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Abstract
In this manuscript we investigate the existence of the fractional finite difference
equation (FFDE) AZJX({) =g(t+pm—1,x(t+pu—1), Ax(t + £ - 1)) via the boundary

condition x(u — 2) = 0 and the sum boundary condition x(u + b+ 1) = Z?:,H x(k) for
order 1 < ;. <2, whereg: Nﬁff” xRxR—>Rac N,’ﬁb, and t € N§*2. Along the
same lines, we discuss the existence of the solutions for the following FFDE:

AZ_Bx(t) =g(t+ - 2,x(t+ pn - 2)) via the boundary conditions x(u — 3) =0 and
x(u+b+1)=0and the sum boundary condition x(a) = Zf:y x(k) fororder 2 < u < 3,
where g : Nﬁffﬂ xR—R,beNyteNy anda, B,y € Nl’jff withy < B <a.
MSC: 34A08

Keywords: fractional finite difference equation; fixed point

1 Introduction

By the late 19th century, combined efforts made by several mathematicians led to a fairly
solid understanding of fractional calculus in the continuous setting but significantly less
is still known about discrete fractional calculus (see for example [1, 2] and [3] and the
references therein). Recently, there has been a strong interest in this subject but still little
progress was made in developing the theory of fractional finite difference equations (see
[4-11] and [12] and the references therein).

Discrete fractional calculus is a powerful tool for the processes which appears in na-
ture, e.g. biology, ecology and other areas (see for example [13] and [14] and the references
therein), where the discrete models have to be considered in order to describe properly
the complexity of the dynamical processes with memory effect. We notice that the exis-
tence of solutions for fractional finite difference equations is a hot topic of the fractional
calculus with direct implications in modeling of some real world phenomena which have
only discrete behaviors.

Motivated by the above mentioned results, in this paper we investigate the fractional

finite difference equation

Al x(t) =g(t+p—Lx(t+ pn — 1), Ax(t + - 1))
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via the boundary conditions x(x — 2) =0 and (i + b + 1) = ZZZM_I x(k), where b € Ny,
teNb2 1<pn<2,g: Nbﬂ”l xRxR—R, andaer“‘
Moreover, we investigate the FFDE given by

Al _ox(t) = g(t+ = 2,x(t + - 2))

via the boundary conditions x(u — 3) = 0, x(u + b + 1) = 0, and x(« Zk y ), where
beNO,teNg"s,2</L§3,g:Nﬁig+1 xR—Randa,B,y €Nj, 2w1thy<,3<oz
In the following we present the basic definitions and theorems used in this manuscript.

In Section 3 we present the main result. The manuscript ends with our conclusions.

2 Preliminaries

As you know, the gamma function is defined by

F(z):/ et ldt,
0

which converges in the right half of the complex plane Re(z) > 0. It is well known that
I'(z+1) =2zI'(z) and I'(n) = (n — 1)! for all n € N. Now, we define

ri¢+1)
rit+1-p)

for all £, € R [15]. If £ + 1 — p is a pole of the gamma function and ¢ + 1 is not a pole,
then we define t£ = 0 [16]. For example, we have (1 — 2)“~% = 0. Also, one can verify that
=t = T(p +1) and S ot

In this paper, we use the notations N, = {p,p+L,p+2,...} forallp e Rand N} = {p,p +
1L,p+2,...,q} for all real numbers p and g whenever g — p is a natural number.

Let ;> 0 with m — 1 < u < m for some natural number m. The pth fractional sum of f
based at a is defined as [3]

I—p

A0 =y 20

o (r) "= (r)

for all t € N,,,,, where o (r) = r + 1 is the forward jump operator. Similarly, we define

t+u

ALf )Z (t-o()>=f ()

for all £ € N,y [17]. Note that the domain of A’f is N, for r > 0 and N,_, for r < 0.

Also, for the natural number u = m, we have the known formula [16]

(0= 0 = ()i m -,
i=0

We define A% (¢) = f(¢) for all t € N, too.
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Lemma 2.1 [16] Let g: N, — R be a mapping and m a natural number. Then the general
solution of the equation Al ,_,x(t) = g(t) is given by

x(t) =Y Cilt—a)l=+ Ag(t)
i=1

forallt € Ny, y_ym, where Cy, ..., Cy, are arbitrary constants.

Letg: Nztlf'“ x R x R — R be a mapping and m a natural number. By using a similar
proof, one can check that the general solution of the equation A},_,,x(f) = g(t +  — m +

Lx(t+pn—m+1), Ax(t + u —m + 1)) is given by

m
x(t):ZCit”—’l#A’“g(t+u—m+1,x(t+u—m+1),Ax(t+u—m+1))
i-1

for all t € N,,_,,. In particular, the general solution has the following representation:

m ) 1 t—p 4
— Ci M=l _ p=t
x(t) igzl ety M) ;zo (t—o(r)
xg(r+,u—m+1,xr+u—m+1),Ax(r+/L—m+1)) (2.1)

for all £ € N;,_,,,. The next theorem plays an important role in our main results.

Theorem 2.2 [18] Every continuous function from a compact, convex, nonempty subset of

a Banach space to itself has a fixed point.

3 Main results

In the following, we are ready to provide the main results. First, we investigate the FFDE
Al _ox(t) = g(t+p—Lx(t + pn —1), Ax(t + - 1))

via the boundary conditions x(u —2) =0 and (i + b + 1) = ZLWI x(k), where b € Ny,
teNg*2,1<u§2,g:Ni+_’f+l xRxR—)R,andaeNZt’f.

Lemma3.1 Lethe Ny, te N2 1<pu<2,g: Niﬁ’f*l XxRxR—>R,anda e Nzt’f. Then

xo is a solution of the problem
Al _,x(t) =g(t+pu—Lalt+up—1), Ax(t+ pu—1))

via the boundary conditions x(i + b + 1) = Zzzu_lx(k) and x(u — 2) = 0 if and only if xy is

a solution of the fractional sum equation

b+l

x(t) = Z Gt r,a)g(r+pm—1x(r+ pn—1), Ax(r + p - 1)),
r=0
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where

tL_l Z?zrﬂt (k -0 (r))L_l

G(t,r,a) = (e + b+ 12— L@ + DT ()

(u+b+1- a(r))";l%l(oz I L

(i b+ DEIT o) (e + b+ 12 = La v 1))

(w+b+1-o(r))rtert s (t—o ()Lt
L)+ b+ 12t (1)

wheneverr<t—pu<aoa—puorr<o-—-pu<t-—pu,

(w+b+1- a(r))"—’li(a 1)t

G(t,rya) =— = -
(1 +b+ DEAC () (e + b+ D = (o + D)

(u+b+1-o(r))ttept s (t—o(r))tt
T(w) (i + b+ 1)L I'(u)

whenever o — L <r <t -,

Ly ko)t
T (b D L+ DT ()

G(t,r,a)

(LW+b+1- a(r))“—’lﬁ(a 1Bt

(e +b+ DI () (1 + b+ DES = Lo+ DE)

(u+b+1-o(r))ttspt
T(u)(p+ b+ 1)L

whenevert —u <r <o —u and

(w+b+1- G(r))"—_li(a + 1)t
Tl b DT () + b+ DET— Lo+ 1)

Gt r,a) =

(w+b+1-o0(r))ktept
(W) (1 + b+ 1)L

whenevert—pu <a—pu<rora—pu<t—pu<r.

Proof Let x( be a solution of the problem
Al () =g(t+p—Lx(t + - 1), Ax(t + - 1))

via the boundary conditions x(i + b + 1) = Y ;_ u-1%(k) and x(1 — 2) = 0. By using Lem-
ma 2.1, we get

xo(t) = Cith=t + Cott=2 ¢ A‘“g(t +u—=1,x0(t +p—1), Axo(t + 0 — 1))
-

1 =
= Cltu—_l + CztE + Tm rX:O:(t— ()'(}"))Mi1

x g(r+u—1Lxo(r+p—1), Axo(r + u—1)).
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Since xo(u — 2) = 0, we have

0= Cili =24 ol =22 4 s 3 (0= =)
x g(r+u—1Lxo(r+p—1), Axo(r + u—1)).

Since (i — 2)*=t = 0 and

-2

Z((,u 2) — a(r)) g(r+pm—Lxo(r+up—1), Axo(r+pu—1)) =0,
r=0

C, = 0. On the other hand, we have xq(i + b + 1) = Zi:u_l %0 (k). Thus,

a b+l

> o) = Crlu+ b+ 1) F(IM) S (s br1-o@)t

k=p-1 r=0

X g(r+ w=1Lxo(r+pu—1), Axo(r + u— 1)).

Hence,
1 o 1 b+1
_ - pu-l
G = 7(# Sl |:k2u;1xo(k) XM ;(u +b+1- a(r))
x g(r+mpm—1Lxog(r+m—1), Axo(r+p— 1)):|
and so
xo(t) = m |:k§1xo(k) (3.1)

b+1

_%Z(Mﬁnl o(r)) (r+u Lxo(r+pm—=1), Axo(r + u — 1)):|tu_1
r=0
-

F(u Z g(r+m—Lxo(r+ p=1), Axo(r + - 1)). (3.2)

To calculate ZZ: 1-1%0 (k), taking the summation ZZ: o1 0n both sides of the above rela-

tion gives us

o o P o o Je=1
xo(k) = — %o (k) — -
g;l 0 g;l (u+b+ 1)1t k;; 0 k%; (u+b+ 10 ()
b+1

XZ/L+b+1 o(r )) g(r+u—1Lxo(r+p—1), Axo(r+ p—1))

o ku

Z r+u Lxo(r+p— 1),Ax0(r+u—1)).
=pu— r=0
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Hence,

- ZZ=;¢—1 kﬂ_71
> w1~

k=p-1

a« k“—4 b+1
- Lyl _ 2:(;1,+b+1—cr(r))'Ll

(n+ b+ DEIT ()

x g(r+mu—1Lxo(r+p—1), Axo(r + u—1))

Z ()Zk o (r)" (r+,u Laao(r+ u—1), Axo(r + - 1)),

k=p—1

and so by interchanging the order of summations, we have

a a—p Zk (k=o (r)=— ) o 1
r+
E xo(k) = E ;—k’:)lg(r+M—l,xo(r+,u—1),Ax0(r+u—1))
— k=p1 K—
ot 0 T

. (urbl-o ()Y kL

Z (u+b+D)“=Lr ()
- -1
Z%:/L—l K=

r=0

(;L+b+1)“—71
xg(r+u—1,x0(r+u—1),Axo(r+M—l)). (3.3)
Since
- - k2 1 1
PSS m(—) = —(@+DE=(u-D¥) = —(a+1)%,
k=p-1 k=p-1 s s s
=u =

by replacing (3.3) in (3.1), we get

— = 121( r+u (r))ﬂ
(w+b+1)t 1(oz+1>ﬁ)r(u)

g(r+ w—=1xo(r+u—1), Axg(r + u — 1))
r=0

bl (w+b+1- a(r))“—_li(a s

) ; (1w +b+ DEAC (W) (1 + b+ DEL = (o + 12

x g(r+m—1x0(r+p—1), Axo(r + - 1))

b+l 1,u-1
(U+b+1—-o(r)t—ght=—=
- -1, -1),A -1
ZO oGy b St i La(r e =), Axolr+ = 1)
t—p u—1
+ (t o(r)) (r+u—1,x0(r+u—1),Ax0(r+u—1))
r=0
b+l
:ZG(t,r,oz)g(r+u—l,xo(r+u—1),Ax0(r+M—l)).
r=0

Now, let x, be a solution of the fractional sum equation

b+l

x(t) = Z Gt r,a)g(r+m—1x(r+ pn—1), Ax(r + - 1)).
r=0
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Then x is a solution of the equation

1 o
x(t) = m[ Z x(k)

k=p—1

“Tw b: (n +b+1—0(r))“_lg('"+u—Lx(r+u—l),Ax(HM_D)}M_—l
tﬂ (4 = 1), Ax(r + - 1))
r:O
1 « ] L
= W[g;lx(k) T ;(u +b+1-o(n)t

xg(r+,u—1,x(r+u—1), Ax(r+ —1))i|t“—’1

F AT g(t+ =Lt + - 1), Ax(t + 1 —1)).

It is easy to check that xo( — 2) = 0. Also, we have

xo(uw +b+1)
S S o ¥ th( be1-o()t
S (u+b+1)EE k=u_1x0 T T(w) — a —ov

xg(r+u—1,x0(r+,u—l), Axo(r+ u —1)):|(M +b+ 1)L

b+l
+ ﬁ Z(M +b+ l—o(r))@g(r+ 1= Lxo(r + p—1), Axo(r + w —1))
r=0

o

= > xo(k).

k=p—1

Moreover, we have Al’j_2x0(t) =g(t+pn—1x0(¢t + @ —1), Axo(t + o — 1)). This completes
the proof. O

Some authors tried to find the maximum or exact value of Zb+1 |G(¢, 7, )| in some pa-
pers (see for example [16, 19] and [17]). Now, we show that Zf:é G(t,r,a) is bounded,

where G(t,r,a) is the Green function of the last result.

b+1+u_ b+;l.

Lemma 3.2 Foreacht e N and o € N , we have
b+l b+l
Y Gltra)| <Y |G(t,ra)| < Mg
r=0 r=0

for some positive number Mg < 0.
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Proof Since I'(«) > 0 for all & > 0, we have

M'(uw+b+2)

(u+b+1)k1L= 0+2)

for all © >0 and b > 0. Thus, G(t,7,«) is a (finite) real number, for all ¢ € Nﬁtlzw, = Nzt’f

and r € Nb*1. Consequently, both sums in the statement are finite, because N5*! is finite.
O

Theorem 3.3 Let g: Nf;_‘f” X R x R — R be bounded and continuous in its second and
n

third variables. Then the fractional finite difference equation A, _,x(t) = g(t + p —1,x(¢ +
w—1), Ax(t + u —1)) via the boundary conditions x(u +b +1) = Zzzu_l x(k) and x(u—2) =0
has a solution xo with x(t) € [-Mg, Mg], for all admissible ¢.

Proof Since g is bounded, there exists a constant C such that |g(x, v,w)| < C for all u €
Nb+u,+1
n—-1
via the norm

n+b+1

and v,w € R. Let X' be the Banach space of real valued functions defined on N’

ll] = max{|x(¢)| : £ € Nl’ﬁlf“}

and K = {x € X' : ||x]| < CMg}. One can check easily that K is a compact, convex, and
nonempty subset of X'. Now, define the map T on K by

b+l

Tx(t) = Z G(t, r,ot)g(r +u—=Lx(r+u—-1), Ax(r+u— 1))
r=0

forall t e Nzii’”. First, we show that T(K) C K. Letx e K and t € Nﬁjﬁf“. Then

b+1
’Tx(t)’ = Z G(t, r,a)g(r +u—=Lx(r+pu—1), Ax(r+pu— 1))
r=0

b+l

< Z|G(t,r,oz)||g(r+ w=Lx(r+p—1), Ax(r + pu - 1))|
r=0

< CMg.

Since t € Nﬁig” was arbitrary, || Tx|| < CMg and so T(K) € K. Now, we show that T is
continuous. Let € > 0 be given. Since g is continuous in its second and third variables, it

is uniformly continuous in its second and third variables on [-CM¢, CM] and so there
b+l

et and uq, Uy, v1, vy €

exists § > 0 such that |g(z, u1, up) — g(t,v1,v2)| < MLG for all t e N
[-CMg, CMg] with |y —vi| < § and |up — v5| < 8. Thus, we get

|Ty(t) — Tx(t)|

b+l
= Z G(t, r,a)g(r +u=Ly(r+u-1),Ay(r+pn - 1))
r=0

b+l

- Z Gt r,a)g(r+pm—1x(r+ pn—1), Ax(r + p - 1))
r=0
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b+1
< Z|G(t,r,a)||g(r+ pw=Ly(r+pn—1), Ay(r+pu-1))
r=0

—g(r+,u—l,x(r+,u—1),Ax(r+M—1))|
b+1

€
= |G(t)r7a)|—§MG
2 lctr el

€
Mg

=€

forallt e Nﬁtfﬂ. Hence, || Tx— Ty|| < € and so T is continuous on K. By using Theorem 2.2,

T has a fixed point x¢ and so, by using Lemma 3.1, the fractional finite difference equation
Al _yx(t) =g(t+pu—Lalt+up—1), Ax(t+p—-1))

via the boundary conditions x(u + b +1) =Y ;_ el x(k) and x(uu — 2) = 0 has a solution in
[_MGyMG]' O

Now, we consider the fractional finite difference equation Aﬁ_gx(t) =glt+pu—2,x(t+

 —2)) via the boundary conditions (i — 3) = 0, x(t + b + 1) = 0 and x(«) = Z,’fzy x(k),
nu+b

where2<p <3anda, B,y €N, 7

withy < B <a.

Lemma3.4 LetbeNy, teNt*3 2<pu<3,g: Nf;’;ﬂ xR —R,and a,B,y € Nﬁtg with
y < B <a. Then xy is a solution of the problem Aﬁsx(t) =g(t+pn—2,x(¢t + u—2)) via the
boundary conditions x(u + b +1) = 0, x(a) = Zf:y x(k), and x(u — 3) = 0 ifand only if xg is

a solution of the fractional sum equation

b+l
x(t) = Z G(t’r)ﬂra)g(r + U - 2,x(r + U - 2)),
r=0
where
G(t,r, B,a)

~ (22— D+ b—r)it

(@b —a + @ +1) = 75 ((B + D= =y — (B + DA~ y1)

(g (B + DE= =y = +2) = (B + DE - y1)
x (b—o+p+ D+ b+1)E2T ()
(2o —p+2) - (w+ b—r)tt
b-a+p+D)(+b+1HE20 ()
. (=2 — (o —r — 1)L
(@b —a+p+1) = (G (B + DEZ -y 20 — 2((B + D2 - y1)
(G((B+ D=y = (b+3) (B + DA - yih)
oL —a+pu+ 1))
(L — (b + )t ) (o — r — 1)1L
b -a+pu+ ()
. (2 ) 3 k= o ()
(@b -+ p+1) = (G (B + DEZ =y = 2((B + DA = y )T (W)
(t-o(r)
T

X
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wheneverr <t—u,r<pf - pu,

G(t,r,B,a)
~ (2 - D) + b—r)i=
(@b -a+p+1) - (B +DEL—yE) — (B + DL - yh)
(B + DA =y - +2) = (B + DE - yL)
(b—o +p+ 1D+ b+ 1)E20 ()
(2o —p+2) =D + b— )t
B-o+p+D(+b+1)E20(w)
N (=2 — (@ —r - 1)L
(@b -+ p+1) = (G (B + DEZ =y — 2(B + D2 - y1)))
(GB+DE=y) = (b +3) 5 (B + DA - yih)
x oMb -+ u+ 1D ()
(L — (b + 3)tE ) (0 — r = 1)1L
T e (et p+ ) ()
. (2 -ty 30, (k= o ()t
(@b -+ pn+1) = (G (B + DA =y — 2((B + DA - y )T (1)

(
X

whenevert—u<r,r < -u,

G(t,r,B,a)
_ (=2 — i)+ b - r)L
(@b ot p 1) - (B + et — iy - ,%((/3 + 1) —yh)

m
(L B+ - yi D (@ - +2) - L((B+ 1) - 1))
8 (b—o+p+ D+ b+ 1)E20 ()
(2= p+2) = D (u + b - )t
(b—a+u+1) (1 +b+1)E20 ()
. (42 — Y — = 1)EL
(@b -+ p+1) = (5 (B + DA -y — 2((B + D2 - y1))
(LB + 1)~ y) - (b +3) (B + 1)L — yihy)
) oL —a+pu+ 1) ()
(L — (b + 3) 2 (o — r — 1)L
oMb -+ p+ 1) (1)

whenevert —pu<r,B—u<r,r<a-u,

G(t,r,B,@)
_ (2 - D+ b—r)it
@b+ p+ D) = (B + DE - B - L (B + DE - )
i (B + D=y - +2) = S (B + D - y))
Bb-a+p+D)(+b+1E20 ()

(20— p+2) — - (o + b — )L L - o(r)“t
(b—a+p+1)(+b+1)E2T () T'(w)

(
X
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wheneverr <t — [, a — L <1 and

G(t,r, B, )
~ (2 — D+ b—r)t
(@b -o+p+1)— ﬁ((ﬁ + 1)t ety ,%((ﬁ + 1)L —yH)
(ﬁ((ﬂ + DLyt (@ -+ 2) - ,% (B+1E-yH)
x b-a+p+1)z+bs ) 2C(n)

(2o — pu+2) — - (1 + b — )L
Bb-o+p+D(+b+1)E20(w)

whenevert —u <r,a — L <r.

Proof Let x be a solution of the problem AZ_sx(t) =g(t+pn—2,x(¢t+ p—2)) via the bound-
ary conditions x( + b +1) = 0, x(«) = Zf:y x(k), and (i — 3) = 0. By using Lemma 2.1,
we get

—L
Z t G(V)) (r+u—2,x0(r+,u—2)).

r=0

xo(t) = Cltu' -1 + Cztl!' 2 + Cgtp' 3
F(/L

Similar to the proof of Lemma 3.1, by using the boundary value conditions we obtain C; =

0,
G = k
! a“l(b oc+,u,+1 ZxO()
1 b+1
_ b -l 5 )
(b—a+p+)(w+b+ DT (w) VXO:(M+ =, (r+,u xo(r+pu — ))
1 ar
+ot“ Y- oz+,u+1)F(,U«)Z(a_r_ D¢ (r+ 1= 2,20(r + = 2))
and
b+3
G = k
=T a+u+1)zx0()
+ a_ﬂ+2 %(M+b—r)ﬂi_lg(r+u_2x(r+M_2))
B-a+p+D(+b+1)E20 () £ »%0
b+3 iy
T A b —a st DI Z(“‘” DI (r+ p = 2xo(r+ 1 = 2).
Thus,

p2 gt F
¢ )
() = S - a+u+D§:%(

b+l

2 (o — 2) — 41
+ (@—p+2) - Z(M"’b—'”)ﬂ
Bb-a+pu+1)(u+b+1)E=T () =
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x g(r+m—2,%(r+pn-2))

et 2(h 4 3 <A
+ ( ) Z(a—r 1)4=
al=(b-a+u+1)I

x g(r+pm—2,%0(r+ ,u—2))
t-pt

F(lu) Z(t—o(r))“—‘lg(r+ = 2,%0(r + pu—2)). (3.4)

r=0

+

To calculate Zfz , %o(k), by taking the summation Zfz , onboth sides of the above relation

gives us

B Jet=2 Jer=t
> (k) = D o Zxo(k)

o Lb—a+pu+1) P

nyk#Z(a :Uv+2 Zky u1b+1

b—r)tL
(b—o+p+D)(u+b+1)E20 (1 Z(MJr )
x g(r+m—=2,x(r+pu-2))
Zk},k"‘l— (b+3)% kﬂa—u( b
g O =
x g(r+m—2,%(r+u-2))
1 B-n B
(—ZZ (r+pc 2,x0(r + 4 — 2))
=0 k=p+s
and so
B bl (/L+b—r”12 K2 (a - +2) — Z k*h

Zxo(k) = Z

n2 =
k=y r=0 (1_ Zk:}/k Zk k—

E(b—aﬂu—l)
x g(r+m=2,x(r+pu-2))

o —1 B -1 B -2
+2’f (@—r =1L, k= (b +3) Y, k2)

B 2 B 1
r=0 (1 — Lk Vkﬂ L yku
( at= 1(b —a+pu+1

)b -+ p+1)(p+ b+ DE2T ()

)b — a + pu+ 1) (1)
xg(r+,u—2,x0(r+u—2))
L Y k—a et

+Z DI Loy Tl
0 (1 - Sty

g(r+u—2,xo(r+u—2)). (3.5)

b—o+pu+1)
Since >4, k=30 A(Z) = L((B +1)" - y%) and

kit

zw zAk(

1
> M_l((ﬂ-l'l)ﬂ—)/ﬂ—_l),
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by replacing (3.5) in (3.4), we get

xo(2)
s (2 — ) (u + b - )it
=Z[ =Y _ L pol_ 1y _ 1 L
L=l -a+pu+1) - H((B+ D= -y) - 2 (B + DE-y5)

(g (B + DA =y (o = w +2) = (B + DE - y1)
(b—o+p+ D+ b+ 1)E220 ()
(2o — o+ 2) — L) (e + b — )it
B-o+p+D+b+ 120 ()
; Z[ (¢ - ) = r = 1)
(@b -+ p+1) = (G ((B + DEZ =y — 2(B + DA - y1))

r=0
( (B+DE—y8) = (b +3)5((B + DL - i)
ol (p - a+u+1)F( )
(= — (b + 3)t“2) (@ — r — 1)~L
o Lb—a+p+ 1) (w)
. ﬂZ (2 -ty 3R (k= o ()
= @b -+ p+1) - GH((B + DA -y = (B + DE -y ()

]g(r+ ,u,—2,x0(r+u—2))

a—p

:|g(r+u—2,xo(r+u—2))

x g(r+m—2,x(r+pn-2)

t—p u—1
+ ( r)) r+u—2,x0(r+,u—2))
r=0
b+1
= Z G(t, r,,B,oc)g(r + 0 =2,%0(r + pu — 2)).
r=0

Now, let x be a solution of the fractional sum equation

b+l

x(t) = Z G(t,r, B,0)g(r+ = 2,x(r + p - 2)).

r=0

Similar to proof of the Lemma 3.1, we conclude that x is a solution to the problem
Al _sx(t) =g(t+pn-2,x0+p-2)

via the boundary conditions x(i + b + 1) = 0, x(«) = Zfzy x(k), and x(u — 3) = 0. This
completes the proof. d

By using similar proofs of Lemma 3.2 and Theorem 3.3, we obtain the next results.

Lemma 3.5 Foreachte Nb””‘ and o, B € Nu 5, we have

b+1 b+l
Z G(t,r,B,a)| < Z|G(t, r,Ba)| < Mg
r=0 r=0

Sfor some positive number Mg, < co.

Page 13 0of 16
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Theorem 3.6 Assume that g: NZ%” x R — R is continuous and bounded in its second

variable. Then the fractional finite difference equation AZ?Sx(t) =glt+pn—-2,xt+pn-2))
via the boundary conditions x(;u — 3) = 0, x(u + b + 1) = 0, and x(«) = Z/é:y x(k) has a
solution xo with xy(t) € [-Mg, M), for all admissible t.

4 An example

Now, we provide an example for the first investigated problem.

Example 4.1 Consider the equation

3 i (] 1 1
A, x(f)=1+e"3 +sin|t+—-+x|t+= ) +Ax|t+ = (4.1)
-3 3 3 3

4
via the boundary value conditions x(—%) =0 and x(%) = :_ 1 x(k). We show that this
=3

equation has a solution xy with x((¢) € [-35.7073,35.7073] for all admissible ¢. Let u = %,
o= %, b=2,and

gu,v,w)=1+e" +sin(u+v+w)

in the first problem. Thus, we should investigate the fractional finite difference equation

: w1 1 1
A, x(f)=1+e"3 +sin|t+-+x|t+= )+ Ax|t+ =
-3 3 3 3

4
via the boundary value conditions x(—%) =0and x(%) = lf_ 1 %(k). Note that the map
=3

13
NP xRxR—>R
3

is continuous and bounded in its second and third variables. Now, we show that Mg =
35.7073. Also, the Green function is given by

t;r:_

G< 4> . féziﬁg(k“’(”)é (2 -n33(Dis

3/ @ hred)  ®irdy@i-20)h
(% - ’")él‘é (t - a(r))é
- _
rgyes e
whenever r =0, t > %,
G<t,r, %) - _ f% - r)é%(lg)été _ (% —r')étlé N (t—o‘ir))é
BErEBE-3()3) rE@s TG

whenever 0 <r <t — %,

1 4 1
3 3 3 1 4 1 11
G(t , 4) Pl gbo O @onigis B onis

/@R339 BErd®i-30)H  ré®):E
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Table 1 The values of the Green function

t 4 7 10 13
3 3 3 3
G,0,%) 11089 17549 14424 11697
Gt1,%)  -11077 44166 46063 47088
Gt,2,%) -09494 11077 38054 40362
Gt,3,%) -07121 -08308 -09232 30272
whenever t = %, r=0,and
1 4 1 11
Q-ni3)is  @-nis
3 1\3 3
G<t,r,—>:— 1313 (4 ((13 3(7\3) Py
GETENGE)E-3(3)2)  TGI(F)E

G(g’o’g): hHidE l(%)%(g)%(%)i 4 _(%)é(g)%j

3 (@ -300rG) @IrGBE-33% ré®)?
o rrd 2rarg X
(5 =g SR - rard
=1.1089.

Similar calculations give us the values of G summarized in Table 1.
Thus, Mg > Zfzo |G(t, r,@)| = 35.7073. Hence by using Theorem 3.6, (4.1) has a solution
xo with x¢(¢) € [-35.7073,35.7073] for all admissible .

5 Conclusions

In this manuscript based on a fixed point theorem we provided the existence results for
two fractional finite difference equations in the presence of the sum boundary conditions.
One example illustrates our results.
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