that 0 < tg_3 - t[{‘_3 <e0< tff3 - tf*3 <€
0 < (t,—5)* > ~(t,—s)* > < €,and 0 < (1.‘2—5)/3_3—(t1—s)/3_3 <e€
forall0 < t; <t, < 1,t,—t; < §and0 < s < . If
0<t <t,<landt, —t, < min{d, “Ve, *3e}, then

(7} (o 9)” 02) = (T3 (o)) ()] = 255 el

(29)

" "
and |(T; (x y) (1) = (Tn(xe y)) ()1 < (3e/T(B -
D)) g,ll;. Therefore, {(T,(xy, yk))"} is equicontinuous on
[0,1] and so T, is a completely continuous operator on P. [

We need the following result (see [10]).

Lemma 3. Let Y be a Banach space, P a cone in Y, and
and Q, bounded open balls in Y centered at the origin with
Q,  Q,. Suppose that T: PN (Q,\ Q,) — P is a completely
continuous operator such that |Tx|| > ||x|| forallx € P N 0Q,
and |Tx| < |Ix|l for all x € P N 0Q,. Then T has a fixed point
inPN(Q,\Q).

Theorem 4. For each natural number n, the system (15), (2),
and (3) has a solution (u,,v,) € P such that u,, > Mlt"‘f1 and
v,(t) = MytP™ forall t € [0,1].

Proof. Let (x,y) € P and n > 1 be given. Then,
T;(x, y)(t) = m, _[01 G, (t,s)ds = M;t*" and Tj(x, y(t) =
m, Jol Gﬁ(t,s)ds > Mztlgf1 for all t € [0,1]. Hence,
||T;(x, )|l = M, and ||T§(x, vl = M, and so IITi(x, 2, =

M, and ||T3(x,y)||* > M,. Thus, [T, (x,»),, =
max{M,, M,} = M. Now, put

Ql :{(X,y) EXXX: "(X,y)”** <M} (30)

> ||, Yl forall (x,y) € PNoQ,. Let

Then, IT, (x. )1l >
W] = P]-(l/n, 1/n,...,1/n) for j = 1,2. Then, we have

< (T (%) ®

1
<
I'(x-2)

x Ll (W ke ()1 (14 %(9),

L+ y(s), 1+ (¢,x) (),
1+ (y,9)(s),1+ Db x(s),

1+D”iy(s) 1+D Ty(s),...,

1+ D”"‘y (s)))
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1
<
T'(ax-2)

x (W + Iy (14 Dxll 1+ )y

L+ [¢yx] s 1+ [yl

1+ "Dp+ 0+)’
1+ "D”ﬁ
1 +”D )

< (Trll (%, y)), () = L (Trll (x, y))" (s)ds

T (a-2)

x (W, +hy (1+]x0,
Ly 1+ ol 1+ fyayl
1+ |DE x|, 1+ | Dy,

.,1+||D’gi”

1 +||D”i

y|)||k1||1)’

0<T: (x,y)(t) = L (Ti (x,y))’ (s)ds

1
<
I'(x—2)

(W, +hy (14Dl 1+ |y

Lt o] 1+ yay])

1+||DP+ D*‘i
S T +l|D o) el
(31)
forall (x, y) € Pandt € [0, 1]. Hence,
|7 (e 2]
1 1
s W +h1 1+||x”*’
I'(ax-2) < " <
L+ [yl 1+l
[l
1+ A 1+ *
ot
1+ "y"* ’1+ "y"* e,
FG-w) TE-w)

R

7
1
F((X—Z) (erl + hl (1 + "(x’y)“**’
]' + “(‘x’y)"**’ 1 + Vé"(x’y)“**’
"(‘x’y)“**
1+A , >
+ O“ X5 y "** F(3_P)
L G,
r(3- Ml)
nyL*m
(3 1/‘2)
||(X,y) * %
L2l e, )
(32)
Similarly, we have
|7 e )]
1 2
S r(ﬁ_z) <Wn + h2 (1 + ”(x’y)"**’
L+ (6 9 1+ 100 (6 )]s
1+ A2 (x, )1 ”—
+ 0||(x )’)“** + r(3_q)
1+ "(x’)’)n** ”(X,y)"**
r(3-»)" T@B-v) "
r(3 kol
(33)

for all (x, y) € P. Since lim, _,  hi(x, x,...

,x)/x =0for j =
1,2, there exists S > M > 0 such tflat

1 1
1 >
Ta-2) <Wn +h1< +S

1+8,1+9,81+AS,
S - S
r3-p) TG-m)
S

1+ —-:, ...,
1"(3—;42)

1+r(3+ym))||kl||l)gs

1+



IKﬂ{Z)(wﬁ+h2(l+&

1+8,1+9:8,1+A2S,

1+ S 1+ S
r3-q) TG-»)

LS
r(3-v)" """

S

(34)

1

Put Q, = {(x,y) € X x X st |(x l,, < S} Then, the
above inequalities imply that || T, (x, I, < I(x, ), for
all (x, y) € PNoQ,. Now by using Lemma 3, we conclude that
the operator T, has a fixed point (u,, v,) in PN (Q, \ Q,). It
is easy to see that (u,, v,) is a desired solution of the system,
that is, u,, > M,t*" and v, (t) > M,t* " forall t € [0,1]. O

We need the following lemma.

Lemma 5. The set of solutions {(u,, v,)},»; of the system (15),
(2), and (3) is a relatively compact subset of X x X.

Proof. It is easy to check that

u, (t)
= lea ts) f,) (s, u, (s),v,(s),
0

(é114,) () (¥1v,) (5), Df iy, (),
Dgivn (s), Dgivn (8)s...s

Dgf' v, (s)) ds,
(35)
v, ()

= Jl Gg (t,s) f,f (S, U, (s),

0

Yu (S) > (¢2un) (5) > (WZvn) (5) >
D% v, (s),D}u, (s),

D;iun (8)y..vs Dg’:‘un (s)) ds

for t € [0,1] and n > 1, satisfy in Theorem 4. Also,
u;(t) >m, _[01 (0/01)G,(t, s)ds > mlt“_z/l“(cx)(oc—(sl),u;'(t) >
m fol(az/atz)Ga(t, s)ds = m, (8, — 2)t* 7 /T(a — 1)(a - 8)),
vi(8) = m, [[(0/00G(t,s)ds = m,tP?/T(B)(B - 6,), and
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vI'(t) = m, jol (0° /081Gy (t, s)ds = my(8,-2)t* > /T(B-1)(B-
§,) fort € [0,1] and n > 1. Moreover,

Dy, u, (t)
_ 1 ! Nl
=T ) 27 Jo (t-s) "u, (s)ds
S my (8, - 2)
TT2-p)T(a-1)(a-8y)

t
X J- (t —s) Ps*3ds,
0

Dl,v, (t)

B 1
T(2-9q)
< m2(62—2)

T T2-q)T(B-1)(B-3,)

t
X J- (t — s)7 P73 ds,
0

ra—#ﬂdums
0

(36)
Dy.u, (t)

_ 1 ‘ o
=T 2= Jo (t=s) "u, (s)ds

S my (6, - 2)
TTQ2-v)T(a-1)(a-6)

t
X J (t— ) 7" ds,
0

Dhiv, (t)
— 1 ' A T
= e L (t—s) v, (s)ds
my (52 - 2)

TR (B-1)(B-0))

t
X J (t —s) P 3ds
0

fori=1,2,...,m. Since

t
I (t—s) 7 Ps*3ds = P!
0

1
x j (1- &' PE2gE
0
_TR-PT@-2) o
- T(a-p)

. F(Z—p)l"((x—Z)ta_P
(- p)

>
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! _ a\1-a B3 F(2—q)1“(/3—2) B-q

L(t s) s dSZ—F(ﬁ—q) 7,

F(Z—v»F(a—Z)ﬁﬂG
I (a—v)

t
J (t—s) 7" ds >
0

‘ o\l B3 I (2 B Mz) I (ﬂ B 2) B-u;
L(t s) M ds > TR ) t

(37)

fori=1,2,...,m, we get D0P+un(t) > (m, (8, - 2)/(o — 2)(x —
8= p))t*F, DY.v, (£) = (my(8, = 2)/(B-2)(B~ ;)T (B
)P, Du, () 2 (my (8, - 2)/ (= 2)(a = 8;)T (e = v,))t*7%,

and D v,,(t) = (m,(8, - 2)/(B - 2)(B — 8,)T(B— ;) )t for
allt € [0,1] and n > 1. Since

. 1 1 _
m, 'mln{((x—él)r(“+1)’ ((x—2)(06—51)} =M,
(38)

and m, - min{1/(B — 8,)T(B + 1),1/(B-2)(f - 8,)} = M,,
foreach t € [0,1] and n > 1, we get u,(t) > Mlt“fl, v,(t) =
MtP', DEu, () > (8, - 2)M, /T(ax — p)t* P, DL v, (1) >
(8, = 2)M,/T(B — tF™, DYu,(t) > (8, — 2)M;/T(ex —
v)E, and DLy, (8) > (8, — 2)M,/T(B — w))tP* for
i = 1,2,..., m and (¢;u,)t) > M, jot y]-(t,s)s"Hds and
(yv,)(t) =2 M, JZ At s)sP " ds for j = 1,2. Thus,

Py (1, (8),v, (05 (dy18,) (), (yyv,) (8)

DY, (t),Dhiv, (), D, (t) ..., Div, (1))
<P | M“ " M,tPY M t a-l
=41 1 > 2 5 1 Y1 (t, S) N dS,
0

(0, -2) M,

t47P,
' (a-p)

t
M, J AL (t,s) sPds,
0

r(ﬁ_‘”l) ’ r(ﬁ‘.‘/‘z) """

(0,-2)M, 5,
TB-p) )’

P, (u, (1), v, (©) ($y18,) (1), (yo9,) (£), DLv, (1),

Dy, (t), D2, (8),..., Dyru, (1))
t
<P <M11‘0‘_1,M2tﬁ_1,M1 L ¥, (t,5) s* 7' ds,
(82 B 2) M2 tﬁ—q’
L(B-aq)

(61 _2) Ml a-v; (81 _2) Ml £
T(a-) " T(ax-,) a

(61 B 2) Ml tocvm)

T (a-v,)

t
M, J A, (t,s) sﬁ_lds,
0

e

forallt € [0,1] and n > 1 and so
0<u (t)

1 82 )
= JO ﬁGa (t.s) f, (s, u, (s), v, (s),

(B114,) ()5 (¥1v) (5)

Df.u, (s), Dhtv, (s),

Dgf Yy (8),s.nns D'(;T v, (s)) ds

1 1 _ _
<— || p | Ms* M,sPE
el I Gt

M, J y (s,7) %7 dT,
0

M, L Ay (s, 1) #ldr,

(61 - 2) M, a—p

T(a=p)

(62 B 2) M, Sﬁ—yl
T(B-wm) ’

(62 B 2) M, Sﬁ—yz
TB-w) 777

(62 B 2) M, Sﬁ—pm ) s
TBm . )?

o (1 a1+ [l

L Yolltallos 1+ Agllval

(39)
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bl . I

TG-p) TG-w)

. [v.l. L [v.l. )
[ (3-w,) T(3-u,)

X Ll ky (s) ds]

1
T T(a-2)

X (A1 +h <1 + |l 1+ vl

L Yollwalls 1+ Aglvalls

lall. Il
TG-p T TG-m)
F(3—[42)

).

<
I'(x-2)

X (Al +hy (1 +||u,»

L vl 1+ voflsal
L Ag vl

bl _Iul.

1+

r3-p) TGE-w)
1+—||V,,||* yeens
F(3—y2)

1+ ———

).

t
0<u,(t) =J u;(s)ds
0

1
<
I'(ex-2)

X (Al +hy (1 +||u,»

vl 1+ vo ol

L Aolval

Abstract and Applied Analysis

[l I,
TG-p) TG-w)
1+—"vn”* Sy
T (3-u,)

vl Yy,

(40)

forallt € [0,1] andn > 1 and also A ; < co, where

1
A, :J P, (Mls“_l,Mzsﬁ_l,
0
S
M, J Y (s, 1) %7,
0

M, J A(s,T) #dr,
0

(41)
(61 _Z)Ml a—p (8 2)M2 /3 )

Fla-p) " T(B-m)

( _2)M2 ﬁ#z
(B~ )

(62 B 2) M, Sﬁ—y,,,) s
R A

Hence,

Juall. <

)<A +h <1+||un||*,

Lt vl 1+ vollsa].
L+ /\é“"n"*’

ol. . _Inl.

TG-p) TG-w)

[Vl

1“(3—‘142)’”

b r("; ”ym))“ 1)

1+

L]
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1
T@-2) (A1 +h (1 + 1t vl

1+ ”(un’ Vn)”**’ 1+Y(§|l(un’ Vn)”**’

1+ A(l)”(un, v,)|l

”(un’ Vn)”** + ||(un’ Vn)”**
R
o .
l+ TG-p)
.
R

(42)

for all n > 1. Similarly, we have

A

N (A2+h2(1+ e )l 10t 7)o

1495 (5 v,,)

* %

1+ )Lf)”(un, V)

1+ "(un’ Vn) ok "(un,V
rG-q ° I‘(3’_7’1) ’
1G5 v ).
+ w,..-,
"(l’zr;’V )"**>|l 2“1> 2

(43)

for all n > 1, where

S
M, J v, (s,7) %7 dT,
0

M, J A, (s, T) dr,
0

(62 - 2) M2 Sﬁ—q
r(B-q)

>

11
Gr=2) My oy
T (a-m)

(61 B 2) Ml a-v,
e ——— )
T'(a—v,)

6, -2
( 1 )MIS‘X*Vm ds.
I'(a—v,)

>

IEEEE)

(44)

Thus, (s v,
hixx,...

My 00 j

such that

< maX{G1 GZ} for all » > 1. Since
,X)[x = Ofor] = 1,2, there exists L > 0

1

— (A, +h 1+, 1+0,1+y0,
F(oc—Z)( 1 1( Yo

v
1+Aév,1+m,
v
T(3-uw)
v
M)

v
1+ ——— ||k ,
Ty ) <

1 2
— (A, +h,(1+0v,1+0,1+y0,
F(ﬁ—z)(z ( BTRITRE

1+

1+

(45)

v

1+ M0, 1+ ——,
> T T(G-g)

v
r(3-v)
v
r(3-v)" """

v
1+;@j;3>"bm)<“

for all v > L. Consequently, ||(u,, v,)|l,, < Lforalln > 1and
so {(u,, v,)},>1 is a bounded sequence in X x X. It remains to

prove that {(u,, v,)"'} is equicontinuous on [0, 1]. Put

1+

1+

V1=h1(1+L,1+L,1+y01L,

L
1+/1})L,1+r 1+

1+ 1+;)
TB-w) 7 TGB-th)/)’
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szh2(1+L,1+L,1+y§L,

L

1+/\2L,1+ >
0 r(3-»)

L 1+
r3-q)’

et 1L
[G=v) " TG )

®, (1) = (Mt‘“Mt’“

t
M, J y, (t,5) s*ds,
0

t
M, J Ay (t,s) sPds
0

(6, -2)
I (a-p)
(8 2) M2 /3 !42
r (ﬁ i) .
(6,-2)M, 5,
r (:8 - "lm) ‘ > ’

Ml a—p (6 2)M2 ﬁ ,ul
T(B-w)

O, (t) = P, (Mlt“‘l,Mztﬁ“,

¢

M, J y, (t,5) s*'ds,
0
t

MZJ A, (t,s)sP ' ds,
0

(82 B 2) M, tﬁ—q (81 B 2) M, et

r(B-q)  Tla-»)
(61 B 2) Ml a-v, (81 B 2) Ml =V,
Tla-v) " Tla-r) )

(46)
forallt € (0,1]. Note that, A ; = |, ®,(£)dt for j = 1,2 and
Fo (B2 (1), v, (1) ($114,) (8),
(¥1v4) (©), D, (£), D, (£)
Diiv, (8),.... Dy v, ()
<@, (1) +Vik, (B),
T (EHORAONCIAION
(¥27) (©), D v, (£), D, (£)
Dpu, (8),...,Dyru, (1))

< D, (t) + Vok, (1)

(47)
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for almostallt € [0,1]andn > 1.If0 < ¢, <t, < 1, then

t, (t2) =, (1)

1 aZ
L (ﬁG (ty,5) -

I CNORNONCARIONABIOR

a o6, (t1,5)>

P 14, (), Dty (), Dz, (), ... .Dbrv, (s)) ds

1

1
8 T(a-2) [(tg% - t‘I)H) Jo (@, (s) + Viky () ds

J (t, = )7 (D, (s) + Vik, (5)) ds
(97 - -9

x (@, (s) + VK, (s)) ds]

1
<
I'(x-2)

[(tgk3 - tiH) (Ay + V&)

+(t, - t1)a_3 (A +Vi|ky]))

[ (-7 -6 -9)

x (@ (s) + VK, (s)) ds] .
(48)

Similarly, we have
v (82) = v, (1)

(157 = 7) (A2 + Valeal)

r(g-2)
o -0) 7 (M lk)) (49

[ (-9 - - 9)
x (@, (s) + Vyk, (s)) ds] .

Lete > 0be given. Choose §, > Osuch that0 < £5° 7 <,
0< tf‘3 - tf_3 <
0<(t,-s) " =(t,-9) " <e (50)
and0 < (£, - )P = (t; —s)f? < eforall0 < t, <, < 1,
t,—t; <8yand 0 < s < t,. Thus,foreach0 < t; <t, <1
and t, — t; < min{8,, “Ve, *~/e}, we have |u (t,) — u (t,)] <
(3e/T(a—2)) (A, +Vyllkyll,) and V) (£,) = v/ (£))] < (3e/T(B-
2))(A , + WV, Ik, |I,). Therefore, {(u,,, vn)”}n21 is equicontinuous
on [0, 1]. This completes the proof. O
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Now, we give our main result.

Theorem 6. The system (1), (2), and (3) has a positive solution
(u, v) such that u(t) > Mt v(t) > Mztﬁ_l, D0P+u(t) >
((8,-2)M, /T(a—p))E*, DR, v(t) > ((8,-2)M, /T(B-g))t ™,
D(V)’;u(t) > ((6, = 2)M, /T(a — v ))t*7", and Dgiv(t) > ((5, -
2)M,/T(B - ‘ui))tﬁ*’*" fori=1,2,....,mandt € [0,1] and
($;u)(0) = M, [, y;(t, $)s*""ds and

(w,v) 0 = M, L: A () 5" ds (51)

forj=1,2andt € [0,1].

Proof. By using Theorem 4, for each natural number #,
the system (15), (2), and (3) has a solution (u,,v,) in P.
Also by using Lemma 5, the set {(u,,v,)},s; is a relatively
compact subset of X x X. By using the Arzela-Ascoli theorem,
without loss of generality we can assume that {(u,,, v,)},,5; is
convergent in X x X to some element (u, v) of P. It is easy
to check that (u, v) satisty the boundary conditions (2) and

(3) and also lim,,_, OOD(I; u, = DO‘D+ u, lim,,_, ong+ v, = Dg+ v,
limnﬂong’;un = D(V)‘; u, and lim,Hongi v, = Dgiv fori =

L,2,...,mandlim,_, ¢u, = ¢;uandlim,_,  y;v, = y;v
for j = 1,2. Thus, it is easy to see that (u, v) satisty the desired
conditions. Also,

Tim £y (61, (8),7, (), ($11,) ©),
(v1v,) (©),DFu, (1), Diiv,, (1),
Dy, (1),..., Dy, (1)
= fi(Lu@®),v (), (¢u) (©), (y1v) (1),
Dy.u(t),Div(t),
D (t),....Dirv (b)),
(52)
Tim_ £ (6, (), v, (8), ($a14,) (8
(¥2v,) (1), Di,v,, (£), Dy, (1),
D, (£),...,Dyru, (1))
= f(Lu®,v®), () 0,
(y,v) (t), Dg,v (t), Dyiu (),

7, Vi
Dpu(t),...,Dpru(t))

for almost all t € [0,1]. If & = sup{ll(u,, v )., : n = 1},
then D2, 1, < E/T(G — p), IDL v, < E/TG — q), 1D, | <
E/T(3-,;),and IIDgivnII <&/T@-y)fori=1,2,...,mand

13

n>1 ||¢jun|| < Eyg and ||1//jvn|| < ’q’/\{) forj=1,2andn > 1.
Thus,

0< Gy (£,9) f (5514 (5), v, (5,
(B114,) ()5 (¥1v) (5)
DP.u,(s), Dlv, (s),
D7, ()., D,y ()

1

<
I'(x)

(CDI (s) +hy (1 +&,

1+£,1+y3€,1+)t3£,

§ §

1+ 1+ N
r3-p) TB-w)

&
1“(3—‘142)’

¢
1+ F(3—Mm))k1 (S)>’

0 Gg(t:9) £ (514, (5),v, (), (at4,) (5) 5

(¥av,) (s), DLv, (s), D)L, (s),

1+

L]

, Vin
Dyiu, (s),...,Dytu, (s))

1“(1/3) <<D2 (s)+h2<1 + &,

1+E1+ 961+ A28,
¢ ¢

1+ 1+ ,
r3-q) T(B-»)

§
r(3-»)"

§
) )

<

1+

L)

(53)

for almost all (t,s) € [0,1] x [0, 1] and n > 1. Hence, by using
the Lebesgue dominated convergence theorem we get

u(t)

1
= L G, (,9) f (5’”(5))V(5)>(¢1“) (s), (y1v) (),
Dfu(s), Diiv(s), Digv(s),...,

Dgi” v (s)) ds,
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v (t)
1
- L G (6:5) £ (54 (5),(5), (,4) ()

(y,v) (s), DLv (s), D} u(s),

Dgiu (8)s...s D;’fu (s)) ds
(54)

for all t € [0, 1]. Therefore, (1, v) is a positive solution of the
system (1), (2), and (3). O

4. Example

Here, we give an example to illustrate our last result.

Example 1. Letm; > 0,m, > 0,n > 4,n-1<a,f < n,
0<pg<L1<uy,v<2fori=12,...,m,p;,p,,0,,0, €
L'[o,1], 0,(t) = my and 0,(t) > m, for almost all t € [0, 1].
Suppose that a;,¢; € (0,1/(x — 1)), a5,¢, € (0,1/(B - 1)),
a5 € (Os 1/(“ - P))7 C5 € (0> 1/(ﬁ - q))7 ai’ € (0) 1/(ﬁ - Mj)))
and ci' € (0,1/(e — ) fori = 1,2,...,m and also b,
bz,b3,b4,b5,b1',b2',...,b,'n,dl,dz,d3,d4,d5,d;,d;,..., d,'41 € (0,
1). Assume that a;, a,, ¢; and ¢, are positive real num-
bers such that jol (J: P (s, T)T“"ld‘r)_%ds < 00, J'Ol(_[os P, (s,
)1°7dr)%ds < oo, _[01 (J;AI(S, T)T'B_ldr)i%ds < 00, and

_[01 (jos Ay (s, T)Tﬁ_ldr)ic‘lds < 00. Define the functions f; and
f,on[0,1] x D by

fi(tx, v, z,w,v,up,uy, ... u,,)

+|py (1) (xb1 + y% + 25

!

by bs + ubl
1

+w* +v

’

bz hr,n t
tuy +---+u ) o (t),

L (Ex vy, z,wv,u,uy, ... u,,)
1 1 1 1
a x4 ycz z% w
1 1 1
F—t St — o+t —
VS = [
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+p, O (x" + " 42

r

d, ds + ud1
1

+tw*"+v

d, d,,
Uy ) )+02(t).

(55)

Note that the functions f; and f, satisfy the conditions (H,)
and (H,), where

P, (x, y,z,w,v,up, Uy, ..., U,,)
1 1 1 1
=—t+—+—+
x% yuz z% w
1 1 1 1
t—t— =+t —F,
V% a; ?) A
u' U, Uy
P, (x, y,z,w, v, uy, Uy, ...y 1y,

1
ottt (56)

hy (x, v, z,w, v, up, uy, ...

b, b, by

=1+x +yb2+z +w

! ! !

b b
+vb5+u11+u22+--~+ubm

m)
hy (x, y,z,w, v, Uy, Uy, .. Uy,)

d

:1+x1+yd2+zd3+wd4

' ' '

ds dl dz d
FU AU e,

+v

ki(t) = |p; (1) + o,(t) and k,(t) = |p,(t)| + 0,(t). Theorem 6
guarantees that the system (1), (2), and (3) via these functions
has a positive solution (u, v) satistying the desired inequalities
in Theorem 6 whenever M, = m, /(o —§,)T(a¢+1) and M, =

m,[(B—6,)T(B + 1).

5. Conclusions

One of the most interesting branches is obtaining solutions of
singular fractional differential equations via boundary value
problems. Having these thought in mind we discuss the
existence of positive solutions for a coupled system of mul-
titerm singular fractional integrodifferential boundary value
problems. An illustrative example illustrates the applicability
of the proposed method.
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